Response of Grape Leaf Spectra to Phylloxera Infestation

Lee F. Johnson

March 1999
The NASA STI Program Office... in Profile

Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- TECHNICAL PUBLICATION. Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- TECHNICAL MEMORANDUM. Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- CONTRACTOR REPORT. Scientific and technical findings by NASA-sponsored contractors and grantees.

- CONFERENCE PUBLICATION. Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- SPECIAL PUBLICATION. Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- TECHNICAL TRANSLATION. English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- Access the NASA STI Program Home Page at http://www.sti.nasa.gov

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at (301) 621-0134

- Telephone the NASA Access Help Desk at (301) 621-0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
Response of Grape Leaf Spectra to Phylloxera Infestation

Lee F. Johnson

California State University, Monterey Bay
Institute Earth Systems Science and Policy
100 Campus Center
Seaside, CA 93955-8001

Prepared for
Ames Research Center
CONTRACT NCC2-975

National Aeronautics and
Space Administration

Ames Research Center
Moffett Field, California 94035-1000

March 1999
Acknowledgments
Contributions to this work were made by R. Baldy (C.S.U. Chico), J. DeBenedictis (U.C. Davis), B. Osborn (U.C. Davis), E. Weber (U.C. Cooperative Extension), and D. Bosch (Robert Mondavi Winery). Results reported here emanate from the Grapevine Remote-sensing Analysis of Phylloxera Early Stress (GRAPES) project, sponsored in 1993-1995 by NASA’s Office of Advanced Concepts and Technology (NASA Ames UPN: 233-01-04-05).

NOTICE
Use of trade names and manufacturers in this document does not constitute an official endorsement of such products or manufacturers, either expressed or implied, by the National Aeronautics and Space Administration.

Available from:
NASA Center for AeroSpace Information
7121 Standard Drive
Hanover, MD 21076-1320
(301) 621-0390

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22161
(703) 487-4650
RESPONSE OF GRAPE LEAF SPECTRA TO PHYLLOXERA INFESTATION

Lee F. Johnson

SUMMARY

During the 1993 growing season, leaf reflectance and chlorophyll concentrations were monitored with respect to phylloxera (root-louse) infestation in a Napa Valley (California) vineyard. Study plots were established in areas of severely infested, mildly infested, and uninfested sections of the vineyard. A hand-held chlorophyll meter, measuring leaf transmittance of near-infrared and red light, confirmed that reduced foliar chlorophyll concentrations were symptomatic of phylloxera stress in the sample vines. Bidirectional reflectance measurements of green and near-infrared light, taken on fresh leaves with a laboratory spectrophotometer, were related to chlorophyll concentration but did not allow discrimination of mildly infested from uninfested vines.

INTRODUCTION

Grape phylloxera (Daktulosphaira vitifoliae Fitch) infestation affects a number of California grape regions and in recent years devastated many Napa and Sonoma County vineyards (Granett et al., 1991, 1996). The parasite damages the root system, depriving the vine of water and nutrients, thus posing immediate management problems in the form of reduced vine growth, decreased grape yield, retarded grape maturation, and lower wine quality. The infestation spreads rapidly throughout fields, and individual vines die within three to five years of initial infestation.

Pesticide application is ineffective for phylloxera control, due to the deep rooting zones characteristic of grapevines, and to the high rate of phylloxera reproduction. No effective biological control agent is known. Intervention practices (more severe pruning, additional irrigation, and fertilization) may serve to lessen phylloxera impact in the short term, but the only long-term solution is to remove the infested vines and replant with a more resistant rootstock. Replanting is generally done on a per-field basis, and is based on decisions concerning the economic viability of the field as a whole. Improved knowledge of the current and potential future extent of phylloxera infestation would enable growers to make more informed short- and long-term management decisions.

Phylloxera infestation is known to cause reductions in vine growth (Granett et al., 1987; Wildman et al., 1988). Johnson et al. (1996) and Lobitz et al. (1997) describe the relationship between crop canopy reflectance (measured by an airborne multispectral digital imaging system) and canopy density under various degrees of phylloxera stress. Decreased foliar nitrogen and chlorophyll concentrations are also known symptoms of phylloxera stress (Davidson and Nougaret, 1921). The current report describes the influence of phylloxera-related biochemical changes on spectra of individual leaves, and
examines the possibility of using leaf spectral analysis for "pre-visual" determination of phylloxera-induced stress. As leaf chlorosis is a common crop stress indicator, results here are of potential interest to the broader viticultural and agricultural communities.

METHODS

Study Site

Shortly before the 1993 growing season (early May), a partially phylloxera-infested field of Cabernet Sauvignon vines grafted to AxR#1 rootstock was chosen as the study site. The 12 acre field, located near Oakville CA (USA), was planted in 1981 in Clear Lake clay and Bale clay loams. The vines were trained on a standard two-wire trellis without shoot positioning. Rows were 3.65 m apart, oriented northeast to southwest, with a vine spacing within-row of 2.43 m. The site was clean cultivated to remove all vegetation except grapevines.

Determination of Infestation Level

Nine study plots were established at the study site, with each plot containing 40 vines (4 rows, 10 vines per row). Three plots were established in each of three infestation categories: infested/visually symptomatic, infested/visually asymptomatic ("pre-visual"), and uninfested. The plots were delimited on the basis of grower knowledge, a 1992 aerial infrared photograph, and a phylloxera survey. The phylloxera survey involved excavation of several shallow roots from beneath drip irrigation emitters to a depth of 18-45 cm, and use of a magnifying lens for visual examination for phylloxera presence. Vines received a rating based on the highest population found among the root pieces examined, according to the criteria of Table 1. Eight vines, four in each of the two middle rows of each plot, were designated as "data vines" for spectral analysis. To avoid damaging roots and possibly introducing additional stress on the data vines, phylloxera ratings were assigned as the mean rating of two immediately adjacent vines, one in the same row as the data vine and one in an adjoining row. Mean phylloxera ratings per category are shown in Table 2.

It is possible or even likely that as the growing season progressed, certain vines migrated from category 3 to category 2, and from category 2 to category 1 because of the progression of infestation and its effects. Thus the infestation categories are to be considered valid only at and near the time of designation (i.e., May 1993). In this report categories will be discussed only in light of data collected in May 1993.

Chlorophyll Measurement

Monthly field measurements on all data vines were made with a Minolta SPAD-502 chlorophyll meter (Minolta Corp., Ramsey NJ) throughout the 1993 season. The meter operates by *in-vivo* measurement of light transmittance through the leaf in two spectral channels centered at 650 nm and 940 nm, and has been used to evaluate leaf chlorophyll concentration in several plant species (Yadava, 1986; Candolfi-Vasconcelos et al., 1994; Earl and Tollenaar, 1997).

Reported here are results from early- (18 May), mid- (26 July), and late-season (20 October). The measurements were made on one leaf per data vine, located two nodes above the second grape cluster on a vigorous shoot on the southeast side of the vine. Six Soil Plant Analysis Development (SPAD) readings were taken at various locations on the leaf surface and then averaged to represent the value of each data vine. Each average
SPAD reading was then converted to \textit{in-vivo} chlorophyll concentration (mg/cm2) based upon a regression relationship (CHL = 0.001605 * SPAD - 0.009951, R2 = 0.91) reported by DeBenedictis et al. (1995) and Baldy et al. (1996).

\textbf{Leaf Reflectance Measurement}

Immediately after acquiring the SPAD readings, each sample leaf was clipped, placed in a freezer bag, and stored in a dark, chilled cooler chest for transport to the laboratory. Within 12 hours, spectral measurements were made on the leaves with an NIRSystems Model 6500 spectrophotometer (Silver Spring, MD). The NIRS6500 measured leaf bidirectional reflectance (%) throughout the 400-2500 nm region (bandwidth = 10 nm, sampling interval = 2 nm). Measurements were made of single leaf thickness against a white background. Two variables were extracted from the spectral dataset: (1) green peak (GP), defined as the reflectance amplitude (%) of green light (550 nm), and (2) red-edge inflection point (REIP). REIP is defined as the wavelength of maximum slope in the "red edge" spectral region, which is transitional between visible and near-infrared reflectance. In this study, REIPs occurred between 700-725 nm.

\textbf{RESULTS}

\textbf{Chlorophyll Concentration vs. Infestation Category}

Mean chlorophyll concentrations in May 1993 were 0.043, 0.051, and 0.055 mg/cm2 for infestation categories 1, 2 and 3, respectively (Table 2). Single factor analysis of variance (ANOVA) showed that chlorophyll concentration varied significantly (0.01 level) among the May 1993 infestation categories (Table 3a). A means comparison showed that categories 2 and 3 differed significantly at the 0.025 level (Table 3a). These results confirm leaf chlorosis as a symptom of phylloxera-induced stress.

\textbf{Leaf Reflectance vs. Infestation Category}

Mean GP and REIP from May 1993 were calculated per infestation category (Table 2). Both spectral measures showed significant (0.01 level) differences among infestation levels (Tables 3b, 3c). Overall, GP was positively associated with higher infestation levels, because of reduced chlorophyll concentrations and consequently reduced energy absorption in stressed vines. REIP was negatively associated with infestation level as chlorophyll reduction narrowed the chlorophyll absorption feature centered in the red. However, in both cases category 2 was not significantly different from category 3, suggesting that GP and REIP of individual leaves are not useful for identifying "pre-visual" phylloxera stress.

\textbf{Leaf Reflectance vs. Chlorophyll Concentration}

GP was negatively correlated with chlorophyll concentration throughout the season ($r = -0.85, -0.70$, and -0.80 for 18 May, 26 July, and 20 October, respectively) (Figures 1a, 2a, 3a). REIP was positively correlated with chlorophyll concentration throughout the season ($r = 0.86, 0.71$, and 0.86 for the same three dates, respectively) (Figures 1b, 2b, 3b).
CONCLUSIONS

Consistent with previous research and conventional thought, the current study found reduced foliar chlorophyll as a symptom of phylloxera-induced stress in the sampled vines. The study further found that grape leaf reflectance responded to phylloxera-induced stress with increased reflectance of green light and also by shifts toward shorter wavelengths of the red-edge inflection point. These expressions of leaf reflectance did not, however, provide a basis for discriminating "pre-visual" phylloxera stress from uninfested vines.

REFERENCES

Table 1. Criteria for phylloxera rating.

<table>
<thead>
<tr>
<th>Rating</th>
<th>Observation</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>No phylloxera found</td>
</tr>
<tr>
<td>1</td>
<td>Phylloxera only on rootlets, or one or two individuals on older (than one year) roots</td>
</tr>
<tr>
<td>2</td>
<td>Individual phylloxera scattered among older roots, or one or two colonies on older roots</td>
</tr>
<tr>
<td>3</td>
<td>Several colonies established on older roots</td>
</tr>
<tr>
<td>4</td>
<td>Large populations of phylloxera present on older roots</td>
</tr>
</tbody>
</table>
Table 2. Per-category statistics for phylloxera ratings (unitless), leaf chlorophyll concentration (mg/cm²), green peak reflectance (%) and red-edge inflection point (nm). Categories: 1 = infested/visually symptomatic (severe); 2 = infested/visually asymptomatic (mild); 3 = uninfested. All measurements May 1993.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>mean</td>
<td>std. dev.</td>
<td>std. error</td>
<td>min</td>
</tr>
<tr>
<td>Cat 1</td>
<td>1.46</td>
<td>0.69</td>
<td>0.14</td>
<td>0.5</td>
</tr>
<tr>
<td>Cat 2</td>
<td>0.50</td>
<td>0.51</td>
<td>0.10</td>
<td>0.0</td>
</tr>
<tr>
<td>Cat 3</td>
<td>0.00</td>
<td>--</td>
<td>--</td>
<td>0.0</td>
</tr>
<tr>
<td>Cat 1</td>
<td>0.043</td>
<td>0.004</td>
<td>0.0008</td>
<td>0.036</td>
</tr>
<tr>
<td>Cat 2</td>
<td>0.051</td>
<td>0.007</td>
<td>0.0015</td>
<td>0.040</td>
</tr>
<tr>
<td>Cat 3</td>
<td>0.055</td>
<td>0.005</td>
<td>0.001</td>
<td>0.043</td>
</tr>
<tr>
<td>Cat 1</td>
<td>16.87</td>
<td>1.27</td>
<td>0.26</td>
<td>13.99</td>
</tr>
<tr>
<td>Cat 2</td>
<td>15.17</td>
<td>1.67</td>
<td>0.34</td>
<td>12.42</td>
</tr>
<tr>
<td>Cat 3</td>
<td>14.90</td>
<td>1.57</td>
<td>0.32</td>
<td>13.16</td>
</tr>
<tr>
<td>Cat 1</td>
<td>719.0</td>
<td>2.3</td>
<td>0.47</td>
<td>715</td>
</tr>
<tr>
<td>Cat 2</td>
<td>721.4</td>
<td>2.4</td>
<td>0.50</td>
<td>717</td>
</tr>
<tr>
<td>Cat 3</td>
<td>722.3</td>
<td>2.5</td>
<td>0.51</td>
<td>715</td>
</tr>
</tbody>
</table>
Table 3. ANOVA results, 5/18/93 sampling.

a) Chlorophyll concentration

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Fs</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>0.0017</td>
<td>2</td>
<td>0.00087</td>
<td>27.6</td>
<td><.01</td>
</tr>
<tr>
<td>2 vs. 3</td>
<td>0.00016</td>
<td>1</td>
<td>0.00016</td>
<td>5.3</td>
<td><.025</td>
</tr>
<tr>
<td>Within</td>
<td>0.0021</td>
<td>69</td>
<td>0.00003</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0038</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

b) Green peak

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Fs</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>0.0054</td>
<td>2</td>
<td>0.0027</td>
<td>11.9</td>
<td><.01</td>
</tr>
<tr>
<td>2 vs. 3</td>
<td>0.00009</td>
<td>1</td>
<td>0.00009</td>
<td>0.45</td>
<td>ns</td>
</tr>
<tr>
<td>Within</td>
<td>0.016</td>
<td>69</td>
<td>0.0002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>0.0214</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

c) Red-edge inflection point

<table>
<thead>
<tr>
<th>Source of variation</th>
<th>SS</th>
<th>df</th>
<th>MS</th>
<th>Fs</th>
<th>prob</th>
</tr>
</thead>
<tbody>
<tr>
<td>Treatments</td>
<td>142.3</td>
<td>2</td>
<td>71.2</td>
<td>12.3</td>
<td><.01</td>
</tr>
<tr>
<td>2 vs. 3</td>
<td>10.1</td>
<td>1</td>
<td>10.1</td>
<td>1.8</td>
<td>ns</td>
</tr>
<tr>
<td>Within</td>
<td>397.2</td>
<td>69</td>
<td>5.75</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Total</td>
<td>539.5</td>
<td>71</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

tmt:
1 = infested/visually symptomatic (severe)
2 = infested/visually asymptomatic (mild, or “pre-visual”)
3 = control (uninfested)
Figure 1. Leaf chlorophyll concentration (mg/cm^2) vs. leaf reflectance, 18 May 1993, severely infested (category 1), mildly infested (category 2) and uninfested (category 3) vines. a) Green peak reflectance (%), b) position of red-edge inflection point (nm).
Figure 2. Leaf chlorophyll concentration (mg/cm2) vs. leaf reflectance, 26 July 1993. a) Green peak reflectance (%), b) position of red-edge inflection point (nm).
Figure 3. Leaf chlorophyll concentration (mg/cm\(^2\)) vs. leaf reflectance, 20 October 1993. a) Green peak reflectance (%), b) position of red-edge inflection point (nm).
Response of Grape Leaf Spectra to Phylloxera Infestation

AUTHOR(S)
Lee F. Johnson

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
California State University, Monterey Bay
100 Campus Center, Seaside, CA 93955-8001 and
Ames Research Center
Moffett Field, CA 94035-1000

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
National Aeronautics and Space Administration
Washington, DC 20546-0001

DISTRIBUTION/AVAILABILITY STATEMENT
Unclassified — Unlimited
Subject Category 51 Distribution: Standard
Availability: NASA CASI (301) 621-0390

ABSTRACT (Maximum 200 words)
During the 1993 growing season, leaf reflectance and chlorophyll concentrations were monitored with respect to phylloxera (root-louse) infestation in a Napa Valley (California) vineyard. Study plots were established in areas of severely infested, mildly infested, and uninfested sections of the vineyard. A hand-held chlorophyll meter, measuring leaf transmittance of near-infrared and red light, confirmed that reduced foliar chlorophyll concentrations were symptomatic of phylloxera stress in the sample vines. Bidirectional reflectance measurements of green and near-infrared light, taken on fresh leaves with a laboratory spectrophotometer, were related to chlorophyll concentration but did not allow discrimination of mildly infested from uninfested vines.