
REBOUND: A Framework for Automated

Component Adaptation

John Penix

NASA Ames Research Center

Code IC, MS 269-3

Moffet Field, CA 94035 USA

jpenix_ptolemy, arc. nasa. gov

Abstract:

The REBOUND adaptation framework organizes a collection of adaptation tactics in a way that they can

be selected based on the components available for adaptation. Adaptation tactics are specified formally

in terms of the relationship between the component to be adapted and the resulting adapted component.

The tactic specifications are used as matching conditions for specification-based component retrieval,

creating a "retrieval for adaptation" scenario. The results of specification matching are used to guide

component adaptation. Several examples illustrate how the framework guides component and tactic

selection and how basic tactics are composed to form more powerful tactics.

Keywords: software architecture, formal specification, software reuse

Background

The Automated Software Engineering Group at NASA Ames Research Center focuses on the

development and application of formal methods for synthesis, verification and reuse of safety and
mission critical software. The group's program synthesis work is based on the construction of programs

from reusable component libraries using automated theorem proving techniques [14, 13]. Our

verification research investigates the application of formal methods (both model checking and theorem

proving) to verify reusable software architectures and design patterns for AI-based autonomous systems

and concurrent real-time systems [21]. The addition of Bernd Fischer and Johann Schumann [5, 6, 7, 25]

as well as Jonathan Whittle [28, 29] in late 1998 will position the group to make strong advances in the

application of formal methods to software reuse.

Position

Evidence of the need for adaptation in software reuse is evident in the wide spread programming

language support of data-type generalization and parameterization. These methods take a specialization

approach to reuse, where a component is designed abstractly and specialized at reuse time (either

statically or dynamically). While these specialization techniques have permitted the development of

reusable code, they focus on implementation level artifacts. Therefore, these techniques cannot avoid the

limitations of concrete component reuse as described by Biggerstaff [3]: the reuse of small generic

components does not provide enough functionality to impact the cost of a system, while the

specialization required to construct a large component or framework limits its applicability. This causes

alibrary scalabilityproblem,wherethesizeof thelibrary mustgrowcombinatoriallyasadditional
featuresaresupported[3].

Biggerstaffprovidesaconvincingargumentthatsolvingthelibrary scalabilityproblemrequiresmoving
from thespecializationmodelof reuseto agenerationalor compositionalmodelof reuse.(Similar views
areexpressedby Batory [2] andKiczales[12].) The model Biggerstaff suggests is a library of factors

that are combined together to result in the component to be used. Current technology supports a layers

of abstraction (LOA) approach to this solution, where factors are implemented as functions and

composition is done using run-time function calls [2]. Biggerstaff discredits the use of module

interconnection languages because they prevent optimization by placing boundaries between

components.

In the context of architecture description languages, module or component boundaries are not

necessarily just conceptual boundaries, but may correspond to physical boundaries in the system. In

dynamic architectures [17], component interactions are not known until run-time, removing the

possibility of static optimization even between homogeneous, localized components. It follows that an

LOA-optimization approach to combining subcomponents into a larger system is inappropriate in the

context of software architecture. Factored reuse at the architecture level requires a more elegant solution

to component composition, one that does not require integration of implementation level artifacts. The

loss in efficiency is offset by the fact that architecture level compositions can be more powerful than

those available from an LOA approach.

Approach

We have developed a framework for automated component adaptation and composition, dubbed

REBOUND (REuse Based On UNDerstanding). The function and interface aspects of a component are

separated and then composed at reuse time to generate a component with the correct function and

interface combination. Composition takes the form of adaptation, supported by tactic specifications that

describe structures used to adapt components. The tactic specifications are used to generate matching

conditions that describe adaptable components. Specification-based component retrieval [5, 20] can then

identify adaptable components using these matching conditions.

The goal of the adaptation framework is to guide the search for a solution based on existing library

components. This search is over the space of all possible designs that can be constructed from the

components and tactics in the library. The exploration of the search space must be limited due to the

potentially large number of architecture and component combinations. The framework guides the search

to avoid designs that are incorrect or require components not in the library.

We distinguish between several kinds of adaptation within REBOUND:

1. Type Adaptation - specialization of an abstract type or behavioral type substitution.

2. Interface Adaptation - alters the interaction style of the component.

3. Behavior Adaptation - changes the function of the component either by composing it with other

components or replacing a subcomponent.

The effects of adaptation tactics are specified in terms of formal relationships between the component to

be adapted and the resulting adapted component. It is possible that a component may require any

combinationof thesethreekindsof adaptations.This is supportedby composingtactic specificationsto
makemorepowerful tactics.

Type Adaptation

Type adaptation occurs when an abstract or generic type is specialized. This kind of adaptation can

normally be identified and carried out by signature matching tools [30]. It must be considered separately

here, because of the potential to combine type adaptation with other kinds of adaptation.

Interface Adaptation

Interface adaptation determines how the component to be reused is bound to the problem specification.

Interface adaptations range from simple type conversions to wrappers that encapsulate sophisticated

control structures. A wrapper is an architecture that contains one component. By altering a component's

interface, it changes the way that it interacts with its environment. One kind of interface adaptation is

type conversion [24]. This differs from type substitution in that the source and destination type are not

(necessarily) related by the type hierarchy. A type conversion operator is used to convert between the

two types.

Matching conditions for component retrieval can be generated by specializing a generic Type

Conversion Wrapper specification with specific type conversion operators. In the REBOUND

framework, common type conversion operators are identified during domain analysis. The more general

case of finding or synthesizing a component that implements the proper type conversion is covered by

behavior adaptation. The concept of the type conversion wrapper can be generalized to specify more

powerful wrappers. If fact, any architecture specification that has all but one component instantiated can

be considered a wrapper specification. However, for the purposes of component adaptation, it is

important to stick to simple, intuitive tactics to: l) increase their potential to be reused and 2) simplify

the process of selecting and specifying wrappers during domain analysis.

Behavior Adaptation

Behavioral adaptation tactics are applied in a incremental and constructive manner, using the

architectural constraints as a guide while selecting components to plug in [19]. Maintaining the validity

of the constraints with each component selection, guarantees a correctly instantiated system.

The goal of selecting architectures for behavior adaptation is to have a potential adaptation strategy for a

range of component matching conditions. The choice of specific architectures should be driven by

common problem decomposition tactics from the application domain. For example, sequential

composition of filters is a common way to break up a digital signal processing system.

Stronger

1
We_.r

Plug-in

/
Weak Plug-in

(zp _ Ic) ^ (zc ^ Oc _ op)

/ ",,

-,,, / -,.
Plug-in Post, Pa_ial Post,

Oc _ Op Op =_ Oc

/ ",,, /
Satisfies [(;p =_ Ic) ^ (11, ^ Oc _ Op)

/
Plug-in Pw.

lp =_ Ic

Wemk Past Featttre Past
Ic ^ Oc _, 01, _(Oc =_ 4,) ^ (01, =_ ¢)

..,/
Feature

Figure 1: Lattice of Specification Matches Used for Behavior Adaptation

The lattice of specification matches used to guide behavior adaptation is shown in Figure 1. This lattice

is extended from the one described in our previous work [19, 20]. The highlighted Satisfies match

indicates a component that can be reused to solve a problem. The goal of behavior adaptation is to alter

the behavior of a component so that it matches under a condition at least as strong as Satisfies. This is

accomplished by associating a composition architecture and a heuristic for instantiating the architecture

with each matching condition.

Table 1 shows which matches each architectures is associated with and the instantiation rule for the

match. Justification of the rules can be see by attempting to apply the architectures in the different

situations [18]. For example, if a component matches under Plug-in Pre, it does not help to combine it

with another component using the parallel or alternate architectures; the "missing" component is

identical to the original problem. However, putting the component in the first position of a sequential

architecture allows the derivation of a missing component specification that accepts the valid outputs of

the first component and produced valid problem outputs.

Architecture Match Instantlation Rule

Seqlmntial Phg-in Post Ph_ companent into _cond position and

Weak Post derive specification far camponezat to

Fe_tlwe. Post sati.sfy missing precondition

Phi-in Pre Ph_ compcment into first positkm and

derive specification far ccmaponemt

to sat£sfy missing pre.canflition

Parallel Featlme. Combine components with featlu_s that total

to problem feat_Lres

Alternate. Weak Post Deri_ specification for component to handle.

missing cases
Featlme. Combine components "with' featl-res that total

to problem featm-es

Table 1: Adaptation Architectures Associated with Matching Conditions

Discussion

The framework embodies several techniques that limit search by avoiding designs that will either not

provide the correct functionality or not terminate in existing library components. The main technique is

the generation of matching conditions based on specialized adaption tactics. This leads to the selection

of problem decomposition strategies that generate subproblems corresponding to library components.

Problem decomposition strategies that do not lead to existing components (and are therefore dead-ends

from a reuse perspective) are not discarded.

The framework limits the application of automated reasoning by confining it to two situations: 1)

verifying component matches and 2) generation of subproblem specification during behavior adaptation.

In addition, the search over the solution space is guided by the relationship of components to the

problem, similar problems as determined by interface adaptation tactics, and the heuristics for
instantiation the behavior adaptation tactics. Together, these tactics direct the search toward solutions

that reuse components in library.

In the case where a large number of components are retrieved for a query, the match hierarchy can be

use to select components for adaptation. In general, the closer a match is to Satisfies match, the sooner it

should be selected for adaptation. The components requiring interface adaptation should only be

considered after components that match the same way, but do not require interface adaptation.

A limitation of the framework is that the size (meaning level of abstraction or granularity) of the

components in the library determines the size of the problems that can be solved by the system. The

problem must be of similar size as the components in the library, because it is immediately compared to

the components in the library. The adaptation tactics may allow the bridging of one or two abstraction

levels (for example, the combination of a type conversion and a sequential composition might be

considered two abstraction levels). However, large problems might require several levels of

decomposition before reaching the abstraction level of the components. This limitation could be relaxed

by allowing a few rounds of purely top-down problem decomposition before attempting the bottom-up

component retrieval and adaptation. However, this would increase the search space proportional to the

number of problem decomposition alternatives considered.

Comparison

The main contribution of this work is the development and evaluation the use of specification matching

results to select component adaptation strategies. This builds upon the large body of research that has

investigated specification-based (or deductive) component retrieval [5, 6, 7, 9, 10, 15, 16, 20, 25, 31].

The framework extends the traditional type abstraction/specialization adaptation paradigm [8] by adding

interface and behavior adaptation.

Behavior adaptation is an extension of the work done on Kestrel' s Interactive Development System

(KIDS) [26, 27, 11]. In KIDS, the structure of specific algorithms such as global search or divide and

conquer are represented algorithm theories. The generalization in REBOUND is that adaptation tactics

are specified in terms of subcomponent problem theories rather than operators, allowing the construction

of hierarchical systems.

TheInscape[23] environmentdevelopedby Perryusesaformalmodelof softwareinterconnection[22].
Predicatesareusedto definepreconditionsandpostconditionsandobligationsfor functional
components.Predicatesarepropagatedthroughoutthesystemto supportanalysisandevolution,but not
verification.Theemphasisis onpragmaticuseof specifications,therefore,thespecificationlanguageis
limited to conjunctionsof predicates.TheInscapesemanticinterconnectionmodelhasrecentlybeen
integratedinto theGenVocasoftwaresystemgenerators[1]. TheREBOUNDframeworkcanbe
distinguishedfrom thesesystemsin severalways.First, thespecificationlanguageis typefirst-order
logic. Second,thereis a distinctionmadebetweencomponentsandadaptors/architectures.This structure
aidsin theapplicationof heuristicknowledgein guidingtheconstructionof asystem.Therelationship
betweenGenVocaandREBOUNDis apointthatdeservesfurtherstudy.

References

Don Batory and Bart J. Geraci. Validating component compositions in software system

generators. In Murali Sitaraman, editor, Fourth International Conference on Software Reuse,

pages 72-81, Orlando, Florida, April 1996. IEEE Computer Society Press.

2 Don Batory, Vivek Singhal, Jeff Thomas, Sankar Dasari, Bart Geraci, and Marty Sirkin. The

GenVoca model of software-system generators. 1EEE Software, pages 89-94, September 1994.

3 Ted J. Biggerstaff. The library scaling problem and the limits of concrete component reuse. In 3rd

International Conference on Software Reuse, pages 102-109, Rio de Janeiro, Brazil, November
1994.

4 Ted J. Biggerstaff and Alan J. Perlis, editors. Software Reusability - Concepts and Models,
volume 1. ACM Press, 1989.

5 B. Fischer, J. Schumann, and G. Snelting. Deduction-based software component retrieval. In

Automated Deduction - A basis for applications, Volume Ill Applications. Kluwer, 1998.

6 Bernd Fischer and Johann Schumann. NORA/HAMMR: Making deduction-based software

component retrieval practical. In Proc. CADE-14 Workshop on Automated Theorem Proving in

Software Engineering, July 1997.

7 Bernd Fischer and Johann Schumann. SETHEO goes software engineering: Application of ATP

to software reuse. In Proc. CADE-14, July 1997.

8 J. Goguen. Parameterized Programming. IEEE Transactions on Software Engineering,

SE-10(5):528-543, 1984.

9 Jun-Jang Jeng and Betty H. C. Cheng. Specification matching: A foundation. In Proceedings of

the ACM Symposium on Software Reuse, Seattle, Washington, April 1995.

10 L. Jilani, J. Desharnais, M. Frappier, R. Mili, and A. Mili. Retrieving software components by

milimizing functional distance, unpublished, 1997.

11 Richard K. Jtillig. Applying formal software synthesis. IEEE Software, pages 11-22, may 1993.

12 GregorKiczales,JohnLamping,AnuragMendhekar,ChrisMaeda,CristinaLopes,Jean-Marc
Loingtier, andJohnIrwin. Aspect-orientedprogramming.Technicalreport,XeroxPaloAlto
ResearchCenter,1997.

13 M. Lowry andJ.VanBallen.Meta-Amphion: Synthesis of efficient domain-specific program

synthesis systems. In Proceedings of the 10 th Knowledge-Based Software Engineering

Conference, pages 2-10, Boston, MA, November 1995. IEEE Computer Society Press.

14 Michael Lowry, Andrew Philpot, Thomas Pressburger, and Ian Underwood. A formal approach to

domain-oriented software design environments. In Proceedings of the 9th Knowledge-Based

Software Engineering Conference, pages 48-57, September 1994.

15 A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components: A refinement

based system. In Proc. 16th Int'l Conf. on Software Engineering, pages 91-100, Sorrento, Italy,

May 1994.

16 A. Mili, R. Mili, and R. Mittermeir. Storing and retrieving software components: A refinement

based system. IEEE Transactions on Software Engineering, 23(7):445-460, July 1997.

17 Peyman Oreizy, Nenad Medvidovic, and Richard N. Taylor. Architecture-based runtime software

evolution. In Proceedings of the International Conference on Software Engineering 1998

(ICSE'98), Kyoto, Japan, April 1998.

18 John Penix. Automated Component Retrieval and Adaptation Using Formal Specifications. PhD

thesis, University of Cincinnati, April 1998.

19 John Penix and Perry Alexander. Toward automated component adaptation. In Proceedings of the

Ninth International Conference on Software Engineering and Knowledge Engineering, pages

535-542. Knowledge Systems Institute, June 1997.

2O John Penix and Perry Alexander. Efficient specification-based component retrieval. Automated

Software Engineering, 1998. To appear.

21 John Penix, Perry Alexander, and Klaus Havelund. Declarative specification of software

architectures. In Proceedings of the 12th International Automated Software Engineering

Conference, pages 201-209. IEEE Press, nov 1997.

22 Dewayne E. Perry. Software interconnection models. In Procedings of the 9th International

Conference on Software Engineering, 1987.

23 Dewayne E. Perry. The Inscape environment. In Proceedings of the llth International

Conference on Software Engineering, 1989.

24 James M. Purtilo and Joanne M. Atlee. Module reuse by interface adaptation. Software: Practice

& Experience, 21:539-56, June 1991.

25 Johann Schumann and Bernd Fischer. NORA/HAMMR: Making deduction-based software

26

27

28

29

3O

31

componentretrievalpractical.In Proceedings of the 12th IEEE International Automated Software

Engineering Conterence, pages 246-254, Incline Village, NV, November 1997. IEEE.

Douglas R. Smith. KIDS: A Semiautomatic Program Development System. IEEE Transactions on

Software Engineering, 16(9): 1024-1043, 1990.

Douglas R. Smith and Michael R. Lowry. Algorithm Theories and Design Tactics. Science of

Computer Programming, 14:305-321, 1990.

A. Whittle, J. Bundy and H Lowe. Supporting programming by analogy in the learning of

functional programming languages. In Accepted for Poster Presentation at The 8th International

Conference on AI in Education (AIED), 1997.

J. Whittle and E Melis. Analogy in inductive theorem proving. Journal of Automated Reasoning,

1998. to appear.

Amy Moormann Zaremski and Jeannette M. Wing. Signature matching, a tool for using software
libraries. A CM Transactions on Software Engineering and Methodology (TOSEM), April 1995.

Amy Moormann Zaremski and Jeannette M. Wing. Specification matching of software

components. In 3rd ACM SIGSOFT Symposium on the Foundations of Software Engineering,
October 1995.

Biography
John Penix is a research scientist in the Automated Software Engineering Group at NASA Ames

Research Center. He received a PhD in Computer Engineering from the University of Cincinnati,

Cincinnati, Ohio in 1998. His dissertation, "Automated Component Retrieval and Adaptation Using

Formal Specifications", received the Distinguished Dissertation Award from the University of

Cincinnati Department of Electrical and Computer Engineering and Computer Science. His research
interests lie in the intersection of software reuse, software architecture, automated reasoning and formal

verification. John is a member of IEEE and ACM SIGART and SIGSOFT.

John Penix

Mon Aug 31 17:23:20 PDT 1998

