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ABSTRACT

Two new equivalent linearization implementations for geometrically nonlinear random

vibrations are presented. Both implementations are based upon a novel approach for evaluating

the nonlinear stiffness within commercial finite element codes and are suitable for use with any

finite element code having geometrically nonlinear static analysis capabilities. The formulation

includes a traditional force-error minimization approach and a relatively new version of a

potential energy-error minimization approach, which has been generalized for multiple degree-

of-freedom systems. Results for a simply supported plate under random acoustic excitation are

presented and comparisons of the displacement root-mean-square values and power spectral

densities are made with results from a nonlinear time domain numerical simulation.

1. INTRODUCTION

Current efforts to extend the performance and flight envelope of high-speed aerospace vehicles

have resulted in structures which may respond to the imposed dynamic loads in a geometrically

nonlinear (large deflection) random fashion. What differentiates the geometrically nonlinear

random response considered in this paper from a linear response is the presence of bending-

membrane coupling, which gives rise to membrane stretching (in-plane stresses) in the former.

This coupling has the effect of stiffening the structure and reducing the dynamic response

relative to that of the linear system. Linear analyses do not account for this effect and

consequently may significantly over-predict the response, leading to grossly conservative

designs. Without practical design tools capable of capturing the nonlinear dynamics, further

improvements in vehicle performance and system design will be hampered.

Methods currently used to predict geometrically nonlinear random response include perturbation,

Fokker-Plank-Kolmogorov (F-P-K), numerical simulation and stochastic linearization

techniques. All have various limitations. Perturbation techniques are limited to weak geometric

nonlinearities. The F-P-K approach [1, 2] yields exact solutions, but can only be applied to

simple mechanical systems. Numerical simulation techniques using numerical integration

provide time histories of the response from which statistics of the random response may be

calculated. This, however, comes at a high computational expense due to the long time records

or high number of ensemble averages required to get high quality random response statistics.

Statistical linearization methods, for example equivalent linearization (EL) [[2-7]), have seen the



broadestapplicationbecauseof their ability to accuratelycapturethe responsestatisticsover a

wide rangeof responselevelswhile maintainingrelatively light computationalburden. In EL

methods,anequivalentlinearsystemis soughtsuchthat the differencebetweenthe equivalent

linearand nonlinearsystemsis minimized. Traditionally,the differencebetweenthe nonlinear

force and the product of the equivalent linear stiffnessand displacementresponsevector is

minimized.

Sincethe analysisof complicatedstructuralgeometriesis required,a finite element-basedEL

methodis consideredmostappropriate.In thepast,implementationsof EL usingfinite element

analysishavebeenlimited to specialpurposecodes. This is largelydueto the inaccessibilityof

thenonlinearelementformulation in commercialfinite elementapplications. For example,the

nonlinearstiffnessof arectangularplatefinite elementwasfoundin [8] aftera lengthyanalytical

derivation,which utilized informationabouttheelementshapefunctions.

Thefirst knownEL implementationin a general-purposefinite elementcode[9] wasdeveloped

for use in MSC.NASTRAN [10] version 67. In that implementation,called "Super Element

Modal EquivalentLinearRandomResponse"or SEMELRR,theequivalentlinearstiffnesswas

obtainedasthe sumof the linear stiffnessand threetimesthe differential stiffness. While this

form wasconvenientto implement,it was found to over-predictthe degreeof nonlinearityand

producenon-conservativeresults. Over-predictionof nonlinearitycanproducetheundesirable

resultof structuraldesignsincapableof withstandingtheappliedloadsin anacceptablefashion.

This paperdescribesa novel approachto accuratelydeterminethe nonlinearstiffnesswithout

using a descriptionof the elementshapefunctions [11, 12]. The approachsolvesa seriesof

inverse linear and nonlinearstatic problemsto evaluatethe nonlinear force, from which the

nonlinearstiffnesscanbe determined.While it is applicableto any commercialfinite element

programhaving a nonlinearstatic analysiscapability,MSC.NASTRANwasselecteddueto its

widespreadusein the aerospaceindustry. The stiffnessevaluationtechniquewas first validated

for abeamstructureunderaspecialloadingcondition[12]. More recently,it wasvalidatedfor a

clamped-clampedbeamunderrandominertial loadingthroughcomparisonwith afinite element-

basednumericalsimulationanalysisinphysicalcoordinates[13].
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In addition, this paper describes the generalization of a relatively new potential energy-error

minimization version of the EL method [6, 7] to a multiple degree-of-freedom case. This new

minimization approach was previously validated using the F-P-K method for a few special cases

including a Duffing oscillator and a two degree-of-freedom system [11] and for a beam structure

[12].

To further validate the nonlinear stiffness evaluation approach and its use in an EL analysis using

force-error and potential energy-error minimization, a simply supported plate subjected to

random acoustic loading is considered. This case is also closely related to the intended

application. Results are compared with a finite element-based numerical simulation analysis in

modal coordinates, as described in [14]. The numerical simulation analysis in modal coordinates

was selected for this purpose because the solution in physical coordinates was intractable due to

the large system size. The use of a modal approach is considered acceptable for the class of

problems exhibiting bending-membrane coupling, as in the simply supported plate.

2. NONLINEAR STIFFNESS EVALUATION

The equations of motion of a multiple degree-of-freedom, viscously damped geometrically

nonlinear system can be written in the form:

MX (t) + CX (t) + KX(t) + F(X(t)) = e(t) (1)

where M, C, K are the mass, damping, and stiffness matrices, X is the displacement response

vector and F is the force excitation vector, respectively. The nonlinear force term F(X) is a

vector function, which generally includes second and third order terms in X.

Solution to equation (1) via any method requires knowledge of the system matrices. In the

context of a commercial finite element program, M, C, and K are generally available. In the EL

analyses to follow, the nonlinear stiffness is required. The nonlinear stiffness is related to F,

which is typically not available within a commercial finite element program. Therefore, a means

of numerically evaluating F was developed, as is next described, for the determination of the

nonlinear stiffness.

A set of coupled modal equations with reduced degrees-of-freedom is first obtained by applying

the modal coordinate transformation

X = *q (2)



to equation (1), where D

of modal coordinates, and the time dependence is implied. This coupled set is expressed as

where

is generally a subset (L < N) of the linear eigenvectors, q is the vector

Mq [] _'q [] [fq [] 7(ql,q2,...,qc) [] p (3)

37/FI .FIrM.FI FI[IJ

d D.D DI-2(o) /

0) 2[] .[] rK.[] [] [ _ J

7 [3 .[3_.F1

[] .FIrF

q1,q2,...,% are the components of q, and w r are the undamped natural frequencies. The

components of the nonlinear force vector may be written in the form

L L L L L

7r(q1,q2,...,%)D _a_kq/qkD __b_k;q/qkq; rD 1,2,...,L . (4)
.jD1 kDj .jD1 kDj lDk

r r

where a/k and b/k; are nonlinear stiffness coefficients with j = 1, 2, ..., L, k =j,j+l, ..., L and 1

= k, k+l ..... L. This particular form of 7 facilitates the subsequent solution of the equivalent

linear system. Its evaluation entails solving for the coefficients a jk and bjk; using a new

procedure developed for use with finite element programs having a nonlinear static solution

capability.

The procedure is based on the restoration of nodal applied forces by prescribing nodal

displacements to both linear and nonlinear static solutions. The total nodal force Fr may be

written in physical coordinates as

n ELn FNLn KXcnr3(Xc) (5)

where X c is a prescribed physical nodal displacement vector, and F L and FN£ are the linear and

nonlinear contributions to the total nodal force. F L is first obtained by prescribing X c in the

linear static solution. F r is then obtained by prescribing X c in the nonlinear static solution

which includes both linear and nonlinear contributions. Finally, the nonlinear contribution FN£

is obtained by subtracting F L from F r , or
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FNL [] [] (Xc) [] F_ -F L . (6)

TO illustrate the technique, one can begin by prescribing the displacement fields

xc _ D_ql

xc D-¢_ql

The nonlinear nodal force contributions F:vz are determined using (6) after solving the linear and

nonlinear static solutions. These may be written in modal coordinates as

FNq 0.0 _FNq 0.0 _.O(O_ql) O_all_qlq 10_blll_qlqlql

(7)
FN_ a O.O_gN_a 0.0 _.O(-_q1)O _a11_qlql-_b111_qlqlql

where the sought stiffness coefficients [a_] and [bl_] are column vectors of length L. Note that

the other nonlinear terms do not appear in (7) since q/D 0 for j, 1. Since q_ is a known scalar,

the coefficients [a_] and [b_l] for r D 1,2, ,L can be determined from the resulting system (7)

of 2×L linear equations. The remaining coefficients [a{/] and [b_/] (jD 2,3 ,L) can be

determined in an analogous manner.

A similar technique can be employed to determine stiffness coefficients with two unequal lower

indices, e.g., [a_2 ] , [bi_2], and [bin]. Coefficients of this type appear only if the number of

retained eigenvectors is greater than or equal to two (L _ 2). Prescribing the displacement fields

X 00_q 10_2q2

x D-_ql-,_q_

x DD_ql-_q_

results in the following equations



FNZ_ [7 .[7 T.F]([].[_q 1 [7 []2q2) [7 _a(l_qlq 1 [7 _b(11_qlqlq1 [7 _a;2_q2q 2 D _b_22_q2q2q2

O _a(2_qiq 2 0 _b(12_qiqiq2 0 _b(22_qiq2q2

gNz _ [7 .[7 T.F]([].[_q 1 [7 .[]2q2) [7 _a(l_qlq 1 [7 _b(ll_qlqlql [7 _a_2_q2q 2 D _b_22_q2q2q2

O _a(2_qiq 2 0 _b(12_qiqiq2 0 _b(22_qiq2q2

gNz,3 [7 .[7 T.F]([].[_q 1 [7 .[]2q2) [7 _a(l_qlq 1 [7 _b(ll_qlqlql [7 _a_2_q2q 2 I7 _b_22_q2q2q2

O _a(2_qiq 2 0 _b(12_qiqiq2 0 _b(22_qiq2q2

(8)

Summing the first two of equations (8) results in

FN_ [] FNL_ [] 2 _a(l _qlql [7 2 _a;2 _q2q2 [] 2 _a_2_qlq2

r r r

from which the coefficients [a12] may be determined, since [all ] and [a22 ] were previously

determined. Then, from the first and third of equations (8), the coefficients [b_rl2] and [b_r22] may

be determined from the 2 I7 L system of equations. In this manner, all coefficients of the type

[b_Tk] and [b_ki] for j,k [1 1,2, ,L may be determined.

For cases when the number of retained eigenvectors is greater than or equal to three (L I7 3),

coefficients with three unequal lower indices, e.g., [/)123], may be determined by prescribing the

displacement field

X [7 [].Olq1 [7 ._q2 [7 .[]3q3 •

The resulting equation

FN L [] .[] T.[]([].01ql [] []2q2 [] []3q3)

[7 [_alrl_qlql [7 _a;2_q2q 2 I7 [_a33_q3q 3 [7 _a_2_qlq 2 [7 [_alr3_qlq3 [7 _a;3_q2q 3

[7 _b_li_qiqiqi [7 _b_22_q2q2q2 I7 _b333_q3q3q3 I7 _b_12_qiqiq2 [7 _b221_q2q2qi
(9)

[7 _b_13_qlqlq3 [7 _b331_q3q3q1 [7 _b;3_q2q2q 3 [7 _b332_q3q3q2 [7 _b(23_qlq2q3

contains one column of unknown coefficients [b1_3]. All coefficients of type [bill ] (j [] k [] l)

can be found in this manner.

Having the modal equations of motion (3) formulated, their solution can be undertaken through a

variety of techniques. For the reasons previously discussed, application of EL is considered.



3. EQUIVALENT LINEARIZATION APPROACH

An approximate solution to (1) can be achieved by formation of an equivalent linear system:

MX(t) 17CX(t) [3 (K [3Ke)X(t ) [3 F(t) (10)

where K is the equivalent linear stiffness matrix. While it is possible to perform an EL analysis

in the physical degrees-of-freedom, it is desirable to recast the problem in modal coordinates to

simplify the problem. The equivalent linear analog of equation (3) may be found by applying the

modal transformation (2) to (10):

M q [3 C q [3 _K [3Ke _q [3 F (11)

where the fully populated modal equivalent stiffness matrix is given by

K e [3 [3 rKe[3

Two EL approaches are considered. One is based on minimization of the error in the nonlinear

force vector and the other minimizes the error in potential (strain) energy.

3.1. FORCE-ERROR MINIMIZATION APPROACH

The traditional (force-error minimization) method of EL seeks to minimize the difference

between the nonlinear force and the product of the equivalent linear stiffness and displacement

response vector. Since the error is a random function of time, the required condition is that the

expectation of the mean square error be a minimum [3], i.e.

el'POP [3 E _([3 (X) [3 KeX) T ([3 ( X) [3 KeX)_'-'-_ rain (12)

where El...] represents the expectation operator. Equation (12) will be satisfied if

O(error) [3 0 i, j [3 1,2, , N
OK..

e#l

where Kei j are the elements of matrix Ke, and N is the number of physical degrees of freedom.

In this study, consideration is limited to the case of Gaussian, zero-mean excitation and response

to simplify the solution. With these assumptions and omitting intermediate derivations, the final

form for the equivalent linear stiffness matrix in physical coordinates becomes (see for example

[4], [5]):



andin modalcoordinatesbecomes

o oo.ooO
I_e O _E_]--_[_ (13)

o oo.ooO
I_e O _ E _]--_q _ (14)

with 0 as previously defined in (4).

3.2. POTENTIAL ENERGY-ERROR MINIMIZATION APPROACH

An alternative EL approach based on potential (strain) energy-error minimization was proposed

in [6, 7]. Analysis in these works was limited to single degree-of-freedom systems and

simplified multiple degree-of-freedom systems. In this study, that approach is rigorously

generalized for the case of coupled multiple degree-of-freedom systems. One can begin with an

expression for the error in potential energy

error 1 T 2
0 Et(e(x)O-fx "eX) t (15)

where U(X) is the potential energy of the original (nonlinear) system. A condition of

minimized error requires that

°° tiE_t(U(X) O1XTKeX) 2 O0 i,j[] 1,2, ,N. (16)

Omitting intermediate derivations, one obtains the following system of N 2 linear equations with

respect to unknown elements of matrix K e :

N N

0 0 Ke,jE_xix.jxkx,_O 2E[xkx, U(X)] k,1 0 1,2, ,N. (17)
i01 jOl

For example, equation (17) would have the following form for a two degree-of-freedom system



DE x4 ] E x x2 ]E x x2 ]
D

D

D

_E_X2N2_ E_XIN_ E_NIN_

K DEgx U(X  D
ell [']

E_XIN_[qO0 K _ OEO)cIN2U(X)IF_

1113[] el2 i ['] 2 _E_71N2U(X)[ _

D_ X 3 [q[-][-]Ke21

E_]N4_] _ [=1/" e 22 _E_,y,2U(X)_]_

(18)

This system of equations is under-determined (the second and third rows are identical), so an

additional equation is required to solve this system. The additional equation(s) can be provided

by imposing symmetry of the matrix Ke, i.e., Kei i [] Kej i.

Note that the formulation for the multiple degree-of-freedom system in reference [7] differs from

the above formulation. The multiple degree-of-freedom case in [7] is treated by introduction of

only diagonal terms of the matrix l_e, whereas in this study the complete matrix i_ e is

formulated and is thereby advantageous in cases which exhibit modal coupling.

In modal coordinates, the equivalent linear stiffness matrix is related to nonlinear stiffness terms

in a more complicated manner than in the force-error minimization approach. It is known that

the nonlinear elastic force terms satisfy the following

DU
7r(q,,q2, ,qL) [] -- r [] 1,2, ,L (19)

Flqr

where U is the potential energy generated by nonlinear terms only. The potential energy of the

system may be written in the following form

L L L L

U D F] F] F] F] d,;kzq,q./qkqz (20)
slql jlqs k[]j l[]k

which upon substitution into (19) yields

g(q,,q2, ,qc) [] [] 0 0 d_/k,q,q/qkq, • (21)
slql jlqs k[]j l[]k

The coefficients d_ikl are related to the nonlinear stiffness coefficients through equation (4) as:

.jD1 kD.j " " .jD1kD.i /Dk " " Uqr _ sD1 .jDs kD.j l_k " "

(22)



In the following, a zero-meanresponseis assumed,i.e., E[q] rl o. As will be subsequently

shown, this has the effect of dropping out the quadratic terms ajk. From (22), the coefficients

d,jkl can then be written as:

[b)_k,/ 2 s [] j
/

d_Jk, [] _b)_k,/3 s [] j [] k (23)

_ I /b,;,/4 sD#D Dz
tb)_k, otherwise.

Note that if the zero-mean response assumption were not made, the above relationship would be

more complicated. Having U now fully defined from equation (20), the modal equivalent of

equation (17) can be written as

L L

0 0 Kei/E_qiq./qkql_[] 2E[]clkqzU(q)_ k,l[] 1,2, ,L (24)
iD1 jD1

from which K ecan be determined. The matrix on the left hand side of equation (24) involves 4 th

order moments of modal displacements. The right hand side involves 4th, 5 th and 6 th order modal

displacement moments since the potential energy is a function of the 2 nd, 3 rd, and 4 th order

displacements. Assuming a Gaussian distributed, zero-mean response, the odd order moments

are zero and the higher order even moments can be expressed in terms of the 2 nd order moments.

For example,

E_qiq./qkqz_ lq E_qiq./_E[qkqz_ lqE[qiqk_E_q./qz_ lq E[qiqz_E_q./qk_.

Therefore, the matrices of equation (24) can be written solely in terms of the modal response

covariance.

4. ITERATIVE SOLUTION

Because the modal equivalent linear stiffness matrix /£e

displacements, the solution takes an iterative form.

displacements and forces may be expressed as:

q(t) D 0 gleiu°'
n

is a function of the unknown modal

The time variation of the modal

f(t) [] 0 J¢eiu°t (25)
n

10



where(A) indicatesthe dependencyon con. Applying (25) to (11) and writing in iterative form

gives:

4 m 0 HmDlf (26)

where m is the iteration number and

H mm DEDff2MDiffnCDKD[c_KmnlD flKmn2]_ _ (27)

The introduction of the weightings a and fl are to aid in the convergence of the solution, with

the condition that a _ fl D 1.

For stochastic excitation, (26) is rewritten as:

SqOHm°lSfEHm°l _

and the r,s component of the covariance matrix of modal displacements is

E[qrq,[_ D 0 S2qAQn
n

(28)

Here, Sq is the spectral density matrix of modal displacements and S 1 is the spectral density

matrix of the load in modal coordinates. The diagonal elements, Sqrqr, are the variances of the

modal displacements. K e is zero for the first iteration, which yields the covariance matrix

E[q,.q,] of the linear system. For subsequent iterations (re>l), the nonlinear stiffness depends on

the minimization approach taken.

For example, for the force-error minimization approach, K e for the m th iteration is determined

from (14) as

SF D[]___S DOl Sm
[]L, U Dqlu "'" E _-q_ RI-1

_ DrlrlDDmKm 0 _n-O[ ] 0 0 " ". " 0
e D rluqrlFl rl " S

_E DD_-_-_S ... E D_-_-_SD
U nqt U UnqLU_

(29)

Substitution of equation (4) into (29) gives

11



nno_°_a,,'E_e,_Or] r] b;_mE_e,e_ r] aJ_'E_q,_Or] r]
0 j .iN kDj j .iN kDj

Kf [] []
D

I! L L L L L
ajlE b.jklE _q.jqk _ 0 a.jLE _.j _ [] 0 0

.iN kD.j j .iN kD.j

D
D
D

bj_E_]qjqk_] I

Since a zero-mean response is assumed, i.e. E[q] r] 0, equation (30) reduces to:

(30)

0 L 0 roD1

O0 rl b._kmE _q./qk _ rl rl b.ljkLE _q./qk _O

O.]D1 kll j .][]1 kll j 0

rl rl
K'_ [] [] L L []

°! D_. 1 kDj .]D1 kDj

(31)

For the potential energy-error minimization approach, K e is found by solving the system of

equations (24) in a similar iterative fashion.

For both error minimization approaches, the iterations continue until convergence of the modal

equivalent linear stiffness matrix such that

Kme 0 K_ D1 < E

The value of c typically used is 0.1%.

Following convergence, the N x

coordinates is recovered from

N covariance matrix of the

E_x_x/_O 0 ECq,q, O0_

displacements in physical

(32)

Furtherand root-mean-square (RMS) values are the square roots of the diagonal terms in (32).

post-processing to obtain power spectral densities of displacements, stresses, strains, etc., may be

performed by substituting the converged equivalent stiffness matrix into (11) and solving in the

usual linear fashion.

5. IMPLEMENTATION

The EL procedures as outlined above were recently implemented within the context of

MSC.NASTRAN [10] version 70.0 (heretofore NASTRAN) using the DMAP programming

language [15]. Its operation has been verified through NASTRAN version 70.7. Details of these

12



implementations,collectively calledELSTEP for "Equivalent Linearizationusing a STiffness

EvaluationProcedure,"aredocumentedin [16]. The implementationsentail first performinga

normalmodesanalysis(solution 103)to obtainthe modal matrices,from which a subsetof L

modes are chosen. The nonlinear stiffness coefficients are then determined by performing a

series of linear static (solution 101) and nonlinear static (solution 106) solutions using linear

combinations of modes as previously described. The iterative solution is performed in a

standalone routine, which has as its output the RMS displacements in physical coordinates, the

cross covariance in modal coordinates, and the sum of the linear and equivalent linear modal

stiffness matrices. The latter can then be substituted for the linear modal stiffness in the modal

frequency response analysis (solution 111) for post-processing.

6. NUMERICAL SIMULATION ANALYSIS

For validation purposes, a numerical simulation analysis was performed to generate time history

results from which response statistics could be calculated. The particular method used was finite

element-based with the integration performed in modal coordinates, as described in [14]. The

finite element model uses the 4-node, Bogner-Fox-Schmit (BFS) C 1 conforming rectangular

element with 24 degrees-of-freedom: 4 bending degrees-of-freedom (w, D_x, D_y, D2_fDxDy)and 2

in-plane degrees-of-freedom (u,v) at each node. The equations of motion are derived using the

von Karman large deformation theory. In applying this modal approach, the modal truncation

should be the same as that used in the EL approach.

6.1. LOADING TIME HISTORY AND TRANSIENT RESPONSE PROCESSING

The time history of the load was generated as described in [14]. A time increment (_t) of 122

/Js was found suitable for the numerical integration and time history records of 2.0 s in duration

were generated using a record length of 2 TM samples. A radix-2 number of samples was chosen

to facilitate use of radix-2 FFT algorithms employed for the subsequent analysis. An ensemble

of time histories was generated by specifying different seeds to the random number generator.

A typical time history corresponding to a pressure load of 8 Pa RMS (112 dB) is shown in Figure

1. The corresponding probability density function is shown in Figure 2 with the Gaussian

distribution superimposed upon it. The power spectral density (PSD) for 10 ensemble averages

gives a spectrum level of 6.25 D 10 D=PaZ/Hz over a 1024 Hz bandwidth as shown Figure 3. A

13



sharproll-off of the input spectrumpracticallyeliminatesexcitationof the structureoutsidethe

frequencyrangeof interest.

Thestructureis assumedto beatrestat thebeginningof eachloading. An initial transientin the

structuralresponseis thereforeinducedbefore the responsebecomesfully developed. This

transientmustbeeliminatedto ensuretheproperresponsestatisticsarerecovered.In the linear

case,a moving block averageof 1.0sof datawas usedto ascertainthe point in the recordat

which the RMS displacementresponsebecamestable.In this manner,it was determinedthat

eliminationof thefirst 1.0sof the2.0srecordwasmorethansufficient. While thesamecriterion

doesnot strictly apply to thenonlinearresponsecasebecauseof thedependenceof theresponse

on theinitial conditions,it wasemployedwith satisfactoryresults.
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6.2. RESPONSE STATISTICS

Response statistics were generated from an ensemble of N=10 time histories at each load level.

Estimates of the displacement RMS served as the basis for comparison with the EL method.

Additionally, confidence intervals for the mean value of the displacement RMS estimate were

generated to quantify the degree of uncertainty in the estimate [ 17] using:

2. rl ---_- rl Jux rl 2. rl ---F_ , n rl N rl l (33)

where 2- and s 2 are the sample mean and variance of the RMS estimates from N ensembles, and

tn is the Student t distribution with n degrees of freedom, evaluated at 6, / 2. For the 90% confi-

dence intervals calculated, 6, _ 0.1.

Estimates of the displacement mean, skewness, and kurtosis were also computed to help

ascertain the degree to which the assumptions made in the development of the EL method were

followed. Power spectral density and probability density functions (PDF) of the displacement

were computed for similar purposes.
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7.RESULTS

Validation studieswere conductedusing a rectangularaluminumplate measuring0.254m x

0.3556mof thickness,h, 0.00102m. All sides were simply supported. The material properties

used were:

E [] 7.3 [] 101°Pa, v [] 0.3, p [] 2763 kg
m 3

where E is the elastic modulus, v is Poisson's ratio, and p is the mass density. The plate was

subjected to a spatially-uniform pressure loading over a computational bandwidth of 1024 Hz, as

shown in Figure 1. Since the loading was uniformly distributed, only symmetric modes were

included in the analysis. In general, any combination of symmetric and non-symmetric modes

may be included.

A NASTRAN model of the full plate was built with 560 CQUAD4 elements measuring 0.0127m

square for use in the EL analysis. The first two symmetric modes (modes 1 and 4) of this model

had natural frequencies of 58.38 and 217.27 Hz. For comparison, the natural frequencies given

by an analytical solution [18] were 58.34 and 216.01 Hz for the first two symmetric modes.

These two modes were selected as participating modes in the EL and numerical simulation

analyses. Modal damping was chosen to be sufficiently high (2.0% and 0.54% critical damping)

so that a good comparison with the numerical simulation results could be made at the peaks of

the PSD. The finite element model used in the numerical simulation analysis had the same

element size (0.0127m square) as the NASTRAN model, but a quarter-plate model was used to

reduce computational time. This model gave natural frequencies of 58.12 and 215.19 Hz for the

first two symmetric plate modes. Both EL and simulation finite element models were checked

for convergence by running additional analyses with models consisting of 0.00635m elements.

Analysis was performed at overall sound pressure levels from roughly 106 dB (4 Pa RMS) to

roughly 160 dB (2048 Pa RMS), in 6 dB increments, giving a dynamic range of 54 dB. Figure 4

shows the normalized RMS out-of-plane (w) deflection at the plate center as a function of

loading. Both force-error and potential energy-error minimization implementations are shown.

The numerical simulation results are shown with 90% confidence intervals of the RMS estimate.

At the lowest load level of 106 dB, the response is linear as can be seen by the comparison with

17



results from a strictly linear analysis (NASTRAN solution 111). Small, but noticeable,

differences between the linear and nonlinear responses are noted at the 118 dB load level. The

degree of nonlinearity increases with load level, as expected. At the highest level of 160 dB, the

nonlinear response calculations predict RMS center deflections of 2.20 and 2.27 times the

thickness for the force and potential energy-error minimization approaches, respectively. The

90% confidence interval on the numerical simulation data by comparison is 2.24 < WRMs/h < 2.39

at 160 dB. Consistent with past observations [11, 12], potential energy-error minimization

results are closer to known solutions and somewhat higher (by a few percent) than force-error

minimization results. The linear analysis by comparison predicts center deflections of nearly 13

times the thickness.
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Figure 4: Normalized RMS center deflection as a function of acoustic load.

Results from the earlier SEMELRR implementation [9], also shown in Figure 4, were generated

with the same NASTRAN model. These results are shown to significantly over-predict the

effect of nonlinearity at loads as low as 124 dB. At 160 dB, the SEMELRR implementation

predicts an RMS center deflection of 1.38 times the thickness, or approximately 60% less than
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the mean of the numericalsimulation prediction. The highly non-conservativenatureof the

SEMELRRanalysismakesit unsuitablefor nonlinearstructuraldesign.

In orderto gain greaterinsight into the nonlineardynamics,plotsof thetime history, PDF,and

PSDareshownfor threeload levels,(106, 136 and 160dB) in the following seriesof figures.

Datain the time historyandPDF plotscorrespondsolely to numericalsimulationresults. Data

in thePSDplots correspondto numericalsimulationandEL results,wherethe EL resultswere

generatedby running a linear analysis(NASTRAN solution 111) usingthe modal equivalent

linearstiffnessK e generated by the EL process previously described.

Results for the 106 dB excitation level are shown in Figure 5 - Figure 7. This excitation level

was shown (see Figure 4) to produce a linear response. As expected, the PDF mimics the

normally distributed PDF of the input shown in Figure 1. The averaged PSD shows excellent

agreement between the EL, linear, and numerical simulation results. This agreement helps to

establish the confidence in making comparisons between these two fundamentally different

analyses.
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Figure 5: Time history of center displacement response at 106 dB.
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Figure 8 - Figure 10 show the nonlinear response associated with the 136 dB excitation level.

The time history of the center displacement has a visibly higher peak probability and the PDF

exhibits a minor flattening at the peak. The shapes of the PSDs from the EL analyses are those

of the equivalent linear systems. Thus, the PSDs from the EL analyses do not show the peak

broadening effect observed in the numerical simulation. Additionally, harmonics in the

structural response are present only in the numerical simulation results. The PSDs from both the

numerical simulation and EL analyses show a positive shift in the frequency of the fundamental

mode compared with the linear solution. Both EL analyses shift the fundamental frequency by

nominally the same amount and fall within the broadening fundamental peak of the numerical

simulation analysis. The frequency of the second mode from the force-error minimization

analysis also increases and more closely matches the numerical simulation data than does the

potential energy-error minimization analysis, which shows a negative frequency shift.

2
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Figure 8: Time history of center displacement response at 136 dB.
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To investigate this behavior further, the fundamental and second mode frequencies as a function

of applied load are shown in Figure 11. The shift in the frequency of the fundamental mode is

consistently positive and close in value between the force and potential energy EL analyses. The

shift in second mode frequency differs between the two EL analyses, with the force EL results

showing similar behavior to the fundamental, while the potential energy EL results first

displaying a drop, then an increase in frequency with increasing load. Since the force-error

minimization approach fully takes into account the internal force resulting from bending-

membrane coupling, this approach gives results that are consistent with numerical simulation

results. The potential energy-error minimization approach places no demand on the internal

force. Since most of the strain energy in this case is associated with the fundamental mode, that

behavior is accurately captured. The second mode, having significantly less potential energy, is

allowed to shift without constraint.
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Figure 11: Shift in fundamental and second mode frequencies as a function of applied load for

both EL analyses.

While this behavior appears inconsistent, recall that both EL approaches minimize the error

between the equivalent linear and nonlinear systems through the modal equivalent stiffness
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matrix Ke, which is a function of the modal displacement. It is therefore expected that only the

RMS displacement, or the area under the displacement PSD, should be the same between either

EL analysis and the numerical simulation analysis, and not the shape of the PSD itself. This is

consistent with the observations.

The highest degree of nonlinearity is shown in Figure 12 - Figure 14, corresponding to a 160 dB

acoustic load. The time history is further peak oriented and the PDF exhibits substantial

flattening. The peak broadening in the PSD of the numerical simulation results is severe, and

nearly flattens the spectrum above 350 Hz. With regard to the EL analyses, positive shifts in the

frequencies of the fundamental mode are comparable between the two EL analyses. Shifts in the

second mode frequencies are more substantial in the force-error minimization approach than in

the potential energy-error minimization.
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Momentsof thecenterdisplacementwerecalculatedfrom thenumericalsimulationresultsfor all

load levels. They areprovided in Table 1 with the RMS centerdisplacementfrom both EL

analyses.TheEL andnumericalsimulationresultsagreewell, thusvalidating theEL analysis

overa substantialloadrange. Thevalidity of assumptionsmadein the developmentof the EL

method is ascertainedby observingthe mean,skewnessand kurtosis. The mean value is

effectivelyzerofor all loadlevels,indicatingtheassumptionof zeromeanresponsehasnot been

violated. Although thePDF is moreor lessskew-symmetric,theshapeis flattenedat thehigher

load levels as indicatedby a decreasingkurtosis from the linear value of 3. The decreasing

kurtosisvaluesindicatea violation of the Gaussianresponseassumption.However,evenwith

this non-Gaussianresponsedistribution, the EL analysesgive good predictionsof the RMS

response.

Plotsof the RMS displacementover the entireplate areshownin Figure 15 - Figure 17 for the

linearandEL analysesfor the 160dB loadcase.While theplotsappearsimilar in character,the

linear displacementcontours look rounder than those of the two EL analyses. To better

understandthenatureof thesedifferences,theRMS displacementswerenormalizedwith respect

to theirmaximum(center)displacementfor eachof thethreecases.Thedifferencesbetweenthe

normalizedlinearandforce-errorminimizationEL displacements,andthenormalizedlinearand

potential energy-errorminimization EL displacementsare shown in Figure 18 - Figure 19.

Theseareexpressedin percentwith respectto the maximumnormalizeddisplacement(unity).

In eachcase,the greatestdifferenceoccursalong the horizontal centerlineand nearthe short

sidesof theplate. Theseplotshighlight theneedto performa nonlinearanalysisto obtainthe

properspatialdistribution. As previouslynoted,the differencebetweenthe two EL analysesis

smallrelativeto their displacement,asshownin Figure20. Thedifferenceresemblesthesecond

symmetricmode. This observationis consistentwith thePSDin Figure 14,which indicatesthe

maximummagnitudedifferencebetweenthe two EL analysesto be associatedwith the second

mode.
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Table 1: Moments of the center displacement.

Load

(dB)

106

112

118

124

130

136

142

148

154

160

Force Error

EL RMS (m)

2.57x104

5.12x104

1.00xl0 -4

1.88x10 -4

3.24x10 -4

5.13x10 -4

7.68x10 -4

1.10xl0 -3

1.58x10 -3

2.25x10 -3

Potential Energy

Error EL RMS (m)

2.57x104

5.12x104

1.01x10 -4

1.90x10 -4

3.30x10 -4

5.27x10 -4

7.95x10 -4

1.16x10 -3

1.63x10 -3

2.32x10 -3

SEMELRR Num Sim

RMS (m) Mean (m)

2.56x104 +1.56x10 -7

5.04x10 -s +3.07x10 -7

9.54x10 -s +l.01xl0 -8

1.66x104 +7.94x10 -7

2.62x104 +1.87x10 -6

3.84x104 -5.23x10 -7

5.35x104 -3.18x10 -7

7.27x104 +2.58x10 -6

1.05x10 -3 +l.04x10 -6

1.41x10 -3 +6.05x10 -6

Numerical Simulation RMS (m)

(90% Confidence Interval)

2.37x104[] RMS < 2.76x104

4.68x10-s[] RMS < 5.47x10 -s

9.34x10-s[] RMS < 1.06x10 -4

1.76x10-4[] RMS < 1.96x10 -4

3.42x10-4[] RMS < 4.01x10 -4

6.09x10-4[] RMS < 6.71x10 -4

8.38x10-4[] RMS < 9.30x10 -4

1.14x10-3[] RMS < 1.26x10 -3

1.61x10-3[] RMS < 1.79x10 -3

2.29x10-3[] RMS < 2.44x10 -3

Skewness Kurtosis

+0.0017 3.21

+0.0013 3.18

+0.0012 2.90

+0.0027 2.60

-0.0010 2.81

+0.0033 2.83

+0.0032 2.48

-0.0063 2.38

+0.0012 2.36

-0.0061 2.28
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RMS Disp (m)

1.32E-02
1.22E-02
1.13E-02
1.04E-02
9.41E-03
8.47E-03
7.53E-03
6.59E-03
5.65E-03
4.71E-03
3.76E-03
2.82E-03
1.88E-03
9.41E-04
0.00E+00

Figure 15: Contour plot of RMS displacement from linear analysis at 160 dB.

RMS Disp (m)

2.30E-03
2.14E-03
1.97E-03
1.81E-03
1.64E-03
1.48E-03
1.31E-03
1.15E-03
9.86E-04
8.21E-04
6.57E-04
4.93E-04
3.29E-04
1.64E-04
0.00E+00

Figure 16: Contour plot of RMS displacement from force-error EL analysis at 160 dB.
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RMS Disp (m)

2.30E-03
2.14E-03
1.97E-03
1.81E-03
1.64E-03
1.48E-03
1.31E-03
1.15E-03
9.86E-04
8.21E-04
6.57E-04
4.93E-04
3.29E-04
1.64E-04
0.00E+00

Figure 17: Contour plot of RMS displacement from potential energy-error EL analysis at 160
dB.

Percent RMS
Displacement
Difference

5.40
5.01
4.62
4.24
3.85
3.46
3.07
2.69
2.30
1.91
1.52
1.13
0.75
0.36

-0.03

Figure 18: Difference between normalized linear and force-error EL displacements at 160 dB.
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Percent RMS
Displacement
Difference

7.80
7.14
6.49
5.83
5.17
4.51
3.86
3.20
2.54
1.89
1.23
0.57

-0.09
-0.74
-1.40

Figure 19: Difference between normalized linear and potential energy-error EL displacements at
160 dB.

RMS
Displacement
Difference (m)

0.00E+00
-7.75E-06
-1.55E-05
-2.32E-05
-3.10E-05
-3.87E-05
-4.65E-05
-5.42E-05
-6.20E-05
-6.97E-05
-7.75E-05
-8.52E-05
-9.30E-05
-1.01E-04
-1.08E-04

Figure 20: Difference between displacements from force-error and potential energy-error

minimization analyses at 160 dB.
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8. DISCUSSION

Differences between the two EL analyses and the numerical simulation do exist and warrant

some discussion. It is seen that the EL approach slightly over-predicts the degree of nonlinearity

compared to the numerical simulation results. Interestingly, the greatest differences appear in

the moderately nonlinear regime. The differences do not appear to be due to a violation of the

assumption of a Gaussian response because the over-prediction does not correlate with

increasing kurtosis of response. The trends observed here are consistent with comparisons

between a different numerical simulation analysis and a force-error minimization EL analysis of

a clamped-clamped beam [13]. Comparisons of the force and potential energy-error

minimization approaches with an F-P-K solution of a beam, however, indicate that EL solutions

span the exact solution, with the potential energy-error minimization results being slightly higher

and the force-error minimization results being slightly lower than the exact solution [12]. It

would therefore appear that the numerical simulation solutions are less stiff than the EL solutions

in the moderately nonlinear regime, but this has yet to be fully substantiated.

Some implications on the use of the EL technique as a basis for fatigue life calculations are

worth mentioning. First, assuming that stresses or strains from the EL technique will compare

equally well with those from the numerical simulation analysis, a simple fatigue-life calculation

based on RMS levels will be much less conservative than calculations based on linear analyses.

This offers the potential for substantial weight savings for structures designed using nonlinear

methods. Secondly, it appears that a nonlinear analysis, EL or otherwise, is required to accurately

calculate the RMS deflected shape. Use of a linear RMS deflected shape scaled to the nonlinear

level would inaccurately reflect the spatial distribution. Simple fatigue-life calculations based on

the RMS stress or strain could be significantly affected as these quantities depend on the spatial

distribution of the deformation. Lastly, use of the EL-derived PSD response in a more

sophisticated fatigue-life calculation requires careful investigation. Recall that peaks in the

equivalent linear PSD may occur at different frequencies than in the PSD from the numerical

simulation analysis, as shown in Figure 10 and Figure 14. Methods such as spectral fatigue

analysis [19], which take moments of the PSD, may incorrectly account for the contribution of a

particular frequency component in the cycle counting scheme. It is not known, for example, if

the narrowly shaped, higher fundamental frequencies of the equivalent linear PSD result in
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conservativeor non-conservativeestimatesof fatiguelife relativeto predictionsmadeusingthe

numerical simulation PSD with more broadly shaped,lower fundamentalfrequencies. An

assessmentof this effectis left asanareafor furtherstudy.

9. CONCLUSIONS

A novel methodfor determiningnonlinearstiffnesscoefficientsof arbitrarystructureshasbeen

developed.Themethodcanbe implementedin any finite elementcodehavinga geometrically

nonlinearstatic capability. It hasbeenimplementedasa DMAP alter to MSC.NASTRANto

demonstrateits effectiveness.

A potential energy-errorminimization EL approachhas been extendedto handle multiple

degree-of-freedomsystems.The RMS randomresponsepredictionsfrom it and the traditional

force-errorminimization approachhavebeenvalidatedthrough comparisonwith a numerical

simulationmethodover a wide rangeof load levels. Comparisonswith numericalsimulation

resultsaregood,evenwhenthe assumptionof Gaussianresponsehasbeenviolated. It hasbeen

shown that a linear analysisgrossly over-predictsthe RMS displacements(i.e., it is too

conservative)in comparisonwith numerical simulation results. The potential energy-error

minimization approachprovided a slightly more conservativeestimateof RMS displacement

than the force-error minimization approach. It was demonstratedthat an earlier EL

implementation(SEMELRR)significantly over-predictstheeffectof nonlinearity(i.e., it is non-

conservative).

ACKNOWLEDGEMENTS

The authors wish to acknowledge the contributions of Jean-Michel Dhainaut and Professor Chuh

Mei at Old Dominion University in generating the numerical simulation results under NASA

grant NAG-I-2294. The authors also wish to thank Travis L. Turner and Jay H. Robinson of the

Structural Acoustics Branch at the NASA Langley Research Center for helpful discussions and

comments.

REFERENCES

[1] Bolotin, V.V., Statistical methods in structural mechanics, Holden-Day, Inc., 1969.

32



[2] Lin, Y.K., Probabilistic Theory of Structural Dynamics. Malabar, FL, R.E. Krieger,
1976.

[3] Caughy, T.K., "Equivalent linearization techniques," Journal of the Acoustical Society of

America, Vol. 35, pp. 1706-1711, 1963.

[4] Roberts, J.B. and Spanos, P.D., Random vibration and statistical linearization. New

York, NY, John Wiley & Sons, 1990.

[5] Atalik, T.S. and Utku, S., "Stochastic linearization of multi-degree-of-freedom nonlinear

systems," Earthquake engineering and structural dynamics, Vol. 4, pp. 411-420, 1976.

[6] Elishakoff, I. and Zhang, R., "Comparison of new energy-based versions of the stochastic

linearization technique," IUTAMSymposium, Springer-Verlag, pp. 201-211, Turin, 1992.

[7] Fang, J. and Elishakoff, I., "Nonlinear response of a beam under stationary excitation by

improved stochastic linearization method," Applied Mathematical Modelling, Vol. 19, pp.

106-111, 1995.

[8] Chiang, C.K., Mei, C. and Gray, C.E., "Finite element large-amplitude free and forced

vibrations of rectangular thin composite plates," Journal of Vibration and Acoustics, Vol.

113, No. July, pp. 309-315., 1991.

[9] Robinson, J.H., Chiang, C.K., and Rizzi, S.A., "Nonlinear Random Response Prediction

Using MSC/NASTRAN," NASA TM-109029, October 1993.

[10] "MSC/NASTRAN Quick Reference Guide, Version 70.5," MacNeal Schwendler

Corporation, 1998.

[11] Muravyov, A.A., Turner, T.L., Robinson, J.H., and Rizzi, S.A., "A New Stochastic

Equivalent Linearization Implementation for Prediction of Geometrically Nonlinear

Vibrations," Proceedings of the 40th AIAA/ASME/ASCE/AHS/ASC Structures, Structural

Dynamics and Materials Conference, Vol. 2, AIAA-99-1376, pp. 1489-1497, St. Louis,

MO, 1999.

[12] Muravyov, A.A., "Determination of Nonlinear Stiffness Coefficients for Finite Element

Models with Application to the Random Vibration Problem," MSC Worldwide Aerospace

Conference Proceedings, MacNeal-Schwendler Corp., Vol. 2, pp. 1-14, Long Beach,
1999.

[13] Rizzi, S.A. and Muravyov, A.A., "Comparison of Nonlinear Random Response Using

Equivalent Linearization and Numerical Simulation," Structural Dynamics: Recent

Advances, Proceedings of the 7th International Conference, Vol. 2, pp. 833-846,

Southampton, England, 2000.

[14] Mei, C., Dhainaut, J.M., Duan, B., Spottswood, S.M., and Wolfe, H.F., "Nonlinear

Random Response of Composite Panels in an Elevated Thermal Environment," Air Force

Research Laboratory, Wright-Patterson Air Force Base, OH, AFRL-VA-WP-TR-2000-

3049, October 2000.

[15] "MSC/NASTRAN Version 68 DMAP Module Dictionary," Bella, D. and Reymond, M.,

Eds., MacNeal-Schwendler Corporation, Los Angeles, CA, 1994.

[16] Rizzi, S.A. and Muravyov, A.A., "Improved Equivalent Linearization Implementations

Using Nonlinear Stiffness Evaluation," NASA TM-2001-210838, March 2001.

[17] Bendat, J.S. and Piersol, A.G., Random data: Analysis and measurement procedures,

Wiley-Interscience, 1971.

[18] Leissa, A.W., "Vibration of Plates," NASA SP-160, 1969.

33



[19] Bishop,N.W.M. and Sherratt,F., "A theoreticalsolution for the estimationof rainflow
rangesfrom powerspectraldensitydata,"Fat. Fract. Engng. Mater. Struct., Vol. 13, pp.

311-326, 1990.

34



REPORT DOCUMENTATION PAGE ForrnA_roved
OMB No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data
sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other
aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and
Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188),
Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

July 2002 Technical Publication

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Equivalent Linearization Analysis of Geometrically Nonlinear Random
Vibrations Using Commercial Finite Element Codes 522-63-11-03

6.AUTHOR(S)
Stephen A. Rizzi
Alexander A. Muravyov

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)

NASA Langley Research Center

Hampton, VA 23681-2199

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)

National Aeronautics and Space Administration

Washington, DC 20546-0001

8. PERFORMING ORGANIZATION

REPORT NUMBER

L-18219

10. SPONSORING/MONITORING

AGENCY REPORT NUMBER

NASA/TP-2002-211761

11. SUPPLEMENTARY NOTES

Alexander Muravyov was a National Research Council post-doctoral research associate at the NASA Langley
Research Center from June 1998 to September 1999.

12a. DISTRIBUTION/AVAILABILITY STATEMENT

Unclassified-Unlimited

Subject Category 39 Distribution: Standard
Availability: NASA CASI (301) 621-0390

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Two new equivalent linearization implementations for geometrically nonlinear random vibrations are presented.
Both implementations are based upon a novel approach for evaluating the nonlinear stiffness within commercial
fmite element codes and are suitable for use with any fmite element code having geometrically nonlinear static

analysis capabilities. The formulation includes a traditional force-error minimization approach and a relatively
new version of a potential energy-error minimization approach, which has been generalized for multiple degree-

of-freedom systems. Results for a simply supported plate under random acoustic excitation are presented and
comparisons of the displacement root-mean-square values and power spectral densities are made with results
from a nonlinear time domain numerical simulation.

14. SUBJECT TERMS

Geometrically nonlinear random vibration, equivalent linearization, statistical
linearization, force error minimization, potential energy error minimization, sonic

fatigue, nonlinear stiffness
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION

OF REPORT OF THIS PAGE OF ABSTRACT

Unclassified Unclassified Unclassified

15. NUMBER OF PAGES

39

16. PRICECODE

20. LIMITATION

OF ABSTRACT

UL

NSN 7540-01-280-5500 Standard Form 298 (Rev. 2-89)

Prescribed by ANSI Std. Z-39-18
298-102


