Mechanics of carbon nanotubes and their polymer composites

Chenyu Wei
Department of Mechanical Engineering, Stanford University
NASA Ames Research Center

Collaboration With KJ Cho (Stanford University, CA)
and Deepak Srivastava (NASA Ames Research center, CA)
Carbon Nanotube: Structures

Atomic structure:
Quasi one dimensional; C-C bond length 1.43 Å;
Radius ~ Nanometer; Length ~ μm (current upper range); Index (n,m)
Application of Carbon Nanotubes

Nano fibers: Strong mechanical properties

Nano devices: Wide variety of electronic properties and mechanical-electronic couplings

Nano sensors: Physical and Chemical adsorption of gas molecules, ions
Simulation Methods

(1) Molecular Dynamics: Newton’s Equation

Force Field for Carbon nanotubes:

Tersoff Brenner potential, fitted to carbon and hydrocarbon systems, 3-body type, bond broken and formation

(2) Tight Binding method

(3) Ab initio method (Density Functional theory)
Elastic Properties of Carbon Nanotubes

Small strain: uniform deformations, elastic behavior
continuum theory applicable

Large strain: local deformations, defects, dislocations
Tension, Compression, bending, and (Torsion):
Yield Strain of CNT

Tension

Compression

Simulation:
T=0K, Tersoff-Brenner potential: Super-elastic up to 20%
T=0K, Tight Binding: diamond like defects, collapsed at 12%

Experiment:
Collapsing of CNT within polymer matrix under compression stress 150GPA (TEM study)
11.5% tensile strained
CNT (10,0), T=1600K

9% tensile strained
CNT (5,5), T=2400K

Yielding: Strain-rate and Temperature Dependence

Tensile strain applied to a 60Å long (10,0) CNT

- Yielding: strongly dependent on strain rate and Temperature
- Linear dependent on temperature of the slope of yield strain vs. strain rate: Activated Process
Yield Strain under Tension

\[
\varepsilon_Y = \frac{E_v}{VK} + \frac{k_B T}{VK} \ln\left(\frac{N \dot{\varepsilon}}{n_{\text{site}} \dot{\varepsilon}_0}\right)
\]

\(\dot{\varepsilon}\) : Strain rate; \(\dot{\varepsilon}_0\) : Constant related with vibrational frequency

\(K\) : Force constant; \(V\) : Activation volume; \(E_v\) : Activation energy

\(N\) : Number of process involving in yielding; \(n_{\text{site}}\) : Site available

Length effect:

\[\Delta \varepsilon_Y = -\frac{k_B T}{VK} \ln\left(n_{\text{site}}/n_{\text{site}}^0\right)\]

Temperature effect:

\[
\left(\frac{\dot{\varepsilon}_1 N}{n_{\text{site}} \dot{\varepsilon}_0}\right)_{T_1} = \left(\frac{\dot{\varepsilon}_2 N}{n_{\text{site}} \dot{\varepsilon}_0}\right)_{T_2}
\]
Yielding at Realistic Conditions

- Parameters obtained from fitting of MD simulations' data
 \[\overline{E}_r = 3.6\text{eV}; \quad V = 2.88 \text{Å} \]
 \[\frac{\dot{\varepsilon}_0}{N} = 8 \times 10^{-3} \text{ps}^{-1} \]

- Experimental feasible conditions
 length \(\sim 1\mu\text{m}\); strain rate \(\sim 1\%\text{/hour}\); \(T \sim 300\text{K}\)

\[\implies \text{Yield strain: } 9 \pm 1\% \]

Maximum tensile strains from experiments:
5-6\% for SWCNT ropes; 12\% for MWCNTs

Yielding of MWCNT

(1) For $\dot{\varepsilon} = 1\%$/hour, and $T=300K$

ε_Y (MWCNT)>(SWCNT): 3-4%;

(2) Activation volume on MWCNT is smaller (60%-70% of that on SWCNT);

(3) Crossover point of strain rate exponentially dependent on T, important for high temperature situations.
Load transfer on MWCNT

Load transfer on MWCNT

![Graph showing load transfer on MWCNT](image)

- Total
- Outer shell (20,0)
- Inner shell (10,0)
- Intershell VDW

Change of potential energy (eV)

Tensile strain on outer shell (20,0) (%)

Change of strain energy of inner shell (10,0)

T = 2400K

Rate1: 0.25%/80ps
Rate2: 0.25%/40ps
Rate3: 0.25%/20ps
Rate4: 0.25%/10ps
CNT: Nano Fibers

CNT to reinforce composites

- High Strength & High flexibility & Toughness & light-weight (Young’s Modulus > 1TPa)

- High aspect ratio L/D, can reach 1000

 Critical length: $\frac{L_c}{D} \sim \frac{\sigma_{\text{max}}}{2\tau}$
 - L_c: length of CNT; D: diameter of the CNT;
 - σ_{max}: tensile strength of CNT;
 - τ: interfacial shear stress

- Large surface area, good for bonding, adhesion
Polymer-CNT Composite

- Structural and thermal properties
- Load transfer and mechanical properties

SEM images of epoxy-CNT composite

SEM images of CNT fibers ribbon (processing in polyvinylacohol solution) & knotted CNT fibers

MD Simulations of Polymer-CNT

Simulation method

Classical MD: Tersoff-Brenner potentials for CNT, DLPOLY for polymer, and VDW interactions

System in simulation

Polyethylene & (10,0) CNT: (80 chains of PE relaxed by Monte Carlo methods, Np=10; 20Å long CNT 8% volume ratio)

Preparations

Composites prepared at 300k; cooled down to 10K with rate 1K/1ps
composites change from liquid state through rubber state to glassy state
Force Field

Intramolecular potentials

Valence angle potential: \[\Phi(\theta) = 0.5k_0 (\cos \theta - \cos \theta_0)^2, \]

Torsion potential: \[\Phi(\alpha)/J\cdot \text{mol}^{-1} = C_0 + C_1 \cos \alpha + C_2 \cos^2 \alpha + C_3 \cos^3 \alpha, \]

Harmonic potential: \[0.5 k_b (l-l_0)^2 \]
Density Dependence on Temperature

Small system: L/D ~ 2, Np = 10

Results
- Glass transition temperature T_g increased from 150K to 175K
- Thermal expansion coefficients: (K^{-1})

<table>
<thead>
<tr>
<th></th>
<th>PE</th>
<th>PE-CNT</th>
<th>\uparrow</th>
</tr>
</thead>
<tbody>
<tr>
<td>$T < T_g$</td>
<td>3.8×10^{-4}</td>
<td>4.5×10^{-4}</td>
<td>18%</td>
</tr>
<tr>
<td>$T > T_g$</td>
<td>8.6×10^{-4}</td>
<td>12.0×10^{-4}</td>
<td>40%</td>
</tr>
</tbody>
</table>

(Experimental value: $1.0 \times 10^{-4} K^{-1}$; $T < T_g$)
Diffusion Coefficients

Small system: L/D~2, Np=10

Diffusion coefficients of polymer with CNTs embedded

Diffusion coefficient increased, especially along CNT axis direction, indicating enhancement of thermal conductivity

- Experiments on ABS/CNT & RTV/CNT show larger increase (Rick Berrera’s group at RICE)
 - (Ajayan’s group at R.P.I. is investigating these subjects in detail)

* C. Wei, D. Srivastava, and K. Cho (Nano Letters, in press)
Modulus of Polymer-CNT Composites

(Halpin-Tsai's formula)

\[
\frac{E_c}{E_m} = \frac{1 + \xi \eta V_f}{1 - \eta V_f}
\]

\[
\eta = \frac{(M_f / M_m - 1)}{(M_f / M_m + \xi)}
\]

\(E_c, E_m, E_f\) : Modulus of composite, matrix and fiber

\(V_f\) : Volume ratio of fiber

\(\xi\) : Dependent on geometry, packing of fiber; aspect ratio of fiber

\[\frac{E_{cnt}}{E_m} \sim 1000\]

![Graph showing the relationship between modulus and volume ratio of CNT fiber]

- Continuous fiber
- Fiber aligned, L/D ~ 1000
- Randomly oriented fiber, L/D ~ 1000
- Fiber aligned, L/D ~ 10
Stress-Strain Curve & Load Transfer

Mechanical behavior of Composite:
Elastic region and Yielding

- Enhancement of Young’s modulus: 30%
- Load transfer: within 0.7%
- Poisson Ratio effect:
 - CNT ~ 0.1-0.2, Polyethylene ~ 0.44
- Compression pressure perpendicular to tube axis contribute to improvement
Loading Sequence

Work hardening of composite with stretching

TEM images of alignment of CNTs in a polymer matrix by stretching

- Residue strain

Young’s Modulus

- Young’s modulus of CNT composites 30% higher than polymer matrix
- Stretching treatments enhance Y by 50%

\[(L/D \sim 2, N_p = 10)\]

Graphs:

1. **Composite** vs. **Polymer Bulk**
 - Tensile Stress vs. Tensile strain (%)
 - Composite: \[Y = 1907 \text{MPa} \]
 - Polymer Bulk: \[Y = 1492 \text{MPa} \]

2. **Strain** vs. **Tensile Stress**
 - Stress rate: 1 bar/1 ps
 - Temperature: 50K
 - Composite after stretching: \[Y = 2308 \text{MPa} \]

References:
1. Polymer bulk; \[Y = 1492 \text{MPa} \]
2. Polymer bulk after stretching; \[Y = 1585 \text{MPa} \]
3. Composite; \[Y = 1907 \text{MPa} \]
4. Composite after stretching; \[Y = 2308 \text{MPa} \]
Conclusions

- Yielding of carbon nanotubes strongly dependent on strain rate and temperature: transition state theory

- Polymer-CNT composite has larger thermo-expansion above Tg
 - Phonon modes and Brownian motion leading to larger exclude volume of embedded CNT
 - Diffusion of polymer matrix increased above Tg

- Young’s modulus of composite enhanced by 30% through VDW interaction.
 - Load transfer happening within 0.7%; stiffness of CNT bond increases modulus of composite
 - Loading sequence can improve the enhancement of modulus of composite