Why Environments & Effects Studies?

- Space environments are complex.
- Complexity of spacecraft systems is increasing.
- Design accommodation must be realistic.
 » Need minimum impact on performance
 » Maintain balance between cost vs. risk
- Environmental problems can be limited at low cost relative to spacecraft cost.

Goal
Use Applied Science Research to Enable Technology Infusion into Space Programs
Performance Predictions

Simulated conditions → Actual conditions

Accuracy of performance prediction is dependent on fidelity of protocols and models.

Design margins can drive requirements that preclude use of newer technologies.

Natural Environments

- Atmospheric Density & Composition
- Plasma
- Radiation Environment
- Electromagnetic Radiation
- Meteoroid & Orbital Debris
- Thermal Environment
- Geomagnetic Field
- Gravitational Field
Environmental Hazards

- Low Earth Orbits (LEO)
 - Low Inclination
 - Polar
- Middle Earth Orbits (MEO)
- Geostationary (GEO)
- Interplanetary
- Jovian

Meteoroid/Orbital Debris

- Meteoroids
 - Primarily remnants of comet orbits
 - Several times a year Earth intersects a comet orbit
 - Asteroid belt - Sporadic particles on a daily basis
- Debris
 - Operational payloads, Spent rockets stages, Fragments of rockets and satellites, Other hardware and ejecta
 - USAF Space Command tracks over 7,000 > 10 cm objects in LEO
 - Tens of thousands smaller objects
The Threat

- Damage and decompression threat
- Hypervelocity impacts from larger particles
- Surface erosion from collisions with smaller objects
 » Surface effects on thermal, electrical, and optical properties
- Risk Factors
 » Duration, vehicle size and design, solar cycle, orbit altitude, and inclination
 » Threat is highly directional

Spacecraft Effects
Neutral Thermosphere

- Definition
 - Atmospheric Density, Density Variations, Atmospheric Composition (AO), Winds
- Neutral atmospheric constituents
 - 90 – 600 km
- Neutral gas particles
 - Lower - Atomic oxygen (AO)
 - Higher - Hydrogen & Helium
- Altitude variations due to temperature
 - Solar cycle effects due to absorption of solar extreme ultraviolet radiation (EUV)
 - Proxy measurement with 10.7-cm radio flux (F10.7)

J. Bartl Code 562
5/1/02

Spacecraft Effects

- Spacecraft drag
 - Density of neutral gas
 - Altitude decay & torques
- Materials degradation - Erosion
 - Thermal, mechanical, optical properties
 - AO (200 – 400 km), Solar cycle dependent
 - Effects aggravated by micrometeoroid impacts, sputtering, UV exposure, contamination
- Spacecraft glow
 - Optical emissions generated by excitation of metastable molecules
 - Surface acts as catalyst – material dependent

J. Bartl Code 562
5/1/02
Plasma Environment

- Energy < 100 keV - No radiation effects
- Ionized gas where electron and ion densities are approximately equal
- Sources
 - Ionosphere
 - Electrically charged portion of the atmosphere
 - Low energy (eV)/High Density
 - Geomagnetic substorm activity
 - High energy (keV)/Low density
 - Solar Wind
 - Sun's corona
 - Seen at > 10 Billion km from the Sun
- Dramatic variation with altitude, latitude, magnetic field strength, and solar activity

Plasma Interactions – Ionosphere

- Supersonic spacecraft motion through background ions in the plasma
- Solar array coupling to plasma
 - Current drain on solar arrays
- Contamination
 - Dense pressure of atmosphere in LEO
 - Modification of ambient atmosphere by outgassing
- Generation and emission of plasma waves
- Polar regions - High level of charging
 - Exposure to auroral electrons, esp. if current collection occurs in ion-depleted wake zones
Plasma Interactions - Storms

- Induced charge on surface
 - Disrupt operation of electrically biased instruments
- Missions affected
 - LEO - Polar orbits
 - Geosynchronous orbits are generally a greater concern
- Effects
 - Biasing of instrument readings
 - Arcing - upsets to electronics, increased current collection, reattraction of contaminants, ion sputtering which leads to acceleration of erosion of materials

Conditions for Charging

- Large differential
- Large fraction of total flux
- Darkness
- Large spacecraft
Charging in GEO

- Strong local time effects
- Solar storm effects
- Experience base is in LEO & GEO
 » MEO?
 » Auroral regions?

The Radiation Environment

Nikkei Science, Inc. of Japan, by K. Endo
Electron Environment Dynamics

April 2001 Storm

Radiation Effects

- Total Ionizing Dose – Degradation
 - Materials
 - Electronics
- Total Non-ionizing Dose – Degradation
 - Solar Cells
 - Optocouplers
 - Optical lens
- Single Event Effects – Single Particle Strikes
 - Destructive – SEL, SEGR, SEB
 - Non-destructive – SEU, SET, SEFI, MBU
- Degradation of surface materials
- Deep Dielectric Charging
Seastar - COTS DRAM Technology

Single Event Upsets: January 1 - December 25, 1999 - 705 km

Definition of Contamination

An unwanted material or substance that causes degradation in the desired function of an instrument or flight hardware
Systems Affected

- Optical components - lenses
- Thermal control - external paints & blankets
- Guidance - baffles
- Any sensitive surfaces
 - Exposed to all environments!

Contamination - Pulling It Together

- Micrometeoroids and debris
 - Surface erosion from collisions with smaller objects
 - Surface effects on thermal, electrical, and optical properties
- Neutral thermosphere
 - Materials degradation - Erosion
 - Thermal, mechanical, optical properties
 - AO (GEO = 400 km), Solar cycle dependent
 - Effects aggravated by micrometeoroid impacts, sputtering, UV exposure, contamination
- Spacecraft glow
 - Optical emissions generated by excitation of metastable molecules
 - Surface acts as catalyst - material dependent
- Plasma - Ions
 - Contamination
 - Dense pressure of atmosphere in LEO
 - Modification of ambient atmosphere by outgassing
- Plasma - Storms
 - Reacceleration of contaminants, ion sputtering which leads to acceleration of erosion of materials
- Non-ionizing and ionizing dose
 - Degradation of surface materials & optical lenses
Contamination Processes

• Particulates and gases
 » Outgassing, engine firings, plume impingement, material processes

• Effects
 » Charging
 » Glow
 » False signals on optical detectors
 » Surface erosion

Complexity Increased by Material Processes

• Atomic Erosion
 » Infrared Radiation
 » Particle Radiation
 » Ultraviolet Radiation
 » Thermal Vacuum Outgassing
Mission Phases for Contamination

- An Issue at All Mission Phases
 » Construction & Assembly
 » Ground Handling & Transportation
 » Launch
 » Orbital Insertion
 » Early Outgassing
 » Long Term Exposure
 » Recovery

Contamination Risk?

Thermal control surfaces?
H < 1000 km?
Instrument calibration?

Solar UV?
Baffle design?

Earth albedo UV?
Lens design?

UV instruments?
Detector design?

IR instruments?
Mirror design?

Spacecraft lifetime?
Cooled detector systems?
Common Issues

- Many unknowns in space environments & the interaction mechanisms
 » Model development & validation lags behind technology changes.
 » Unknowns result in large design margins
 - Higher accommodation/mitigation overheads
 - Can preclude use of newer technologies
- Must be addressed in all design phases
 » Use a systems approach.
 » Begin early - “Pay now or pay more later”
- Ground tests cannot duplicate the space environment
 » Synergistic effects
 » Enhanced low dose rates