Exposure of a Silica-Containing Material in a Mach 0.3 Burner Rig

A primarily silica material containing organic compounds, as well as trace aluminum and calcium impurities, was exposed to a Mach 0.3 burner rig using jet fuel at atmospheric pressure. The sample was exposed for 5 continuous hours at 1370 °C. Post-exposure x-ray diffraction analyses indicate formation of cristobalite, quartz, NiO and Spinel (Al(Ni)Cr2O4). The rig hardware is composed of a nickel-base superalloy with traces of Fe. These elements are indicated in the energy dispersive spectroscopy (EDS) results. This material was studied as a candidate for high temperature aerospace applications.

EDS:
Spot 1: C, Ca, Fe, Ni, O, Si
Spot 2: C, Ca, Cr, Fe, Ni, O, Si
Spot 3: C, Fe, Ni, O
Spot 4: C, Fe, Ni, O

Acknowledgements
Quantum N. Nguyen
Michael Cuy
NASA Glenn Research Center
Cleveland, Ohio 44135
(216) 433-8773

Acknowledgments: Ultra-Efficient Engine Technology (UEET) office for funding the program, Ralph Garrett from NASA Glenn for x-ray diffraction analyses, Chuck Inglefield from American Industrial Coatings (Rocky River, OH) for supplying the material.