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Scientists studying the atmosphere typically rely on mathematical and computer mod-
els to try to make sound predictions about weather and climate change. By themselves,
these models are not enough to allow for very accurate predictions since not all natural
processes are known and accounted for in the models. Data assimilation is the vehicle
used by scientists to bring model predictions close to reality. Atmospheric data assimila-
tion consists of a series of mathematical steps that combine model predictions with actual
observations of the atmosphere to produce an estimate of the state of the atmosphere at
any given time. The estimates are commonly referred to as analyses. When all goes well,
the analysis is a better estimate of the state of the atmosphere than the estimate provided
by either the model or the observations alone. Usually, only observations before and at the
time of the analysis are used to calculate this “filter” estimate. The name filter comes es-
sentially from the fact that, in a manner of speaking, this assimilation procedure combines
the best of two worlds by filtering out their errors: the “observation-only world” and the
“model-only world”. More sophisticated assimilation procedures known as smoothers are
capable of combining filter estimates with observations within a certain time interval to
produce refined estimates of the state of the atmosphere, within the desired time interval.

There are different smoother types. In the present work the so-called fixed-lag Kalman
smoother is used as a framework to construct a retrospective assimilation system for the
NASA/Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). In
this type of smoother formulation, when observations up to 6 hours ahead of a regular filter
estimate are used to calculate the (refined) retrospective estimate we say we are calculating
the lag-1 retrospective analysis; when observations up to 12 hours ahead of a regular
filter estimate are used to calculate another (even more refined) retrospective estimate
we say we are calculating the lag-2 retrospective analysis; and so on. The results of our
experiments with GEOS DAS indicate that the lag-1 retrospective assimilation procedure
does indeed provide an overall improvement over the regular assimilation procedure. One
particular significant result, obtained by studying the skill of 5-day forecasts, indicates
that lag-1 retrospective analyses seem to consist of better initial conditions than those
normally provided by the filter analyses. Even though our results are obtained for a
slightly simplified version of GEOS DAS, they are quite promising and work is already in
progress to expand this research, including study of the impact of lags higher than one.
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T Affiliation: Department of Mathematics and C.S.I.T, Florida State University, Tallahassee, FL 32306
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Abstract

The fixed-lag Kalman smoother (FLKS) has been proposed as a framework to construct data
assimilation procedures capable of producing high-quality climate research datasets. Fixed- -lag
Kalman smoother-based systems, referred to as retrospective data assimilation systems, are an
extension to three-dimensional filtering procedures with the added capability of incorporating
observations not only in the past and present time of the estimate, but also at future times. A
variety of simplifications are necessary to render retrospective assimilation procedures practical.

In this article, we present an FLKS-based retrospective data assimilation system 1mplemen—
tation for the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS). The
practicality of this implementation comes from the practicality of its underlying (filter) analysis
system, i.e., the physical-space statistical analysis system (PSAS). The behavior of two schemes
is studied here. The first retrospective analysis (RA) scheme is designed.simply to update the
regular PSAS analyses with observations available at times ahead of the regular analysis times.
Although our GEOS DAS 1mplementat10n is general, results are only presented for when obser-
vations 6-hours ahead of the analysis time are used to update the PSAS analyses and thereby to
calculate the so-called lag-1 retrospective analyses. Consistency tests for this RA scheme show
that the lag-1 retrospective analyses indeed have better 6-hour predictive skills than the pre-
dictions from the regular analyses. This motivates the introduction of the second retrospective
analysis scheme which, at each analysis time, uses the 6-hour retrospective analysis to replace
the first-guess normally used in the PSAS analysis, and therefore allows the calculation of a
revised (filter) PSAS analysis. Since in this scheme the lag-1 retrospective analyses influence
the filter results, this procedure is referred to as the retrospective-based iterated analysis (RIA)
scheme. Results from the RIA scheme indicate its potential for improving the overall quality of
the assimilation.



1 Introduction

The concept of retrospectivé data assimilation, as invoked in the present article, was introduced
by Cohn et al. (1994; CST94 hereafter) to refer to the calculation of the analyses from observa-
tions after the analysis time, as well as before and at the analysis time as is done in numerical
weather prediction. Retrospective data assimilation is possible when analyses are not required

in real time, such as in the production of reanalysis data sets for climate research.

In estimation theory, estimates of the state of a system produced from observations on both
sides of the analysis time are known as smoother estimates. In sequential data assimilation a
natural smoothing technique to employ is that of fixed-point smoothing. In this case, the usual
filter estimate obtained at a fixed time using observations before and at the analysis time is
sequentially updated as future observations became available. Future observations can be used
for as long as experimentation shows their impact to be useful. The idea of estimating the
state of a system at a fixed time over and over again as more observations become available can
be taken a step further by seeking fixed-point estimates at a series of consecutive fixed times.
This is what is accomplished by fixed-lag smoothing. Specifically, for linear systems under
the typical assumption of unbiased Gaussian-distributed errors the fixed-lag Kalman smoother
(FLKS) provides the best unbiased estimate of the state of the system at a sequence of given
times using observations in the past, present, and at a time lag-£ ahead of the time of each

estimate.

The FLKS is composed of two major components: the Kalman filter (KF) portion and the
\ fixed-lag smoother portion. The FLKS is fully dependent on the KF as it is formulated on the
basis of the observation-minus-forecast residuals resulting from the KF. In general, when the
filter is not the KF, but rather some suboptimal implementation of it, we can still think of sub-

optimal implementations of FLKS-based retrospective data assimilation schemes as consisting



of a filter portion and a smoother (or retrospective) portion. Todling ef al. (1998) used this
explicit separation between filtering and smoothing portions to study the behavior of a vari-
ety of combinations of filter and smoother approximations to the linear FLKS. One particular
approximation studied there, namely the adaptive CCF-based retrospective data assimilation
scheme, was seen as having the potential for being implemented in practice. It replaces the
filter portion of the FLKS by a constant forecast error covariance filter much like operational
three-dimensional variational analysis systems do. The spectral statistical-interpolation analysis
system of Parrish and Derber (1997'2) is an example of such a system; the U.S. Navy analysis
system of Daley and Barker (2001) is another; the European Center for Medium-Range Weather
Forecasts (ECMWF) system of Courtier et al. (1998) is yet another; and so is the physical-space
statistical analysis system (PSAS) of Cohn et al. (1998), which is also central to the work in

the present article.

To take forward the idea of developing a practical retrospective data assimilation system,
the linear FLKS formulation of CST94 has to be extended to handle nonline;abr dynamics. Since
the retrospective portion of the algorithm relies completely on the filter, designing nonlinear
filters immediately results in deéigning nonlinear smoothers. Todling and Cohn (1996; TC96
hereafter) derived a nonlinear FLKS algorithm based on the traditional extended Kalman filter
(EKF). Similar derivations can be found elsewhere (e.g., Biswas and Mahalanabis 1973; Verlaan
1998). The way smoothers use futu;e observations to calculate updates to state estimates is
by propagating information back in time using the adjoint dynamical model. For nonlinear
dynamics the adjoint of the tangent linear dynamics must be provided in principle. Four-
dimensional variational (4D-var) procedures such as that of Rabier et al. (2000) also require the
adjoint of the tangent linear dynamics. The need for the adjoint model can be avoided if the
retrospective assimilation strategy is based on ensemble techniques such as that of Evensen and

van Leeuwen (2000).



In this article, we study the perforfnance of a PSAS-based retrospective analysis (RA) system
developed for the Goddard Earth Observing System (GEOS) Data Assimilation System (DAS).
Since the forecast error covariance matrix of PSAS in GEOS DAS varies slowly in time we
can identify the suboptimal RA procedure studied here with the CCF scheme of Todling et al.
(1998). Our RA implementation in GEOS DAS is general and applicable to any number of time
lags, but in the present article we concentrate on results for the 6-hour, i.e. lag-1, retrospective
analysis. Motivated by some of the results obtained with this version, and by the ideas of
constructing so-called iterated filters and smoothers common in the engineering literature, we
also study here the performance of a retrospective-based iterated analysis (RIA) scheme. In the
RIA, the lag-1 retrospective analysis at a given time ¢;_; is uéed to produce a new first-guess at
time # that is used to revise the filter (PSAS) analysis at the same time ¢;. In the RIA the final
analysis is the second (iterated) analysis calculated using the first-guess generated from the lag-1
retrospective analysis. This is a considerably different use of the “static” retrospective analyses
proposed by CST94. Though a formal argument for the RIA procedure is not presented here,
the procedure is found to improve the overall quality of the analyses. This lag-1 RIA scheme
makes the retrospective procedure resemble a 4D-var cycle (e.g., Courtier et al. 1994; Rabier et

al. 2000, Li and Navon 2001).

Indeed, the original FLKS-based retrospective analysis formulation of CST94, and the RIA
here, can be viewed as alternative approaches to 4D-var. The FLKS framework is a natural
four-dimensional extension to three-dimensional procedures formulated sequentially rather than
variatiénally. Four-dimensional variational procedures are an extension of 3D-var that take
into account observations within a time interval. Ménard and Daley (1996) have shown the
equivalence of 4D-var and fixed-interval smoothing. Similarly, for linear dynamics, the FLKS is
algebraically equivalent to 4D-var and can be derived from the 4D-var cost function by solving a
two-point boundary value problem (Zhu et al. 1999)‘ The main distinction between 4D-var and

the FLKS is in their computational approaches. The former involves an iterative optimization



procedure to arrive at the solution, whereas the latter deals directly with the analytical solution
of the problem. One practical consequence of this distinction relates to how these procedures
account for model error. As pointed out by Todling et al. (1998), FLKS-based assimilation
schemes directly inherit any model error covariance parameterization embedded in the filter
portion. Various techniques to account for model error in 4D-var can be formulated by using the
dynamical model as a weak constraint on the optimization problem (e.g., Derber 1989; Bennett
et al. 1996; and Zupanski 1997). However, until a more complete understanding of model error
is acquired, and the corresponding model error covariance parameterizations can be relied upon,
this distinction between 4D-var and FLKS-based assimilation is rather moot. Another important
point to make relates to what now seems to be recognized (Fisher and Andersson 2001) as one
of the main advantages of 4D-var over 3D-var-like procedures, namely, that the former uses the
observations nearly at their proper times [as the case of the ECMWEF 4D-var implementation of
Rabier et al. (2000)], whereas in the latter it is more common to bundle the observations into
6-hour batches. This can be resolved, particularly in sequential 3D-var assimilation procedures,
by using a rapid update cycle strategy. Though this is not explored in the present article, since
in GEOS DAS the observations are bundled into 6-hour batches, we should point out that there
is no intrinsic difficulty in building an FLKS-based retrospective analysis system under- a rapid

update cycle filtering strategy.

In the sequel we briefly review, in section 2, the theoretical framework behind retrospective
analysis. The presentation is based on the EKF and the corresponding nonlinear extension of
the FLKS. In section 3, we describe the framework of our practical implementation directed
toward adding a retrospective component to GEOS DAS; here, both the RA and RIA schemes
are .presented. In section 4, results of a preliminary evaluation of these retrospective schemes

are presented and discussed. Conclusions are drawn in section 5.



2 Theoretical framework: the fixed-lag Kalman smoother

In this section we briefly recapitulate the formulations of the fixed-lag Kalman smoother of
CST94 and TC96. Following Todiing et al. (1998) we separate the FLKS into a filter portion and
a retrospective portion. The filter portion is based on the linear Kalman filter, or more generally
on any nonlinear extension of the KF; the retrospective portion is based on the linear fixed-lag
Kalman smoother, or any equivaient nonlinear extension compatible with the underlying filter.

As in TC96, the discussion below is based on the EKF.
(a) The filter portion

Using the notation of CST94, the filter portion of the FLKS formulation of TC96 can be

summarized by the usual EKF equations

Wi[k—1 = Ake-1(Wi_1jk—1) - (1a)
Wi = W£|k_1 + Kipvi (1b)
Kie = P£|k-1H:krr1:1 ) (1c)

P£|k—1 = Ak,k—lpi—nk—lA;{,kq +Qk (1d)
Py = (- Kk|ka)P£|k_1 . (1e)

The first two expressions refer to the state estimate evolution, which depends on the last three
expressions essentially related to error covariance evolution and update. At time ¢, the forecast
n-vector Wilk_l evolves through the nonlinear dynamical operator Ay x—; from the analysis n-
vector Wi—llk—p according to (la). The dynamical operator A x—1 stands for, say, a general
circulation model, and possibly any transformations necessary to convert the model prognostic

variables into the filter state vector, and vice-versa.

The main difference in the EKF equations written above and the way they more commonly

appear in the atmospheric data assimilation literature (e.g., Miller et al. 1994) is in the time



subscripts. Here, the subscripts follow standard engineering notation developed in estimation
theory and which is mostly suitable to the development of smoothers. This subscript notation
is also particularly helpful in reminding us that for linear systems perturbed by Gaussian-

distributed noise the forecast w and analysis Wi State vectors are actually conditional

f
klk—1

means of the true state n-vector w}, that is,

W]J:Ik_1 = E{WZIWZ—M e 7W§} ’ (23‘)

WZU: = g{w}tclwlocv WE_10 s Wit (2b)

at time ¢x. The conditioning, represented by the vertical bar in the expectation operator £{e|e},
is on the time series of observations w{. The forecast at time ¢; is the expected value of the true
state conditioned on all observations prior to time tx; the analysis at time ¢; is the expected

value of the true state conditioned on all observations up to and including those at time tg.

The EKF, like the KF, depends on the residual pg-vector v in (1b) formed by the difference
between the pi-vector of observations w{ and the model-predicted “observations” ?—lk(wilk_l')

at time ¢k, that is,
vi = wi— Ha(wly_,) - | 3)

The nonlinear observation operator Hj stands for the transformations involved in converting
filter state vector quantities inté observables. Optimality of the filter depends on the » x
pr weighting m‘a,trix Kyx given to this observation-minus-forecast (OMF) residual vector vi
through (1b). Although the expression for the weighting matrix Ky, in the EKF is sirﬁilar in
form to its linear KF equivalent, contrary to the linear case, Ky, in (1c) is now state-dependent
since the px X n Jacobian matrix Hj of the observation operator Hj is linearized around the
- forecast state vector W}:' p_,- State dependence of the EKF weightiﬁg matrix Ky also comes

from its dependence on the OMF residuals covariance matrix I'g, given by

Iy =HP], Hf +Ry, (4)



for uncorrelated observation and forecast errors. Here, Ry is the pr X p observation error
covariance matrix and Pil x_; is the state-dependent nxn forecast error cqvariance matrix. The
dependence of the forecast error covariance matrix in (1d) on the state comes from the n x n
Jacobian matrix Agz_; of the dynamics operator A x—1 which is linearized about ’ché model
trajectory initialized from the analysis vector WZ_” x—1- The forecast error covariance matrix
also depends on the model error covariance matrix Qg, which is normally assumed to be known.
Since the forecast error covariance matrix P;’:l 41 evolves from the n X n analysis error covariance
matrix Pz_ll x—; it depends furtherb on the accuracy of the previous estimate calculated by the

filter, i.e., through (le) applied at time tz_;.

In the linear case, the dynamics and observation operators reduce to Agx—1 = A -1 and
M = Hy, respectively, and (1) reduces to the linear KF for known model and observation error
statistics. Moreover, as pointed out in TC96, in the linear Gaussian-distributed noise case, the
forecast and analysis error covariance matrices are the conditional mean error cévariances. It
is when the observation errors are Gaussian and white in time, that the time series of residual
vectors v can be identified with the innovation sequence (see for example, Anderson and Moore

1979, section 5.3)
(b) The retrospective portion

In the FLKS, the retrospective portion uses the OMF residual vector vi at time t; to
calculate corrections to filter analyses and retrospective analyses at previous times tz_p using
an upddte equation similar to the state update expression (1b) of the filter portion. The lag-¢

FLKS retrospective analyses based on observations newly available at time ¢; are calculated by
Wi_ge = Wi_ge—1 T Krk—elkve (5)

for £=1,2,...,min(k, L), and a maximum desired lag £ = L. They are analyses for times £x_g.

Each retrospective analysis for fixed time tz_; is also an “incremental” correction to an estimate



of the state calculated previously. For example, when k£ = x and £ = 1, the lag-1 retrospective

analysis wi_,, s a correction to the most recently available state estimate at time ¢, i.e., the

1

filter analysis Wi-m-u based on the observations newly available at time ¢,; when k =k + 1
and £ = 2, the lag-2 retrospective analysis WL”R 41 18 a correction to the most recently available

state estimate at time ¢._; which is now the lag-1 retrospective analysis Wz_lln; and so on up to
the desired lag £ = L when the estimate at time ¢,_; is given by the lag-L retrospective analysis

a
Wie—1|r+L—1"

This example to illustrate the mechanism for correcting consecutive state estimates at a given
time with successive smoother calculations makes the FLKS algorithm resemble very much the
fixed-point smoother. This is simply because in this example we chose to fix the time at which
estimates are being sought, that is, time t,_;. The resemblance between the fixed-lag and
fixed-point smoothers is no coincidence. The FLKS of CST94 and TC96 can be derived from a
fixed-point smoother formulation using, for example, the approach of state augmentation (e.g.,
Biswas and Mahalanabis 1973). Out point here is simply that the incremental corrections to
the state estimates at a fixed time t._; are calculated on the basis of the OMF residual vectors
Vi, Va1, and so on up to veir_1. That is, each lag of the algorithm introduces corrections to
the state estimate by uéing observations at times further and further ahead of the retrospective

analysis time, up to the maximum desired lag L.

Because the retrospective analyses are based on the same OMF residual vectors used in
the filter portion of the algorithm, the retrospéctive n X py weighting matrix Kj;_g; depends
on the OMF residual covariance matrix Iy in (4). Furthermore, K;_ 4 also depends on the
n X pr matrix Hg, the transpose of the Jacobian of the observation operator, and on the n X n

forecast-analysis cross-covariance matrix Piak_ k-1 through the EKF-based expression
Ty Tp-1
Kigr = (Pi’“k_ak_l) Hy Ty, ‘ (6)
as can be found in TC96. The forecast-analysis cross-covariance Piak_ olb-1 evolves from previ-

8



ously calculated analysis error covariances and analysis-analysis error cross-covariances through
the Jacobian Ay x—1 of the dynamics operator. Its evolution equation and the update equations

for the retrospective analysis error cross-covariances are

Pl e = Progp—1— Kk—ZIkaP;f:k_glk_l ; ~ (7a)
Z?k-élk = (I- Kklk'Hk)PI{:lk—elk-l J (7b)
£3c—£|k—1 = Ak’k—lpiil,k—elk;l ) (7c)

and the details of their derivation can also be found in TC96.

That retrospective analyses are built on the basis of future observations can be simply
understood by recalling the meaning of the time subscript notation used here. In the linear
Gaussian-distributed noise case the time subscript notation signifies that the retrospective anal-
ysis estimates are indeed estimates of the conditional means. In this case, the rejurospective

analysis at time tx—; is
a _ 1 [ o o
Wik = E{Wh_o|Wh, Wi_q, -, Wi, (®)

where now, in contrast to the filter estimates (2), the expectaﬁon is conditioned on all obser-
vations before, at and after time tz_, up to time ¢;. As mentioned previously, in the linear
optimal case, when the underlying filter is the KF and the sequence of OMF residual vectors is
actually the innovation sequence, the retrospective portion just described reduces to the optimal
FLKS. Independently of nonlinearities, in general, if the filter is éuboptimal the corresponding
retrospective analyses are suboptimal as well. This is simply because both the filter and the
smoother are based on the same sequence of OMF residual vectors vi. Unfortunately, in the
suboptimal case, there is no guarantee that consecutive retrospective lagged estimates will repre-
sent improvements over estimates with smaller lag(s) or even over the filter results (see Todling

et al. 1998 for illustration).

As pointed out by Todling et al. (1998), one interesting feature of the FLKS that arises

9



directly from its being formulated on the basis of an underlying filter is that it incorporates model
error covariances naturally and automatically (see also appendix A, here). In fact, equations
(5)-(7) do not depend explicitly on the modél error covariance. A variety of techniques exist
to incorporate model error in 4D-var (e.g., Derber 1989; Bennett et al. 1996; and Zupanski
1997). Since 4D-var is algebraic‘ally equivalent to fixed-interval smoothing (see Ménard and
Daley 1996; and Zhu et al. 1999) and for all practical purposes we call always choose a lag L
in fixed-lag smoothing that accomplishes the same benefit as fixed-interval smoothing (Moore »
1973), FLKS-based assimilation procedures present a potential alternative to 4D-var. Since we
currently lack the necessary knowledge to parameterize model error covariances this advantage

of the FLKS ovef AD-var is not very significant, but it may prove to be relevant in the future.
3 Practical framework: GEOS DAS considerations

The algorithm described in the previous section serves mainly as 2 guide to help design suitably
feasible data assimilation procedures. It is well known that the computational cost of evolving
full covariances is excessive for filtering, let alone for smoothing as in (7), and likely not justiﬁ@ble
because of our relative lack of knowledge of the required input model and observation error
statistics. This has motivated the study of a number of simplifications to both filtering (e-g-,
Cohn and Todling 1996, and references therein) and smoothing (e.g., Todling et al. 1998, and
references therein) procedures. In this section, we describe the det;ﬂs of our implementation of
the FLKS-based retrospective procedure for the GEOS DAS. Before describing the retrospective
analysis portion of the implementation we summarize the current GEOS DAS that approximates,

in principle, the filter portion of the algorithm.
(a) The GEOS analysis and data assimilation system

The DAO operational GEOS data assimilation system consists of three major components:

10



an atmospheric general circulation model (GCM); the physical-space statistical analysis system
(PSAS); and the incremental analysis update (IAU) procedure. At the so-called analysis times,
the GCM provides a first-guess field to PSAS so it can process OMTF residuals and generate the
analysis state. The physical-space statistical analysis system is an implementation of the EKF
equations (1b)-(1c), obtaining the analysis state as a correction to the model ﬁrst—éuess. The
error covariance evolution expressions (1d) and (1e) are neglected and therefore PSAS functions
as a suboptimal filter, as in the case for other operational 3D-var systems. Each PSAS analysis
is used in the IAU procedure of Bloom et al. (1996) to construct a tendenéy term that is used to
force the GCM during a 6-hour period around the analysis time. The GCM trajectory obtained

during the IAU integration is known as the assimilated trajectory.

In GEOS DAS the state-space of the GCM is different than the state-space of the analysis
system and it is convenient to define a specific nomenclature for the purposes of the present
article. In what follows, we refer to background as the state-vector provided by the GCM and
to forecast or first-guess as the background field transformed to the analysis space. The model
and analysis spaces are different because their state variables and grids are different. The GCM
state variables are surface pressure, potential temperature, speciﬁc humidity and the zonal and
meridional components of the wind, where all variables are deﬁnéd on the Arakawa C-grid and
on a vertical sigma coordinate system. On the other hand, the analysis state vector is composed
of sea level pressure, the zonal and meridional components of the sea level wind, the zonal and
meridional components of the upper-air wind, mixing ratio, and geopotential heights, where all
variables are defined on the Arakawa A-grid and in pressure coordinates (see DAO 1996, for

details).

We designate an m-dimensional sigma-coordinate GCM state vector by y(o) and an n-
dimensional pressure-coordinate analysis state vector by w(p), to emphasize explicitly the ver-

tical coordinate system these states are defined on. For our purposes, we can represent a GCM

11



integration as

= Mly(0)] + adygy(o)- 9) -

Here, M is the nonlinear GCM operator and the second term on the right-hand side corresponds
to the constant IAU forcing term applied to the GCM during the IAU integration period. The
parameter o controls when and how the model-space analysis increment 5YZ|1¢(‘7) affects the
integrations. For 6-hours the JAU time interval [te—1/2) trs1/2] We set T = fp 41/ —tr_1/2 and
a=1/7 and during the 3-hour GCM background integration time interval [tg41/2, tr+1] we
set @ = 0. At an analysis time t;, the GCM-provided background field yzlk_l(a) is converted

into the analysis first-guess through the operation

Wi, (0) = TOyi_ ()], (10)

where for convenience we use similar time subscript notation as that used in the previous section.
The space conversion operator II is nonlinear since it represents not only simple interpolation
from one grid to another but also variable transformations such as conversion from potential
temperature to geopotential heights. This operator can be absorbed in the definition of the
state vector and become transperent in the description of the filter and smoother equations.
However, to make clear the connection between the mathematical description and the actual

implementation of these procedures we opt to refer to II explicitly.

The forecast vector W}:!k_l(p) is used to construct the OMF residual p-vector v in (3).
Instead of calculating explicitly the weighting matrix (1c), PSAS splits the calculation of the
Jast term in the analysis equation (1b) into two steps. The first step is to solve the linear system

of equations
Tixg = Vi, (11)
for the variable x, so that in a second step the analysis Wz!k(p) can be calculated by

wi(p) = Wi, (0) + PL,_ Hixe. | (12)

19



To keep notation simple, we denote the PSAS forecast error covariance with the same symbol
Pil ,_; used in the previous section. However, as mentioned above, PSAS does not use (1d) to
calculate the forecast error covariance matrix. Instead, the forecast error covariance in PSAS is
parameterized using simple dynamical constraints. Only its variance fields vary (slowly) in time;
its correlations are constant in time. A consequence of such simplification is that the forecast
wilk_l(p) and the analysis wi“c(p) vectors in (12) are also distinct from those of the previous
section, even though they are designated with the same symbols as in the previous section.
Furthermore the forecast error covariance formulation of PSAS is for the analysis variables and,

in particular, in pressure coordinates. Moreover, the observation operator Hy in PSAS is linear,

that is, Hir = Hg.

To proceed with the GEOS IAU assimilation, the analysis in (12) is converted back to the

model space, through a conversion operator o+,

yie(o) = I [wi(e)], (13)

which is then used finally to construct the IAU 53’21 ,(0) increment to be used in (9),

6yi(0) = V(o) = Yip-a(o)- (14)

The actual implementation of II* is such that it renders minimal the difference between a field
w(p) in the analysis space and the field resulting from transforming W(.p) to the model space

using IIT and subsequently transforming the resulting vector back to the analysis space using

II.

A schematic representation of the IAU assimilation procedure is shown in Fig. 1. In GEOS
DAS observations are processed in 6-hour intervals, which in the IAU framework implies that
the GCM is integrated for 6 hours starting 3 hours before the analysis time. Going from the
left to right in the diagram, at an analysis time, say ¢ = 67, observations and a 3-hour model

first-guess (represented by the north-eastward pointing dashed arrow) are combined in PSAS

19



to calculate the filter analysis. This analysis is used to construct the IAU increment (14) and
the model is integrated forward forced by the IAU tendency starting from ¢ = 3Z up t.o t = 97.
Beyond this time, the IAU forcing is set to zero and the model runs “free” for the next 3 hours.
At the end of this free 3-hour integration the GCM provides the background to be used in the
PSAS analysis of the 12Z observations, and the cycle is repeated. The assimilated trajectory is

represented in the figure by the thick-solid eastward-pointing arrows.
(b) The GEOS retrospective analysis

We now have the challenge of converting the retrospective portion of the FLKS as presented
in the previous section into a practical algorithm. We have seen above that when building a
practical filtering procedure such as PSAS one of the main approximations is to avoid dealing
directly with the error covariance equations (1d)-(le). Analogously, when building a practical
implementation of the retrospective portion of the FLKS we want to calcula,té retrospective

increments

SWi_gi(0) = Wi_ge(P) = Wi_gp_1(P) = Ki—gle Vi, (15)

for lags £ = 1,2,---,min(k, L), without having to calculate the smoother cross-covariances
implicit in the retrospective gains Kj_; through (6) and (7). As it turns out, calculating these
cross-covariances can be avoided since the retrospective gain matrices Kj_x can be written as

k
_ f TAT Tp-1
Kk-flk - Pk—e[k—f—l H (I"Kj—llj—lﬂj—l) Aj,j—l H, I, (16)
Jj=k—£+1

(see appendix A), with the consequence that the retrospective increments in (15) become

k
a _ f T - T T
5Wk—elk(p) = Py gp—em1 H (I—Hj—lFj—llHi—lpf—lij—z)Aj,j—l Hixk, (17)
j=k—2+1

where we used (11) to replace I‘,:lwc with xz. We see from this expression that the lag-£ ret-
rospective increment is a linear combination of the columns of the forecast error covariance

123

k—tlf—t—1> 35 is the original filter increment. The advantage of the expression above is that
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it refers only to quantities used by the filtering portion of the FLKS: the (filter) forecast error

f :

covariance matrix P .
Jj=1l7-2?

the observation error covariance matrix R;_1; the linear (or lin-
earized) observation operator H;_; and its transpose (adjoint); and the adjoint of the Jacobian
A ;_; of the dynamics operator. The smoother error cross-covariances Pﬂ—f_’lk—l and PZ?k—E[k’

and smoother error covariance Py_,; do not appear in (17).

At a given analysis time ¢, the retrospective increments can be calculated through a succes-
sion of operations similar to the two-step PSAS operations (11) and (12). Defining an n-vector

ZE |k as
zye = HE Xk, (18)

corresponding to the PSAS conjugate gradient solution xj converted from the observation space
to the analysis space by HZ, the term in the square brackets of (17) can be calculated using the

following algorithm:

j=k

while 7 > 1 and j > max(1,k —£+1)

Z = ATz ' (192)
Ljoaxj_yp = Hj"lP;'r—llj—2Z§—1|k (19b)
Zj-1k = Z?-uk - H;‘F-1X§_1|k (19¢)
owi_yx(p) = ny‘—llj—zzj—llk (19d)
J=7-1

endwhile

for a maximum number of time lags £ = L. In this algorithm the n-vector Z?—l]k in (19a)is

the result of the adjoint dynamics evolution of the auxiliary n-vector zjjk, for each backward
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integration j. This backward-propagated vector z?_nk serves as the input to an equation (19b)
similar to the first step (11) of the regular PSAS analysis, but now with a different right-hand
side. The next step in the retrospective analysis loop is to update the n-vector z?—l]k with
the analysis-space projection of x;'—llk in (19¢). Finally, the n-vector z;_ 1k in (19c¢) is used to
calculate the retrospective analysis increment for each desired lag £ up to a maximum lag £ = L

through application of the forecast error covariance operator in (19d).

Notice that the entire retrospective analysis algorithm (18)-(19) works in the analysis space.
In particular, the propagation operator AZ,k-—l = Af’k'_l(p) in (19a) is defined in pressure
coordinates and it operates on geopotential heights, mixing ratio, zonal and meridional winds,
etc, that is, the analysis variables. In fact, the linearized dynamical operator Ak x_1(p) is given

by
Ak,k——l(p) = HkMk,k—l(U)H;:_l ) (20>

where My —1(0) is the m x m Jacobian matrix of the nonlinear operator M in‘(9),

oM

M(o) = aM , (21)

Y ly=y()
and II and IIT are given by

o = omly] ) (22a)
Y ly=y(e)

mt = _——"3“*[“’1‘ , (22b)
6W W=W(p)

and correspond to the m x m and m X n Jacobian matrices of TI and IIT, respectively, where
we recall that m is the dimension of a model state vector and n is the dimension of an analysis

state vector.

A few remarks can be made at this point.

e Currently in PSAS the analysis error covariance matrix PZ[}: is never referenced. Indeed,

the current implementation of PSAS parameterizes the forecast error covariance matrix in
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such a simple manner that none of the terms on the right-hand side of (1d) are taken into
account. However, Wheﬁ the expressions (7) for the smoother error cross-covariances are
bypassed and the retrospective increments are calculated using the gains in (16) there are
actually no approximations involved. The only consequence of not calculating the smoother
error covariances is that we get no estimates for the accuracy of the retrospective analyses
— which, in principle, can be extracted from P}_, . Expression (16) is exact for the linear

FLKS and its nonlinear EKF-based extension.

We see from (17) that an FLKS-based retrospective scheme allows future observations to
be used to correct previous filter and retrospective analyses impaired by the lack of obser-
vations over a particular region earlier on in the assimilation. That is, when at time fx_1,
say, there are no observations over a certain region, the filter analysis at this time will
essentially equal the first-guess over that region — aside from possible contributions by
farther away regions through the forecast error correlations. If at time tx, say, observations
become available over the region in question, or information from observations at nearby
downstream regions get propagated through the adjoint of the tangent linear dynamics
A;{,kq into the region in question, this new information will be used to calculate a cor-
rection to the filter analysis at time tz_; as the lag-1 retrospective analysis represented in
(17). In these cases, it is the first term in the square bracket of (17) that mostly contributes

to the correction to the filter analysis.

Notice that the linear system (19b) solved within the retrospective analysis algorithm
involves exactly the same operators required to calculate the sensitivity of forecasts to
observation changes, as measured by some pre-specified cost function, as in the approach
of Baker and Daley [2000; compare with their eq. (2.7a)]. Furthermore, (19c) involves
exactly the operator required to examine forecast sensitivity with respect to changes in
the backgrouhd. It has been pointed out elséwhere that some of the operations in 4D-var

are closely related to operations required to study forecast sensitivity; the same is true of
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the operations in FLKS-based retrospective analysis schemes.

e A simple approximation to the retrospective analysis portion just described is to replace
the adjoint operator in (19a) by the identity. Sincé in the current implementation of
PSAS the forecast error covariance is not dynamically determined, and even with its slowly
‘varying forecast error variances it can be thought of as having a time-independent forecast
error covariance, one might expect that replacing the adjbint by the identity operator in
(19a) would result in a reasonable retrospective analysis approximation consistent with the
current underlying PSAS statistics. Todling (2000) has experimented with this idea using

an identical-twin configuration setup for GEOS and has found a significant improvement

in the mean error due to lag £ = 1 and even to lag £ = 2 retrospective analyses.

(c) The GEOS lag-1 retrospective-based iterated analysis

When the system is nonlinear, the idea to feed the filter estimate back into the analysis
equation is particularly attractive, since we expect the filter analysis to be a better estimate of
the state of the system than the first-guess provided by the model. Indeed, filtering strategies
making use of such feedback procedures are commonly found in the literature. For instance,
Jazwinski (1970, Theorem 8.2) introduces the so-called iterated EKF, which is suitable for non-
linear observation opérators. Cohr; (1997) proposes a similar procedure as an extension tolPSAS
for such operators. Iterative procedures aimed at dealing with nonlinearities of the observation
operator are sometimes referred to as locally-iterated methods, since the iterations are per-
formed at a single time. Jazwinski (1970, Theorem 8.3) also presents an iterative procedure
that is aimed at correcting errors due to the dynamical linearizations required by the EKF.
This procedure involves integrating the model with a newly estimated trajectory at each iter-
ation and for this reason it resembles a smoother procedure referred to as the iterated linear

filter-smoother algorithm. Combining ideas of filtering and smoothing leads to the possibil-

ity of developing globally-iterated procedures in which the filter analyses may be revised by a
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backward-filter integration within a certain time interval. Most of these iterative procedures are
inspired by Newton-type methods for solving systems of nonlinear equations (see Navon and

Legler 1987, and Zou et al. 1993, for reviews of Newton-type methods).

Motivated by these methods we introduce here a procedure to use the retrospective analysis
to improve the overall GEOS IAU-based assimilation. At first, the algorithm is based only
on the lag-1 retrospective analyses. At any given time t;, when a lag-1 retrospective analysis

WElk+1 (p) is available we can construct a model-space lag-1 IAU retrospective increment as

SY klk+1 (o) = H+[W2|k+1 (p)] - YIbc[k—1(U) ] (23)
whichbis similar to (14), but is constructed using observations one lag ahead of time . This lag-
1 retrospective increment can now be used to integrate the GCM over an IAU integration period
already covered before. This is illustrated schematically in Fig. 2. The diagram resembles the
regular IAU procedure presented before in Fig. 1. In fact, the top part of the diagram, above
the horizontal dotted line, is identical to the regular IAU procedure. However, now at, say, time
t = 127 we calculate a retrospective analysis by first integrating the transformed PSAS solution
vector in (18) back in time using the adjoint operation (19a); this is represented in the diagram
by the southwestward-pointing dashed arrow. A new PSAS-like linear system probvlem can then
be solved as in (19b) with the corresponding update (19c), and the lag-1 retrospective analysis
constructed; using (19d), as represented in the diagram by the box tagged “Retro ANA”. In the
end, a lag-1 retrospective increment at ¢ = 6Z is constructed as indicated in (23), and the GCM
is integrated for 6 hours using this increment as the tendency term in (9). From this point on,
the procedure follows the regular IAU schematic until it is time to process the observations at
¢t = 187 when the lag-1 retrospective analysis at t = 12Z can be calculated and the whole cycle
repeated. The thin blue arrows in Fig. 2 correspond to the retrospective trajectory. In the RIA
scheme we concentrate on the iterated filter-smoother trajectory represented in the figure by the
thick solid arrows. At a given analysis time, the relevant iterated PSAS analysis is represented

in the diagram as the analysis from the lowest PSAS box in a column of the diagram (see thick
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vertical dashed lines).

From the diagram in Fig. 2 we see that the retrospective-based iterated aﬁalysis results in a
considerable increase in computational requirements when compared with the regular procedure
in Fig. 1. Each iteration of the iterated analysis scheme requires one extra 9-hour GCM
integration and two extra PSAS analyses. Such an increase in the compufational cost can only
be justified if the procedure results in considerably improved analyses. One way to reduce
the computational burden is by calculating some of the steps in (19) at different resolutions.
Similarly to the strategy of incremental 4D-var of Courtier et al. (1994), we can for example
integrate the adjoint of the tangent linear GCM in (19a) at lower resolution \than the actual
model integration (9). Also, the retrospective PSAS-like linear system (19b) can be solved at
lower resolution than the regular linear system (11) solved in the first step of PSAS. For that
_matter, the calculations in (19a) and (19b) do not even have to be performed at the same

resolution. This type of approach to reduce computational cost involves the development of l

additional interpolation 6perators and their corresponding adjoints.

- Independently of the IAU, in the linear case when the filter portion is actually the Kalman
filter, it can be shown that to feedback the lag-1 retrospective analysis at, say, tx—1 to calculate a
revised filter analysis at time #; cannot result in an improved filter analysis. In our iterated pro-
cedure, an optimal analysis could be calculated using the first-guess from the lag-1 retrospective
analysis if the cross-covariance between the revised first-guess and the observations were prop-
erly taken into account. In fact, since the retrospective-based iterated analysis procedure here
amounts to a modified filtering procedure, the optimal gains in this case are similar to the usual
modified filter gains when the forecast and observations are correlated (e.g., Jazwinski 1970,
Example 7.5). Since in practice it would be quite difficult to calculate this cross-covariance, we

choose to neglect the cross-covariance terms all together.
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4 GEOS experimental results
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