Why Environments & Effects Studies?

- Space environments are complex.
- Complexity of spacecraft systems is increasing.
- Design accommodation must be realistic.
 » Need minimum impact on performance
 » Maintain balance between cost vs. risk
- Environmental problems can be limited at low cost relative to spacecraft cost.

Goal
Use Applied Science Research to Enable Technology Infusion into Space Programs
Performance Predictions

Simulated conditions \rightarrow Actual conditions

Accuracy of performance prediction is dependent on fidelity of protocols and models.

Design margins can drive requirements that preclude use of newer technologies.

Natural Environments

- Atmospheric Density & Composition
- Plasma
- Radiation Environment
- Electromagnetic Radiation
- Meteoroid & *Orbital Debris*
- Thermal Environment
- Geomagnetic Field
- Gravitational Field
Environmental Hazards

- Low Earth Orbits (LEO)
 - Low Inclination
 - Polar
- Middle Earth Orbits (MEO)
- Geostationary (GEO)
- Interplanetary
- Jovian

Meteoroid/Orbital Debris

- Meteoroids
 - Primarily remnants of comet orbits
 - Several times a year Earth intersects a comet orbit
 - Asteroid belt - Sporadic particles on a daily basis
- Debris
 - Operational payloads, Spent rockets stages, Fragments of rockets and satellites, Other hardware and ejecta
 - USAF Space Command tracks over 7,000 > 10 cm objects in LEO
 - Tens of thousands smaller objects
The Threat

Spacecraft Effects

- Damage and decompression threat
- Hypervelocity impacts from larger particles
- Surface erosion from collisions with smaller objects
 » Surface effects on thermal, electrical, and optical properties
- Risk Factors
 » Duration, vehicle size and design, solar cycle, orbit altitude, and inclination
 » Threat is highly directional
Neutral Thermosphere

- Definition
 » Atmospheric Density, Density Variations, Atmospheric Composition (AO), Winds
- Neutral atmospheric constituents
- 90 – 600 km
- Neutral gas particles
 » Lower - Atomic oxygen (AO)
 » Higher - Hydrogen & Helium
- Altitude variations due to temperature
 » Solar cycle effects due to absorption of solar extreme ultraviolet radiation (EUV)
 » Proxy measurement with 10.7-cm radio flux (F10.7)

Spacecraft Effects

- Spacecraft drag
 » Density of neutral gas
 » Altitude decay & torques
- Materials degradation - Erosion
 » Thermal, mechanical, optical properties
 » AO (200 – 400 km), Solar cycle dependent
 » Effects aggravated by micrometeoroid impacts, sputtering, UV exposure, contamination
- Spacecraft glow
 » Optical emissions generated by excitation of metastable molecules
 » Surface acts as catalyst – material dependent
Plasma Environment

- Energy < 100 keV - No radiation effects
- Ionized gas where electron and ion densities are approximately equal
- Sources
 - Ionosphere
 - Electrically charged portion of the atmosphere
 - Low energy (eV)/High Density
 - Geomagnetic substorm activity
 - High energy (keV)/Low density
 - Solar Wind
 - Sun's corona
 - Seen at > 10 Billion km from the Sun
- Dramatic variation with altitude, latitude, magnetic field strength, and solar activity

Plasma Interactions - Ionosphere

- Supersonic spacecraft motion through background ions in the plasma
- Solar array coupling to plasma
 - Current drain on solar arrays
- Contamination
 - Dense pressure of atmosphere in LEO
 - Modification of ambient atmosphere by outgassing
- Generation and emission of plasma waves
- Polar regions - High level of charging
 - Exposure to auroral electrons, esp. if current collection occurs in ion-depleted wake zones
Plasma Interactions - Storms

- Induced charge on surface
 » Disrupt operation of electrically biased instruments
- Missions affected
 » LEO - Polar orbits
 » Geosynchronous orbits are generally a greater concern
- Effects
 » Biasing of instrument readings
 » Arcing - upsets to electronics, increased current collection, reattraction of contaminants, ion sputtering which leads to acceleration of erosion of materials

Conditions for Charging

- Large differential
- Large fraction of total flux
- Darkness
- Large spacecraft
Charging in GEO

- Strong local time effects
- Solar storm effects
- Experience base is in LEO & GEO
 » MEO?
 » Auroral regions?

The Radiation Environment

Nikkei Science, Inc. of Japan, by K. Endo
Electron Environment Dynamics
April 2001 Storm

Radiation Effects

- Total Ionizing Dose – Degradation
 » Materials
 » Electronics
- Total Non-ionizing Dose – Degradation
 » Solar Cells
 » Optocouplers
 » Optical lens
- Single Event Effects – Single Particle Strikes
 » Destructive – SEL, SEGR, SEB
 » Non-destructive – SEU, SET, SEFI, MBU
- Degradation of surface materials
- Deep Dielectric Charging
Seastar - COTS DRAM Technology

Single Event Upsets: January 1 - December 25, 1999 - 705 km

Definition of Contamination

An unwanted material or substance that causes degradation in the desired function of an instrument or flight hardware.
Systems Affected

- Optical components - lenses
- Thermal control - external paints & blankets
- Guidance - baffles
- Any sensitive surfaces
 - Exposed to all environments!

Contamination - Pulling It Together

- Micrometeoroids and debris
 - Surface erosion from collisions with smaller objects
 - Surface effects on thermal, electrical, and optical properties
- Neutral thermosphere
 - Materials degradation - Erosion
 - Surface effects on thermal, electrical, and optical properties
- Neutral thermosphere
 - Spacecraft glow
 - Optical emissions generated by excitation of metastable molecules
- Plasma - ionosphere
 - Contamination
 - Dense pressure of atmosphere in LEO
 - Modification of ambient atmosphere by outgassing
- Plasma - storms
 - Reattraction of contaminants, ion sputtering which leads to acceleration of erosion of materials
- Non-ionizing and ionizing dose
 - Degradation of surface materials & optical lenses
Contamination Processes

- Particulates and gases
 - Outgassing, engine firings, plume impingement, material processes

- Effects
 - Charging
 - Glow
 - False signals on optical detectors
 - Surface erosion

Complexity Increased by Material Processes

- Atomic Erosion
 - Infrared Radiation
 - Particle Radiation
 - Ultraviolet Radiation
 - Thermal Vacuum Outgassing
Mission Phases for Contamination

- An Issue at All Mission Phases
 » Construction & Assembly
 » Ground Handling & Transportation
 » Launch
 » Orbital Insertion
 » Early Outgassing
 » Long Term Exposure
 » Recovery

Contamination Risk?

Thermal control surfaces?

H < 1000 km? Instrument calibration?

Solar UV? Baffle design?
Earth albedo UV? Lens design?
UV instruments? Detector design?
IR instruments? Mirror design?
Spacecraft lifetime? Cooled detector systems?
Common Issues

- Many unknowns in space environments & the interaction mechanisms
 » Model development & validation lags behind technology changes.
 » Unknowns result in large design margins
 - Higher accommodation/mitigation overheads
 - Can preclude use of newer technologies
- Must be addressed in all design phases
 » Use a systems approach.
 » Begin early - "Pay now or pay more later"
- Ground tests cannot duplicate the space environment
 » Synergistic effects
 » Enhanced low dose rates