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ABSTRACT 
 Analytical calculations were conducted to determine the thermal stresses developed in a 
coated copper-based alloy, Cu-8(at.%)Cr-4%Nb (designated as GRCop-84), after plasma spraying 
and during heat-up in a simulated rocket engine environment.  Finite element analyses were 
conducted for two coating systems consisting of a metallic top coat, a pure copper bond coat and 
the GRCop-84. The through thickness temperature variations were determined as a function of 
coating thickness for two metallic coatings, a Ni-17(wt%)Cr-6%Al-0.5%Y alloy and a Ni-
50(at.%)Al alloy.  The residual stresses after low-pressure plasma spraying of the NiCrAlY and 
NiAl coatings on GRCop-84 substrate were also evaluated. These analyses took into consideration 
a 50.8 µm copper bond coat and the effects of an interface coating roughness.  The through the 
thickness thermal stresses developed in coated liners were also calculated after 15 minutes of 
exposure in a rocket environment with and without an interfacial roughness. 
 
INTRODUCTION 

Since 1998, various studies have been conducted to significantly improve the performance of 
rocket engines and to reduce the weight of specific engine components under NASA’s third 
generation Reusable Launch Vehicle (RLV) program [1]. Efforts have focused on reducing the 
weight of the thrust chamber as well as improving the component life at higher operating gas 
temperatures. One candidate material under consideration for the thrust chamber component is a 
NASA-developed copper-based alloy known as GRCop-84 (Cu-8(at.%)Cr-4Nb) [2] that is being 
considered as a replacement for the NARloy-Z alloy currently used in various thrust chambers [3]. 
Table I compares the material properties of extruded GRCop-84 with those for NARloy-Z at 
538 °C [2–3]. As shown in Table I, the GRCop-84 has a lower density than the NARloy-Z, higher 
strength at elevated temperatures, and longer fatigue and creep life. These properties suggest the 
advantages of GRCop-84 as a liner material to achieve longer component life. 

Although, GRCop-84 shows an improvement in its high temperature properties compared to 
the current liner material, a coating is still desirable to further increase the operating temperature 
by protecting the substrate hot-wall from oxidation and blanching. Various metallic and ceramic 
coatings are being considered as coating materials for the GRCop-84 liner. Two metallic top 
overlay coatings will be considered in this paper: a nickel-based alloy with Ni-17(wt.%) 
Cr-6Al-0.5%Y used primarily as a bond coat for ceramic thermal barrier coatings on superalloys 
[4] and a Ni50(at.%)-Al alloy.  Furthermore, a 50.8 µm copper bond coat layer is also applied 
between the two top coats and the GRCop-84 substrate to promote bonding.  The NiCrAlY 
coating has been successfully used with NARloy-Z liners and was applied to the GRCop-84 
substrate for comparison.  The NiAl intermetallic alloy is of interest as a coating due to its ability 
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to form a protective Al2O3 scale on the surface while maintaining the mechanical properties of the 
underlying substrate [5].  Table II summarizes key material properties for the two coating systems 
at 900 °C.  The NiCrAlY has a lower thermal conductivity but a higher coefficient of thermal 
expansion (CTE) compared to NiAl.  The NiAl shows higher yield and tensile strengths, but lower 
creep resistance, compared to NiCrAlY. 
 

Table I.  Comparison of the 538 °C Material Properties of GRCop-84 and NARloy-Z. 
 
 
 
 
 
 
 
 
 
 

Table II.  Material Properties of NiAl and NiCrAlY at 900 °C 
 
 
 
 
 
 
 
 
 
 
 For the combustor liner design, the variation of the substrate temperature with coating 
thickness is first determined using the finite element method for the two top coats, under typical 
steady-state thermal conditions expected in the rocket chamber liner.  Furthermore, the residual 
stresses built up after cool down from the plasma spraying conditions are determined in the 
coatings and the substrate.  A precise determination of these residual stresses after processing is 
key to understanding the behavior of these coatings after cool down from the processing 
temperature, as well as the response to subsequent thermo-mechanical loads.  The effect of the 
surface roughness of the interfaces on the residual stresses is also determined for the two coatings.  
The surfaces of the substrate materials are usually grit blasted prior to the application of the 
coating in order to improve the coating adherence through a mechanical interlock.  The presence 
of this surface roughness was shown to introduce a complex stress field that can lead to cracking 
along the coating-substrate interface and ultimately to the spallation of the coating [6–9].  Hence, 
the perturbations of the residual stress distribution with the presence of interfacial asperities are 
also delineated for the two coatings in this investigation.  Finally, the thermal stresses developed 
in a simulated engine environment are determined with and without interfacial roughness. 
 
HEAT-TRANSFER ANALYSIS 
 The steady-state temperature distributions through the thickness of coated GRCop-84 
substrates were determined as a function of the coating thickness using the finite element method.  
The applied thermal boundary conditions simulating the gas temperature conditions in the rocket 
chamber are shown in Fig. 1(a).  The hot gases are estimated to reach temperatures as high as 
3,277 °C.  The liquid hydrogen fuel provides the back face cooling for the liner.  The variations of 
the temperatures along the various interfaces as well as the hot and cold outer walls at steady-state 
conditions are shown in Figs. 2(a) and (b) for the NiCrAlY and NiAl coatings, respectively.  It is 
noted that similar thermal analyses were conducted by Holmes and co-workers on a copper alloy 
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Fig. 1.—(a) Geometry and convective heat transfer boundary conditions, (b) rough interfaces.
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coated only with NiCrAlY at lower hot gas temperatures [10]. The bond coat material for both 
coatings is a 50.8 µm pure Cu.  The hot outer surface temperature of the NiCrAlY top coat 
increases rapidly for higher thicknesses, starting at 593 °C for a 25.4 µm coating thickness to 
993 °C for a 228.6 µm coating thickness.  The temperature of the GRCop-84 along the GRCop/Cu 
interface decreases from 513 to 411 °C for coating thicknesses of 25.4 µm and 228.6 µm, 
respectively.  The resulting temperature difference observed through the thickness of the coating 
increases from 50 to 444 °C for a coating thickness of 25.4 and 228.6 µm, respectively.  The 
variation in temperature of the GRCop-84 with the NiAl top coat is not as pronounced as the 
NiCrAlY top coat due to its higher thermal conductivity.  The effect of the high NiAl thermal 
conductivity is to reduce the hot wall coating temperature with a corresponding reduction in the 
temperature difference through the thickness of the coating.  Furthermore, the NiAl top coat 
increases slightly the temperature along the GRCop-84/Cu interface as well as the GRCop cold 
wall temperature, as shown in Fig. 2(b), compared to the NiCrAlY top coat.  For example, at a 
coating thickness of 101.6 µm, the overall temperature difference through the thickness for the 
NiAl coating is 164 °C compared to 400 °C for the NiCrAlY, (a factor of 2).  In addition, the NiAl 
hot surface coating temperature reaches only 564 °C compared to the 758 °C for the NiCrAlY 
coating.  The temperature difference through the coating is only 43 °C for the NiAl compared to 
283 °C for the NiCrAlY, for the same coating thickness of 101.6 µm. 
 
COOL DOWN RESIDUAL STRESSES 
 The residual stresses developed in the coated GRCop-84 play an important role in the 
production and performance of the coatings.  Their precise determination is essential to study the 
coating behavior upon cool down from the processing temperatures and its subsequent behavior 
under the thermo-mechanical loading observed in the rocket chamber environment.  The residual 
stresses were determined upon cool down from plasma spraying using the finite element method.  
As the temperature of the coated substrate is dropped to room temperature, thermal residual 
stresses are developed in the various layers. Two-dimensional eight-node quadratic finite element 
meshes were generated for flat interfaces as well as for rough interfaces to model the various 
layers shown in Fig. 1(b). It should be noted that edge effects are not considered in the present 
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analysis for simplicity. The assumed bond coat/top coat wavelength is 48 µm with a 10 µm 
amplitude, and the substrate/bond coat roughness is assumed to have a 152 µm wavelength and a 
6 µm amplitude.  These values were estimated from microstructures of coated substrates.  The 
stresses in each layer in the Y-direction, corresponding to Fig. 1(a) are shown in Table III 
assuming flat interfaces for three top coat thicknesses of 25.4, 101.6, and 228.6 µm, for both alloy 
top coats.  The assumed bond coat thickness for both top coats was 50.8 µm thick pure copper 
deposited on a 1.016 mm thick GRCop-84 substrate.  The stress distribution is constant in each 
layer.  The stresses in the coating in the Y-direction are compressive and decrease with increasing 
coating thickness.  The Y-stresses in the substrate are tensile and increase with increasing coating 
thickness.  The stress in the copper bond coat is almost independent of the top coat composition 
and thickness.  The magnitude of the stresses in the NiCrAlY is about a factor of 2~3 times the 
stress magnitude in the NiAl.  For flat interfaces, the stresses in the X-direction are zero. 

Fig. 2. (a)—Temperatures at the various interfaces as a function of 
   the NiCrAlY top coat thickness.

Fig. 2. (b)—Temperatures at the various interfaces as a function of
   the NiAl top coat thickness.

300

400

500

600

700

800

900

1000

0.00 0.05 0.10 0.15 0.20 0.25

Coating thickness (mm)

Coating thickness (mm)

GRCop-Cold Wall

GRCop/Cu-Interface

Cu/NiAl-Interface

NiAl-Hot Wall

GRCop-Cold Wall

GRCop/Cu-Interface

Cu/NiAl-Interface

NiAl-Hot Wall

300

400

500

600

700

800

900

1000

0.00 0.05 0.10 0.15 0.20 0.25

T
em

p
er

at
u

re
 (

°C
)

T
em

p
er

at
u

re
 (

°C
)



NASA/TM2002-211561 5 

Table III.  Variation of the Y-direction stress with coating thickness for flat interfaces. 
 
 
 
 
 
 
 
 
 
 
 

When the interface roughness is taken into consideration, the stresses near the interfaces are 
perturbed as shown in Figs. 3 and 4 for the NiAl and NiCrAlY top coats, respectively where the 
coating thickness was assumed to be 101.6 µm.  The stress distributions along the thickness 
through a valley and a peak corresponding to Fig. 1(b), of the bond coat/top coat interface are 
shown as a function of the normalized distance, x/t, where t is the total substrate and coatings 
thickness, i.e., t = 1.1684 mm.  Due to the shallowness of the interface roughness of 
substrate/bond coat, no appreciable stress perturbation was calculated.  Along the valley of the 
bond coat/top coat, the stress perturbation is also minimal.  But along the peak, there is a sharp 
decrease in the stress in the top coat associated with a corresponding increase in stress in the bond 
coat, but limited to a small region of less than 25 µm.  The presence of the roughness also 
introduces X-direction stresses, but of relatively small magnitude on the order of ±5 and ±15 MPa 
for the NiAl and the NiCrAlY coatings, respectively.  The tensile stresses occur in the valley of 
the top coat and the compressive stresses occur at the peak of the top coat.  Furthermore, the 
presence of the rough interfaces also introduces a shear stress along the slopes of the asperities 
with magnitudes of ±38 and ±77 MPa along the bond coat/top coat interfaces for the NiAl and 
NiCrAlY coatings, respectively, (see Fig. 1(b)). 

 
 

Fig. 3. Y-direction post processing stress variation for a 101.6 µm 
   rough interfaces.
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Fig. 4. Y-direction post processing stress variation for a 101.6 µm 
   NiCrAlY top coat with flat and rough interfaces.
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HEAT-UP THERMAL STRESSES 
 The steady-state stresses developed after exposing the coated GRCop-84 to a simulated rocket 
combustion chamber environment and subjected to the convective heat transfer boundary 
conditions shown in Fig. 1(a) were calculated subsequent to the build-up of the residual stress 
after plasma spraying for only a 101.6 µm thick top coating.  It is considered that these simulations 
assume that the liner surfaces are flat. Realistic simulations would require curvature effects and 
thickness variation be considered in the analyses. The Y-direction stresses after 15 minutes of 
exposure time are shown in Figs. 5 and 6 for the NiAl and NiCrAlY top coats, respectively.  After 
exposure, the coated GRCop-84 reached the steady state temperatures shown in Fig. 2.  The 
overall temperature difference is only 164 °C as seen in Fig. 2(b), for the NiAl top coat.  Hence, 
the resulting stress distribution in the GRCop-84 substrate (Fig. 5) reveals a bending stress due to 
the effects of the thermal gradient producing tensile stresses at the cooled surface and compressive 
stresses towards the bond coat hotter region. The stresses in the bond coat are almost zero, 
showing a reduction of the stresses from the cool down conditions after processing (Fig. 3).  The 
stresses in the NiAl top coat are now tensile (Fig. 5) compared to the compressive post-processing 
stresses (Fig. 3) and have a slight gradient. Nevertheless, the tensile stresses in the NiAl coating 
are much smaller than the room temperature fracture stress of about 300 MPa [11]. The presence 
of the rough surface results in a sharp increase of the top coat tensile stresses along the bond coat 
interface at the peak of the asperity, while through the valley no appreciable stress perturbation is 
observed. 
 For the NiCrAlY coating, with the larger temperature difference shown in Fig. 2(a) and lower 
yield stress (Table I), plastic deformation occurred in the coating outer region causing an 
unloading of the stress along the outer surface.  The stress variation in the NiCrAlY coating is 
tensile at the bond coat/NiCrAlY interface, which decreases to a high compressive stress of  
–390 MPa before increasing slightly to reach –150 MPa at the outer surface (Fig. 6).  The stresses 
through the bond coat are again close to zero, and the stress distribution in the substrate follows a 
similar trend as the NiAl coating, (Fig. 5). 
 Again, the presence of the interfacial asperities introduces X-direction stresses along the valley 
and the peak path with tensile stresses along the peak and compressive stresses along the valley 
with a magnitude of 5 and 20 MPa, for the NiAl and NiCrAlY coatings, respectively.  The 
introduction of interfacial roughness leads to shear stresses along the slopes of the asperities.  The 
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shear stress magnitudes are 22 and 61 MPa for the NiAl and NiCrAlY coatings, respectively.  The 
direction of shearing stresses along the slopes is reversed during heat up cycle as compared to the 
cool down shearing direction thereby leading to an alternating shear stress. 
 
SUMMARY 
 A steady-state heat transfer analysis of coated GRCop-84 revealed that both coatings provide 
adequate protection of the substrate.  The NiAl coating’s high thermal conductivity provided 
protection almost independent of the coating thickness.  The temperature of the substrate hot wall 
temperature with a NiAl coating decreased by only 15 °C for a coating thickness ranging from 
25.4 to 228.6 µm.  The through thickness temperature difference is also small relative to the 
difference for the NiCrAlY top coat.  In contrast, the NiCrAlY coating provides a better heat 
shield to the GRCop-84 substrate due to its low thermal conductivity, but at the expense of a high 
temperature difference in the coating reaching almost 578 °C at a coating thickness of 228.6 µm. 
 The residual stresses developed during cool down from plasma spraying showed that the Y-
direction stresses are compressive for both coatings, while the stresses in the copper bond coat and 
the GRCop-84 are tensile.  The stress magnitude for the NiAl coating is almost a factor of 2 
smaller than the stresses for the NiCrAlY top coat.  The presence of interfacial asperity introduces 
a X-direction stress along the peak and valley of the asperities as well as a shear stress along the 
slopes of the asperities.  The stress perturbation is limited to a small region of less than 25 µm for 
a 101.6 µm coating. 
 The through thickness thermal stresses developed after exposure to a simulated rocket liner gas 
temperature are tensile in the NiAl top coat.  The stress distribution for the NiCrAlY coatings is 
more complex due to the large thermal gradient developed from the low conductivity of the 
coating.  The stress gradient in the NiCrAlY coating changes dramatically after heat up, and 
plastic yield occurs in the outer region of the NiCrAlY coating.  Again, the presence of rough 
interfaces perturbs the Y-stress distribution as well as introducing X-direction stress along the 
peaks and valleys and shear stresses along the slopes. 
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copper bond coat and the GRCop-84. The through thickness temperature variations were determined as a function of
coating thickness for two metallic coatings, a Ni-17%(wt%)Cr-6%Al-0.5%Y alloy and a Ni-50%(at.%)Al alloy. The
residual stresses after low-pressure plasma spraying of the NiCrAlY and NiAl coatings on GRCop-84 substrate were also
evaluated. These analyses took into consideration a 50.8 mm copper bond coat and the effects of an interface coating
roughness. The through the thickness thermal stresses developed in coated liners were also calculated after 15 minutes of
exposure in a rocket environment with and without an interfacial roughness.
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