
OpenMP Experiences and Comparisons

Table of Contents

Site Background

C90 --> SVlex

SVlex --> Origins

MPI and OpenMP

Conversion to OpenMP issues

References

i. Site Background

The NAS facility has a long tradition with Cray vector platforms,

but that technology may be nearing an end at NAS. The last C90,

called vn, for Von Neumann, was a 16 CPU, 1 Gigaword memory

computer, and was decommissioned 1/31/02.

An interim replacement, before a possible SV2 procurement, is

the SVlex, called bright, after Loren Bright. It has 32 CPUs,

and 4 Gigawords memory, and was put into service 2/01/02.

There is also a long tradition of distributed shared memory

machines from SGI, including currently the largest single-image

Origin in existence, the 1024 CPU Chapman.

A partial list of currently installed Origins would include:

CPUS NAME

1024 (Chapman) - 600 MHZ CPUs

512 (Lomax)

512 (Lomax3)

256 (Delilah)

128 (Hilbert)

62 (Steger)

32 (Turing)

30 (Hopper)

16 (Evelyn)

DAO - i0 more systems

Surprisingly, at the SGI Developers Conference, an SGI executive,

in listing the largest systems, put GFDL, in Princeton, on top with

over 1400 CPUs. Therefore, by his definition, total of all systems,

NAS has a 3000 CPU Origin!

2. C90 --> SVlex

Functionally, between the C90 and SVlex, there are rather few

differences, however, the following program, written by Dr. Johnny

Chang, at NAS, illustrates how the machines differ by more than simply

maintenance costs.

program memintensive

' a memory access intensive program to check

! timings between vn and bright

parameter (niter = i0000, nmax = i000000)

dimension a(nmax), b(nmax)

tO = second()

call random_number(a)
tl : second()
do i = l,niter

call sub(nmax,a,b)
enddo
t2 : second()
print *,'Time for randomnumber=',tl - tO
print *,'Time for memorycopy =',t2 - tl
stop
end
subroutine sub(nmax,a,b)
dimension a(nmax), b(nmax)
b=a
return
end

This, and an analogous program, show quite clearly C90 and SVlex
memoryand CPUdifferences.

For a memory-intensive code, the CPUtime on
SVlex can be 4 times *slower* than on C90.

For a computation-intensive code, the CPUtime
on SVlex can be 2.5 times *faster* than on C90.

However, when these results were broadcast, a representative of
Cray pointed out that he felt they were unfair to the SVI,
because they ignored the 32KWdatacache which was available on
the SVIex, but not on the C90. And in fact, my tests suggest that
if SVI 32KWdatacache can be used, a 400 time improvement is
possible.

Could this attention to the importance of 'multiple reuse of data'
be a predecessor to 'cache orientation' on the Origins,
at the beginning of code conversions from the Crays to the Origins?

3. SVlex --> Origins

The SVlex and Origin both 'parallel' machines, but...

The SVlex has a vector orientation, and a flat memorylayout.
Also, SVI cpus are not in general dedicated, so OpenMP
thread commandsare really 'requests', not commands.

The Origins have a distributed shared memorylayout.
Origin cpus, and their accompanyingmemory,are in
general dedicated to the life of the job, and are called
cpusets.

WhereasCray options for parallelization, and memorydistribution,
tend to be 'inside' the compiler, using parameters, SGI has produced a
long series of 'extensions', in especially two areas.

Parallel Thread Features

f90 compiler options

-pfa (from Kuck) -> -apo (separate license)

-LNO: loop nest optimization

shmem- "MPI-like" shared memorylibrary (from Cray)

mp_shmemfamily - e.g. mp shmem_get64(...)

MemoryLocality Features

dplace - pre-execution NUMAmemoryplacement tool

pcf (Sequent, parallel computing forum, ANSI-X3H5 91-0023-B)

C$DOACROSS, C$&, C$, CSMP_SCHEDTYPE

C$CHUNK, C$COPYIN

CSPAR BARRIER, CSPAR CRITICAL SECTION, CSPARALLEL DO

CSPAR PDO, CSPAR SINGLE PROCESS

SGI extensions to PCF

multiprocessing utility routines

mp_block, mp_unblock, mp_setup, mp_create, mp_destroy

mp_setnumthreads, mp_barrier, mp_slave_wait_for_work

data distribution directives

C$DISTRIBUTE, C$DISTRIBUTE_RESHAPE, C$DYNAMIC

Environment Variables

_DSM_MIGRATION, _DSMBARRIER, _DSM_PLACEMENT

(see man pe_environ)

So what does this have to do with OpenMP?

The SVlex OpenMP was essentially a new implementation.

The OpenMP implementation on the Origins is generally

PCF, DOACROSS technology and the SGI extensions.

based on

So is OpenMP a complete upgrade of earlier

SGI capabilities?

Not entirely. For example, there was the NESTED feature.

There was a particular form of NEST supported in PCF, which

allowed you to exploit parallelism across iterations of a

perfectly nested loop-nest, e.g.

c$doacross nest(i,j)

This is not in 0penNP_ and is therefore, in a sense, a

degradation on the Origins.

Parallelization of nested DO loops is defined in the

OpenMP standard. However not often implemented.
I have been 'assured' this will be available in the

coming months.

Is there an example of an SVl/Origin 'divergence' involving OpenMP?

For a line such as

!$OMP PARALLEL DO PRIVATE(iam)

!$OMP& FIRSTPRIVATE(sum), LASTPRIVATE(sum)

The Origin f77 and f90 compilers produce

"prog.f", line 8: Error: FIRSTPRIVATE and LASTPRIVATE on same

variable not yet implemented for PARALLEL DO

These lines compile correctly on the Cray.

However, the form

!$OMP PARALLEL PRIVATE(iam)

!$OMP DO FIRSTPRIVATE(sum), LASTPRIVATE(sum)

compiles on both platforms.

There are some tricks and guidelines which

may be helpful while testing OpenMP.

Use loc() to distinguish which data items

belong to which thread.

(But be careful if MPI is involved! Variables of the same thread

number spun off by different MPI processes may appear to have the

same location. They are distinct.)

Use sleep() to have time to view process activity.

(This is documented at 'man sleep 3C' on Cray, not in a 3F man page,

as on the Origins, and as one would expect.)

The order of control of the number of CPUs can be surprising.

Job control systems (nqs, pbs, isf) may set defaults

or limit cpus. #PBS -1 ncpus=4 (In PBS, for example)

On Cray, NCPUS precedes omp_num_threads.

On SGI, setenv OMP_NUM_THREADS 4 (csh environment variable)

or call omp_set_num_threads(4) (internal 0penMP call)

In general, users would be well advised to always set for themselves

whatever CPU or thread values they require.

Process startup mechanisms vary between the two systems.

SVlex - fork

tfork (XMP task fork using ba,la)

Origins - fork

sproc (for shared memory)

The Origins are threadsafe, the SVlex is not.

SVlex has f90 -a taskcommon.

SVlex requires no compiler options for 0penMP

The Origins need -mp.

Origins produce a directory for rii_files,

used to facilitate data movement among nodes

SVlex has 'real' nt and np mpirun options (nt would normally

be preferred).

On Origins everything runs -np.

4. MPI and OpenMP

Do MPI and OpenMP, when combined in the same program, behave

more like 2 dogs or 2 cats? Dogs are social, work and play

well together, complement each other. Cats are territorial,

loners. They fight each other.

The idea is to create multilevel parallelism. The motivation

can be better work distribution, or load leveling.

This idea is similar to a system called mlp, created by Jim Taft at NAS.

SGI recognized issues with data locality with these programs

and has worked on an improved data placement scheme.

There is an SGI mod available in MPT 1.6 (May '02)

According to the SGI developer who is doing this

enhancement:

The basic idea for this model is that the MPI

processes are spread out to allow room for the

OpenMP threads. The OpenMP threads for each MPI

process are placed near the MPI parent. There is

also an option to roundrobin the MPI process'

data segment across the nodes that its threads are

using. This has been found to help for higher

thread/mpi process counts.

The model seems to benefit most applications where

i) the working data set does not reside in scache

2) more than 4 threads/MPI process

5. Conversion to OpenMP issues

What kind of problems occur in converting real codes?

In the world of OpenMP theory, almost all of the attention

is on the parallelizing, variable handling, and scheduling

of DO loops, and less frequently parallel regions. This is

all swell, but how does a real world code differ from

this portrait? Very likely, in the middle of that very

natural DO loop you want to parallelize, there will be, not

simply calls, but long call trees. These required a somewhat
different focus than all of the theory referred to above.

The book "Parallel Programming in 0penMP", which I highly

recommend at the end of this paper, devotes around 8 pages

out of more than 200 to dealing with these types of situations.

I call the dichotomy horizontal/vertical code. The usual

nomenclature is lexical/dynamic extent.

So what cautions are appropriate? I would propose an almost

biblical admonition:

He who saves his code shall lose it.

SAVE, f77/90 -static can cause problems if the variables

concerned should really be private.

If call trees are involved, TASKPRIVATE common blocks

will likely be required.

In OpenMP 2.0 THREADPRIVATE may be applied to

variables as well as COMMON blocks.

Converting codes to OpenMP,issues involving which variables
need to be PRIVATEwill probably need to be determined individually,
not deduced from cpu=l cases.

Or is the code parallelized from a past life?
That system may not match OpenMPcompletely!

Moreover one must watch out for issues of thread safety.
And rememberthat, since the order in which threads run varies,
actions such as REDUCTIONcan have different values on separate
runs. Onemust know the allowable variation in precision.

6. References

Parallel Programmingin OpenMP(Chandra et al)

www.omp.org is the primary site for OpenMPinformation.

www.nas.nasa.gov for more information on activities ongoing
at has, and documentation on the systems there.

