Final Summary of GRSP Activities

Development of Predictive Models of Advanced Propulsion Concepts for Low Cost Space Transportation

NGT8-52887
August 1, 2000 through October 31, 2002

Michael Randy Morrell
Georgia Institute of Technology
School of Aerospace Engineering
Advisor's Note

Mr. Morrell left the PhD program at Georgia Tech in September of 2001 to pursue a permanent job with GE Power Systems. This final report summarizes the GSRP research work Mr. Morrell was able to complete as a summer intern at NASA - MSFC during the summer of 2001 and represents the sum of work completed under NGT8-52887 from inception through project termination.

Dr. John R. Olds
School of Aerospace Engineering
GSRP Summer Internship Experience at NASA MSFC

Randy Michael Morrell
NGT8-52887
Summer 2001
NASA TD40 Organization

Propellantless

Monopropellant

Pulse Detonation Rockets

Advanced Plasma

Nuclear
Combustion Physics Lab

- Unique facility for investigating high pressure rocket combustion
- Pressures of up to 6000 psi (~400 atm)
- O₂ – H₂ and O₂ – hydrocarbon flames
- Small scale, e.g. flow rates of 50 g/sec for 10 sec
- Optically accessible combustion chamber
- Bldg 4549 / TD40 Lab A
Advanced Hydrocarbon Fuels

- High Energy Density Matter (HEDM) hydrocarbons currently being researched by the military, principally the AFRL
- NASA interested in possible applications to future launch vehicles
- Plan to add AFRL chemist to the group to develop and synthesize these fuels ‘in-house’
GSRP Summer Tasks

- Assist in the installation of the high pressure combustion facility
- Research issues related to high pressure combustion
- Literature review of HEDM hydrocarbon characteristics for future work
High Pressure Facility Installation

- Funding approved for the facility
- High pressure piping, pumps, and storage purchased
- Optical diagnostic equipment purchased
- Combustor funding applied for
- Waiting for lab space to be vacated
High Pressure Combustion Issues

- Supercritical behavior
 - local vs. global
- Mixing / shear layer interaction
- Diagnostic techniques in high density flows
- Scaling from lab scale to full scale

HEDM Hydrocarbons

The energy content of a molecule is increased by adding unsaturation:

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔH<sub>f</sub> (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>-(CH₂)<sub>n</sub>-</td>
<td>-4.9</td>
</tr>
<tr>
<td>H₂C=CH₂</td>
<td>+6.3</td>
</tr>
<tr>
<td>HC≡CH</td>
<td>+27.0</td>
</tr>
</tbody>
</table>

The energy content of a molecule is increased by incorporating strain:

<table>
<thead>
<tr>
<th>Compound</th>
<th>ΔH<sub>f</sub> (kcal/mol)</th>
</tr>
</thead>
<tbody>
<tr>
<td>cyclopentane</td>
<td>-18.4</td>
</tr>
<tr>
<td>cyclobutane</td>
<td>+6.8</td>
</tr>
<tr>
<td>cyclopropane</td>
<td>+12.7</td>
</tr>
</tbody>
</table>

Selected candidate fuels:

- Spiropentane
- Bicyclopropylidene
- HC≡C-CH₂-CH₂-C≡CH (1,5-hexadiyne)

Isp sec (RP-1 = 299) 311 313 312

* from PRC briefing to Rocketdyne
GSRP Summer Intern Summary

- High pressure lab now expected to begin installation this fall and operation this winter/spring.
- Limited work done to date on high-pressure, supercritical combustion. Most of work on supercritical combustion being done in Europe.
- Key contacts made with HEDM hydrocarbon researchers.