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Abstract. Stars like our sun (initial masses between 0.8 to 8 solar masses) end their lives as

swollen red giants surrounded by cool extended atmospheres. The nuclear reactions in their

cores create carbon, ni:rogen and oxygen, which are transported by convection to the outer

envelope of the stellar atmosphere. As the star finally collapses to become a white dwarf, this
envelope is expelled from the star to form a planetary nebula (PN) rich in organic molecules.

The physics, dynamic. _, and chemistry of these nebulae are poorly understood and have

implications not only for our understanding of the steilar life cycle but also for organic
astrochemistry and the creation ofprebiotic molecules in interstellar space.

We are working toward generating three-dimensional models of planetary nebulae (PNe),
which include the size, orientation, shape, expansion rate and mass distribution of the nebula.
Such a reconstruction t,f a PN is a challenging problem for several reasons. First, the data

consist of images obtained over time from the Hubble Space Telescope (HST) and spectra
obtained from Kitt Peak National Observatory (KPNO) and Cerro Tololo Inter-American

Observatory (CTIO). These images are of course taken from a single viewpoint in space, which

amounts to a very challenging tomographic reconstruction. Second, the fact that we have two

disparate and orthogona! data types requires that we utilize a method that allows these data to be
used together to obtain a solution. To address these first two challenges we employ Bayesian
model estimation using a parameterized physical model thai incorporates much prior information

about the known physics of the PN.
In our previous works we have found that the forward problem of the comprehensive model

is extremely time consuming. To address this challenge, we explore the use of a set of
hierarchical models, which allow us to estimate increasingly more detailed sets of model

parameters. These hierarchical models of increasing complexity are akin to scientific theories of
increasing sophistication, with each new model/theory being a refinement of a previous one by
either incorporating adCitional prior information or by introducing a new set of parameters to

model an entirely new phenomenon. We apply these models to both a simulated and a real
ellipsoidal PN to initially estimate the position, angular size, and orientation of the nebula as a
two-dimensional object and use these estimates to later examine its three-dimensional properties.

The efficiency/accuracy tradeoffs of the techniques are studied to determine the advantages and

disadvantages of employing a set of hierarchical models over a single comprehensive model.

INTRODUCTION

We are only beginning to understand the importance of the later stages of a star's

existence. Stars with initial masses between 0.8 and 8 solar masses end their lives as

swollen red giants on the asymptotic giant branch (AGB) with degenerate carbon-

oxygen cores surroun(.ed by a cool extended outer atmosphere. Convection in the

outer atmosphere dredges up elemental carbon and oxygen from the deep interior and

brings it to the surface where it is ejected in the stellar winds. As the star ages, the



core eventually runs cut of fuel and the star begins to collapse. During this collapse,

much of the outer er,velope is expelled from the core and detaches from the star

forming what is called a planetary nebula (PN) and leaving behind a remnant white

dwarf. Despite the wealth of observations the physics and dynamics governing this

expulsion of gas are poorly understood making this one of the most mysterious stages

of stellar evolution (Maddox, 1995; Bobrowsky et al., 1998).

The carbon and oxygen ejected in the stellar wind and expelled with the PN during

the star's collapse are the major sources of carbon and oxygen in the interstellar

medium (Henning & Salama, 1998). It is now understood that complex organics, such

as polycyclic aromatic hydrocarbons (PAHs) (Allamandola et al., 1985), readily form

in these environments (Wooden et al., 1986; Barker et al. 1986). Thus the formation,

evolution and enviro_ament of PNe have important implications not only for our

understanding of the stellar life cycle but also for organic astrochemistry and the

creation of prebiotic molecules in interstellar space. In addition, this material will

eventually be recycled to form next-generation stars whose properties will depend on

its composition.
To better understand the chemical environment of the PN, we need to understand its

density distribution as a function of position and velocity. However, without

knowledge of the distances to planetary nebulae (PNe), it is impossible to estimate the

energies, masses, and volumes involved. This makes knowledge of PN distances one

of the major impasses _:ounderstanding PN formation and evolution (Terzian, 1993).

More recently, detection of the expansion parallax has been demonstrated to be an

important distance est mation technique. It requires dividing the Doppler expansion

velocity of the PN, obtained from long-slit spectroscopy, by the angular expansion rate

of the nebula, measured by comparing two images separated by a time baseline of

several years. Two epochs of images of PNe were obtained from the Very Large

Array (VLA) with a time baseline of about 6 years, and have resulted in increasingly
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FIGURE 1. A Hubble 5;pace Telescope (HST) image of NGC 3242 (Balick, Hajian, Terzian,
Perinotto, Patriarchi) illustrating the structure of an ellipsoidal planetary nebula.



reliable distance estimates to 7 nebulae (Hajian et al., 1993; Hajian & Terzian 1995,

1996). However, successfully application of this technique requires that one relate the

radial Doppler expansion rate to the observed tangential expansion. This is

straightforward for spherical nebulae, but for the most part distances to PNe with

complex morphologies remain inaccessible. More recently using images from the

Hubble Space Telescope (HST), distance estimales to 5 more nebulae have been

obtained. Using two techniques, the magnification method and the gradient method,

Palen et al. (2002) resolved distances to 3 PNe and put bounds on another. Reed et al.

(1999) estimated the distance to a complex nebula (NGC 6543) by identifying bright

features and relying on a on a heuristic model of the structure of the nebula derived

from ground-based images and detailed long-slil spectroscopy (Miranda & Solf,

1992). This work emphasized the utility of the model-based approach to reconciling

the measured radial expansion velocities to the observed tangential angular motions.

To accommodate complex PNe, we have adopted the approach of utilizing an

analytic model of the nebular morphology, which takes into account the physics of

ionization equilibrium and parameters describing the density distribution of the

nebular gas, the dimensions of the nebula, its expansion rate, and its distance from

earth. Bayesian estimation of the model parameter values is then performed using

data consisting of images from the Wide Field Planetary Camera (WFPC2) on the

HST and long-slit spectra from the 4m telescopes at Kitt Peak National Observatory

(KPNO) and Cerro Tololo Interamerican Observatory (CTIO). In our preliminary

work (Hajian & Knuth, 2001) we have demonstrated feasibility of this approach by

adopting a model describing the ionization boundary of a PN based on an assumed

prolate ellipsoidal shell (PES) of gas - the ionization-bounded PES model (IBPES)

(Aaquist & Kwok, 1996; Zhang & Kwok, 1998). One of the difficulties we have

encountered is the fact that the forward computations of the complete IBPES model

are extremely time consuming. For this reason, we have been investigating the utility

of adopting a hierarchical set of models, where each successive model captures a new

feature of the nebula neglected by the previous model.

A HIERARCHICAL SET OF MODELS

The inspiration of utilizing a finite hierarchical set of models comes in part from the

process of scientific advancement itself where each new theory, viewed as a model of

a given physical object or process, must explain the phenomena explained by the

previous theories in addition to describing previously unexplainable phenomena. The

apparent utility of such a process is rooted in fact that hierarchical organization is a

very efficient means to constructing a system of great complexity. In this application

we consider a series of three models approaching the uniform ellipsoidal shell model

(UES) of an ellipsoidal PN, which describes the PN as an ellipsoidal shell of gas of

uniform density.

The purpose of the first model is to perform a relatively trivial task - discover the

center of the PN in the image. The second model is designed to discover the extent,



eccentricityand orientationof thePN. Finally the third modelworks to estimatethe
thicknessof the ellipsoidalshell. Eachof thesemodelstreatsthe imageof the nebula
asa two-dimensionalobject,which drasticallyminimizes the computationalburden
imposedby working with athree-dimensionalmodel. As thesemodelsapproachthc
three-dimensionalUES model theygrow in complexitywith increasingnumbersof
parameters. Several of theseparametersare of course nuisance parametersof
relevanceonly to that specificmodelandnecessaryonly to enableoneto perform the
forward computationsof creatingan imageof the nebulafrom hypothesizedmodel
parametervalues. A_ the modelsgrow in complexity, the forward computations
becomemore time consuming.However,as someof theparametershavebeenwell-
estimated by the previous models, both the dimension and the volume of the
hypothesisspaceto besearchedgrowssmallerrelativeto thetotalhypothesisspaceof
thecurrentmodelthusreducingtheeffort neededto approachthesolution.

Methodology

The parameters for each of the three models to be presented were estimated by

maximizing the posterior probability found simply by assigning a Gaussian likelihood

and uniform priors. To enable comparison of the models rather than the techniques

used to find an optimal solution, gradient ascent was used in each case to locate the

maximum a posteriori (MAP) solution. Stopping criteria were defined so that if the

change in each of the parameter values from the previous iteration to the present were

less than a predefined threshold the iterations would terminate. The thresholds

typically became more stringent for the more advanced models. This is because

highly refined estimates obtained from a primitive model do not necessarily

correspond to higher probable solutions for a more advanced model.

Discovering the Center

Discovering the certer of the PN is a straightforward task. Many quick-and-dirty

solutions present themselves, with perhaps the most obvious being the calculation of

the center of mass of the intensity of the image. This can typically place the center to

within several pixels in a 500x500 image. However, several confounding effects can

limit the accuracy of this estimate. First, the entire image is not used in the analysis.

The central star and it:; diffraction spikes are masked out so that those pixels are not

used. Asymmetric placement of the mask with respect to the center of the nebula can

dramatically affect estimation of the center of mass. In addition, by not masking the

central star and diffraction spikes similar problems can occur as these high intensity

pixels are rarely symmetric. Furthermore, it is not assured that the star is situated in

the center of the nebula. A second problem is that the illumination of the nebula may

not be symmetric, and third the nebula itself might not be symmetric. As we are

currently focusing our efforts on well-defined ellipsoidal PNe, these two issues are

less relevant than the first.



FIGURE2. a.TheplanetarynebulaIC418(Sahai,Trauger,Hajian,Terzian,Balick,Bond,Panagia,
HubbleHeritageTeam).1:.Themaskedimagereadyforam,lysis.Notethattheregionsoutsidethe
nebulaarenotmasked,astheyareasimportantfordeterminingtheextentofthenebulaastheimageof
thenebulaitself.

For this reason, we adopted a simple two-dimensional circular Gaussian
distributionasamodelof thetwo-dimensionalimageof thenebularintensity.

G(x,y) = Io Exp[- (x-x°)2 + (Y-Y°)2
2 cy2[

(1)

where Io is the overall intensity parameter, o is the overall extent of the PN, and

(xo, yo) are the coordinates of the center of the nebula in the image. While the fall-

off of the PN intensity is not Gaussian, the symmetry of the nebula and the symmetry

of the Gaussian work in concert to allow adequate estimation of the PN center. In

practice this technique was acceptable, however it was found that the Gaussian

distribution could shift to try to hide some of its mass in masked out areas of the

image. This was especially noticeable for nebulae asymmetrically situated in the

image so that the edge of the nebula was close to the edge of the image. In this case, it

was found that the estiraate of the center could be off by a few pixels.

As this is the first stage, we did not work to develop a more sophisticated model for

center estimation, although such a model will probably be useful to find the centers of

more complex non-ellipsoidal PNe. Rather, the center estimates are refined by the

next model, which is designed to better describe the _ntensity distribution.

In summary, four parameters are estimated by the Gaussian model (Gauss): the

center (xo, yo), the general extent o, and the overall intensity Io.

Discovering the Extent, Eccentricity and Orientation

To determine the extent, eccentricity and orientation of the PNe, we must adopt a

more realistic model. To first-order the ellipsoidal t'Ne look to be ellipsoidal patches

of light, for this reason we utilized a two-dimensional sigmoidal hat function defined

by



where

and

( , )S(x,y)=l o 1 l+Exp[-a(r(x,y)-l)]

r(x, y) = _5'_ (x - xo) 2 + 2 C_y, (x - xo)(y - yo) + Ce, (y - yo) 2

COS 2 0 sin 2 0

C_ = 2 + O" 2
Orx y

C v = (o._ 2 -o'; 2) sinO cosO

sin 2 0 cos z 0
C - +

YY 2 2

(Yx 0 _,

(2)

(3)

(4)

where Io is the overall intensity parameter, a is the intensity falloff at the edge of the

PN, crx and oy are extents of the PN along the minor and major axes, 0 is the

orientation of the PN in the image and (xo, yo) are the coordinates of its center. Thus

three new parameters are estimated by the sigmoidal hat model (SigHat), and in

addition the three old parameters are refined.

Figure 3a shows the intensity profile of SigHat characterized by its relative uniform

intensity across the nebula with a continuously differentiable falloff. The falloff

region allows the model to accommodate variability in location of the outer edge of

the PN in addition to aiding the gradient ascent method used to locate the optimal

solution. Given initiai estimates of the PN center and general extent, the algorithm

was able to identify these parameters with relative ease.
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FIGURE 3. a. Intensity prolile of the sigmoid hat function (2) used to estimate extent, eccentricity and

orientation, b. [ntensity prolile of the dual sigmoid hat function (5) used to estimate the thickness of the

gaseous shell.

Discovering the Thickness

The effect of imagir_g a three-dimensional ellipsoidal shell of gas is to produce an

ellipsoidal patch surrounded by a ring of higher intensity. To capture the thickness of

the shell without resorting to an expensive three-dimensional model, we model the



imageasthedifferenceof two sigmoidalhat functionswith the thicknessof the shell
beingestimatedasthedifferencein extentof thetwo functions

T(x,y) = I+ S+ (x, y) - i_ S_ (x, y) (5)

where S, (x, y) and S (x, y)are the sigmoidal hat functions in (2), expect each has its

own falloffparameter _+, a_ and the extents are related by the thickness ratio A

crx_ = A.ox÷. (6)

O'y_ = A" O'y,.

We call this model the dual sigmoidal hat model (SigHat2). A typical profile is shown

in Figure 3b.

At this point the center, orientation, and extent parameters were taken to be well-

estimated and the focus was on determining the thickness ratio A and estimating the

nuisance parameters L ,/_, a+, and a_. During the course of our investigation, we

found that the estimat,on of I+,/_ proved to be rather difficult with either highly

oscillatory steps or w:ry slow convergence. Investigation of the landscape of the

hypothesis space proved to be quite informative; as it was found that the MAP

solution was a top peak of a long narrow ridge. This finding led us to employ a

transformation from the parameters I+,/_ to

so that

I = I÷ + I_ (7)

I b = I, - I

1 1,

T(x,y) = -_(I_ + Ib) S÷(x,y) - -_(I_ - Ib) S_(x,y). (8)

With this reparameterization, the hypothesis space is transformed so that the highly

probable regions are r_ot as long and narrow. This was found to aid convergence

eliminating the oscillatory steps and allowing the solution to converge more quickly to

the higher probability regions. SigHat2 estimates only five parameters, the nuisance

parameters Ia, Ib, a,, a, and the thickness A.

PERFORMANCE

There are three aspects important to determining the degree to which performance

has been improved by taking this hierarchical approach. First, it is expected that the

speed at which optimal estimates can be obtained would be increased. Second, we

might expect that the increase in speed comes at the cost of accuracy, however this

accuracy could presumably be regained by applying the ultimate model for a minimal

number of additional iterations. Third, by employing a set of hierarchical models we

can rule out regions of the hypothesis space that are irrelevant and avoid the

difficulties of local maxima. This aspect is extremely important in complex estimation

tasks where the hypothesis space may be riddled with local maxima. Due to the high-



dimensionaiityof the spacesinvolved, the existence,numberand location of these
local maxima is almost impossibleto demonstrateexplicitly. However,we expect
that the set of modelsappliedhierarchicallywill result in fewer occurrencesof non-
optimalsolutionsthantheultimatemodelappliedalone.

Evaluation Methodology

The same method to obtain an optimal estimate, gradient ascent, was used for each

model to assure that the utility of the models themselves were being compared rather

than the optimization technique. All code was written and executed in Matlab 6.1

Release 12.1 and run on the same machine (Dell Dimension 8200, Windows 2000,

Pentium 4, 1.9 GHz, 512K RAM).

The models were tested on four synthetic PN images (350 x 400 pixels) constructed

using the UES model. Figure la shows one such synthetic data set (Case 1). Figures

lb, c, and d show the three results from the models Gauss, SigHat and SigHat2

respectively. Note tha_ Gauss has located the center of the PN and its general extent.

SigHat has effectively captured its eccentricity, orientation and the extent of the

projections of its major and minor axes. Finally SigHat2 has made an estimate of the

thickness of the gaseous shell. This estimate however is not as well defined as the

others due to fact that the meaning of the shell thickness in the UES model is

qualitatively different than the thickness in the S igHat2 model. One can look at

progressing from SigHat2 to UES as a paradigm shift, which will ultimately result in a

much better description of the bright ring in the image.

FIGURE 5. a. Synthetic image of PN made from parameterized UES model, b. Gaussian model used
to discover center of the PN. c. Sigmoid hat model capturing extent, eccentricity and orientation, d.
Dual sigmoid hat model estimating the thickness of the nebular shell. Note that as the dual sigmoid hat
model and the UES model intplement thickness differently the match cannot be perfect.

Rates of Convergence

As expected the amount of time required to complete an iteration of the gradient

ascent step varied from one model to the next. Gauss required an average of 6.76

s/iteration, whereas SigHat required an average of 14.74 s/iteration, and SigHat2

required an average of L2.85 s/iteration. Although the SigHat2 is more complex than

SigHat, fewer parameters are being updated, as the center position, extent,

eccentricity, and orientation are assumed to be well estimated and are held constant.



In contrast, one step 05 the UES model used to generate the synthetic images requires

on the order of one half hour of time under identical circumstances for a single

iteration depending on the spatial extent of the PN in the image.

TABLE 1. Iterations Required

Trial

1

Gauss

20

SigHat

14

for Convergence

SigHat
SigHat2 Alone

16 42

2 21 21 17 39

3 24 50 7 X

36

25.67

173.83 s

4

Avg Iters

36

23.67

350.33 sAvg Time

13

15.33

197.62 s

61

47.33

699.51 s

Table 1 shows the number of iterations required for each model to sufficiently

converge for the four cases considered. The model SigHat was started using as initial

conditions those estimated by Gauss, and similarly for SigHat2, which followed

SigHat. In addition, we tested SigHat alone without the aid of Gauss to determine

whether the hierarchical progression actually improved the rate of convergence. Case

3 proved to be difficult due to the object's small size in the image and the specific

combination of its orientation and eccentricity. We found that SigHat alone was

unable to obtain a solution. For this reason the averages at the bottom of the table

reflect only the three cases where all algorithms were successful. In each case SigHat

took longer to converge when applied alone than when it was preceded by Gauss, with

an average of 699.51 s as compared to 524.16s for the sum of Gauss and SigHat.

Goodness of Fit

The hierarchical application of the models also improved the accuracy of the

estimates as can be seen in Table 2 which shows the goodness of fit measured by

- log(likelihood), where smaller numbers correlate with higher probability solutions.

Note that comparison,, across trials are meaningless as the log(likelihood) is not

normalized and is dependent on the extent of the object in the image. This is evident

in case 3 where the fiz was relatively poor and the object's extent was small with

respect to the dimension of the image. Most important is the comparison between the

results for SigHat and SigHat Alone. In all three cases, the goodness of fit for SigHat

run alone was worse than that for SigHat when preceded by Gauss. This demonstrates

that not only is it faster to apply the models hierarchically, but the results obtained

better describe the data.

Throughout the course of these experiments it was found that local maxima do exist

in the hypothesis space and that the models can become stuck. This was even more

problematic when applied to real images. For example, the SigHat model with its

limited extent can easily become attached to the high intensity regions in the shells of



TABLE 2. Goodness

Case

1

Gauss

5029

4

of Fit as measured by: - log(likelihood)

SigHat
SigHat SigHat2 Alone

1868 75[ 2332

2 7024 2055 1127 2790

3 1485 205 421 X

244 3403174343

PNe that possess sufficient inclination to produce the effect. For example consider the

high intensity region in the limb of IC418 near the top edge of the picture in Figure

6a). SigHat can become trapped covering this high-intensity region. Local maxima

are especially a problem for SigHat2, which can hide in a dark region outside the PN

by making itself invisible, i.e. equating I+ and/_ while minimizing the shell thickness.

Another interesting hiding behavior was observed with the SigHat model, which could

settle inside the central masked region of Figure 6a. We have found that this

misbehavior is avoided by first capturing the center and general extent with Gauss.

Figure 6 below shows the results of applying the hieiarchy of models to IC418.

FIGURE 6. a. IC418 masked for analysis, b. Gauss is used to discover the center and general extent of

the object, c. SigHat captmes its extent, eccentricity and orientation, d. Finally SigHat2 estimates the

thickness of the nebular she 1. This estimate is difficult as the tntensity of [C418 apparently varies as a

function of latitude, however this is most likely due to the inclination of the PN - a feature not captured

by SigHat2. The thickness estimate obtained nevertheless pla¢es us in the correct region of parameter

space, which will facilitate more sophisticated analyses.

Estimates of Parameters

The models were quite capable of estimating the parameters to accuracies much

greater than what is needed to aid the higher order models. Table 3 shows the

evolution of the parameter estimates for Case 2. Note that the values of most of the

parameters are frozen for SigHat2. All estimates are within acceptable ranges of error

(less than 5%), especially as they are only being used to obtain ballpark estimates for

use with higher-order three-dimensional models. The larger errors in the extent and

the shell thickness are due to the different ways in which the models use these

parameters to create the images. That is, these parameters quantify very different

concepts and hence are aot perfectly reconcilable.



TABLE 3. Evolution of Parameter Estimates

Gauss

XO= 169. 778

SigHat

!69.965

True Values

170

y0=212.492 209.806 209.806 210

Cx: 117.467 117.467 120

C:y: 173. 117

0 = 99.331
173.117

0.2_09

a = 0.671

0 = 0.2509

180.53

0.25

0.66

Percent Error

0.02%

0.09%

2.11%

4.10%

0.36%

1 .67%

As expected we found that the orientation was quite difficult to detect as the

projected image of the object became more circular, either due to the eccentricity of

the object or its inclination toward or away from the viewer. However, an elliptical

nebula does not quite kave an elliptical high-intensily ring when the object is inclined.

The approximate eccentricity of the central region is typically higher than that of the

outer edge of the nebula, as can be seen in IC418 in the region of the higher intensity

regions of the projected shell. For this reason, it is probably wise to continue to

estimate the orientation in SigHat2 as the shape of the darker inner region of the

nebula provides more i ntbrmation about the orientation than the bright outer regions.

DISCUSSION

The idea of using a hierarchy of models to understand a physical system is based on

the observation that present scientific theories are built on a framework of earlier

theories. Each new layer of this framework must explain a new phenomenological

aspect of the system in addition to everything that was explained by previous theories.

There are of course fits and starts as a paradigm shift may qualitatively change the

direction taken by this hierarchical progression. Yet even in such cases, the old

theories are quantitatively sufficient to describe the phenomena that they were

designed to model. Hierarchical organization is well known to be an efficient means

to generating complex systems and, as it is a useful technique in theory building, we

have chosen to examine its usefulness in efficient parameter estimation. The

particular hierarchical succession of models employed in this work was chosen to

successively estimate larger and larger numbers of parameters approaching the

uniform ellipsoidal shell model of a PN.

We found that not only are the results obtained using a hierarchical set of models

more accurate, but they are also obtained more quickly. We expect that as we

progress to the UES model and then the IBPES model the observed speed-up and

accuracy increase will become even more significant as these models represent the PN

as a three-dimensional object, which requires a substantial increase in computational

effort. Furthermore, by hierarchically applying a set of models, which better and

better describe the object, we minimize the possibility that the estimate may converge

to a locally optimal solution.



Anotheradvantageof thehierarchicaldesignis that it is modularby nature,which
easilyenablesus to simply replacea givenalgorithm in the setwith a moreefficient
one. This idea is quite attractive, as there exist automatedtechniques such as
AutoBayesfor constructingand implementingalgorithms from models (Fischer&
Schumann2002). This approachmay allow one to construct an intelligent data
understandingsystem,which startswith low-level modelssuchas categorizersand
growsto the levelof highly specialized,highly informativealgorithms.
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