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Abstract

We present results from several projects in the new field of computational astrobiology, which

is devoted to advancing our understanding of the origin, evolution and distribution of life

in the Universe using theoretical and computational tools. We have developed a procedure

for calculating long-range effects in molecular dynamics using a plane wave expansion of the

electrostatic potential. This method is expected to be highly efficient for simulating biological

systems on massively parallel supercomputers. We have perform genomics analysis on a

family of actin binding proteins. We have performed quantum mechanical calculations on

carbon nanotubes and nucleic acids, which simulations will allow us to investigate possible

sources of organic material on the early earth. Finally, we have developed a model of

protobiological chemistry using neural networks.

Introduction

The goal of this research has been to pursue research in computational astrobiology through

a series of projects, suitable for advanced undergraduate students, that address several is-

sues identified in the recent NASA Astrobiology Roadmap. Computational Astrobiology

uses computational and theoretical techniques to advance our understanding of the origin,

evolution and distribution of life in the Universe. These problems are approached from sev-

eral different points of view, ranging from the molecular and cellular level to the ecological

and biosphere level. This requires exploiting information from not only the biological sci-

ences, but also chemistry, geology, paleontology, and planetary and atmospheric sciences.



Similarly, the goalsof computational astrobiology cannot be accomplishedusing a single
area of computer sciencebut, instead, involve creative integration of several traditionally
separatedisciplines: biomodelingand biosimulations,bioinformatics, and complex systems
science.

Long-range Effects in Molecular Dynamics Simulations. To assist Ames' efforts in

developing fast code for molecular-level simulation of biological systems on massively parallel

supercomputers, we have developed a modified, highly efficient, state-of-the-art, plane-wave

expansion code to treat long range effects in molecular dynamics simulations. The newly

developed code will be applied to the study of two outstanding problems in astrobiology:

(i) understanding the structure and mechanism of action of the first proteins evolved from

random sequences by in vitro selection; and (ii) designing simple membrane proteins capable

of transporting material across cell walls, utilizing energy captured from the environment

and transmitting signals from the environment into the prebiotic cell. This work will truly
advance both the state-of-the-art of research in astrobiology and the connection between

astrobiology and information technology at Ames.

We have previously developed a multipole expansion code for isolated systems. The plane-

wave expansions of the electrostatic potential appears to be suitable for parallel computation

as it requires less communication than the expansion in spherical harmonics.

Electronic Structure Calculations on Nucleic Acid Bases. The project has involved

ab initio studies of electronic structure and spectral properties of such biological building

blocks as DNA bases. Structure and vibrational spectra of different tautomers of DNA

bases and their complexes with water were computed in order to understand the effects

of conformational structure and hydrogen bonding on vibrational frequencies/intensities.

These results should be helpful in possible identification of these molecules in space and/or

interpretation of laboratory measured infrared spectra of biological systems. In addition,

electronic excitation spectra and excited state proton-transfer reactions in DNA bases were

investigated using multi-configurational wave functions. Tautomerization processes, that

take place as a result of photoinduced proton transfer reactions, are believed to be a first

step in mutation of DNA. It is therefore important to study the effect of electronic excitation

on the proton transfer process.

Quantum Mechanical Studies of Modified Carbon Naontubes. Carbon nanotubes

are being evaluated for use as probes for Atomic Force Microscopy (AFM). It is already

known that they have excellent mechanical properties like stiffness and resilience. So they

can make durable AFM probes for metrology and imaging applications. Except for their ends,

they also are chemically inert. In order to make chemically selective probes, there is interest

in studying substitution reactions for nanotube tips. If that chemistry can be controlled,

scientists should be able design highly selective single-molecule probes. We have investigated

the properties of carbon nanotubes with chemically modified ends using quantum chemical

calculations.

The calculations were carried out for fragments of nanotubes with carboxyl, amide and



estergroupsattached. Wehavedeterminedbondstrengthsfor thesegroupsand derivedforce
fields for molecular dynamicscalculationsof functionalized nanotubesin aqueoussolution.
Similar quantum chemistry calculations have been carried out for other modifications of
nanotubes,sothe proposedcomputational methodologyhasbeenvalidated previously.

Metabolic Profiling by Multidimensional NMR Recently-developedhigh-throughput
techniquessuchas DNA micro-arrayshave madeit possibleto simultaneouslymonitor the
expressionlevels of all the genesin a cell. However,elucidating cellular functions with
the large body of data thus generatedhasso far beendifficult, mainly becausethere are
no correspondingquantitative measuresof cellular functions to parallel the geneexpression
data. Knowing which genesor groupsof geneshavesimilar expressionpatterns is interesting,
but suchknowledgewould bemuch moreuseful if it could be correlatedwith simultaneous
measurementsof the many metabolic processesthat theseexpressedgenesmay regulate.
If thesedata can be obtained, they could potentially unearth many as-yet-unrecognized
roles for geneswhosefunctions are incompletely understood,and illuminate the feedback
mechanismsand pathwaysresponsiblefor controlling their expressionlevels.

To this end,wearedevelopingmultidimensionalnuclearmagneticresonance(NMR) and
associatedcomputational techniquesthat will detect the level of as many metabolites as
possiblein vivo in a high-throughput fashion. Becausesmall moleculemetabolites in a cell
are a direct and quantitative characterizationof its metabolic functions, the data obtained
with our method complementsthe DNA micro-arraygeneexpressiondata and assistefforts
to interpret them. As a first step, wehavedevelopedalgorithmsand computercodein order
to quantify the positionsand the magnitudesof peaksin a two-dimensionalNMR spectrum.

Structural Homology Prediction and MD Modeling to Find GdETmod Struc-
ture. The focusof this project was to deducestructure-function relationshipsfor members
of the Tropomodulin (Tmod) family of actin-filament cappingproteins, using computational
and evolutionary approaches.The Tmods make up a small well-conservedprotein family,
the membersof whichshowno significantsequencesimilarity to other knownproteins. Func-
tionally, everymembertestedof the Tmod family is ableto bind at least sometropomyosin
isoformsin in vitro assaysas well as in vivo. Tmods display capping activity at the slow-
growing 'pointed' end of pure or tropomyosin-coated actin filaments. The Tmods are the

only proteins known to perform both these biochemical functions in one protein, and un-

til recently were the only proteins known to cap actin filaments at the slow-growing ends.

Structurally, the Tmods are divided in two subfamilies, the 40kD tropomodulins and the

60-70kD leiomodins (Lmods). Four 40kD Tmod isoforms have been found in vertebrates,

and all four isoforms are conserved between rats, mice, and humans; to date, some but not

all of these isoforms have been identified in birds, amphibians, and fish.
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Results

1 Long-range' Effects in Molecular Dynamics

(points of contact: Andrew Pohorille and Michael Wilson)

Teena Gerhardt, Stanford University

1.1 Introduction

This document describes an implementation of the Plane Wave Fast Multipole Method

developed by Eric Darve. We first outline the theoretical foundation of the method prior to

delving into the implementation details.

1.2 The Method

This new formulation, the Plane Wave Fast Multipole Method (PW-FMM) is based on the

expansion

1/?/?_ e-XZei×(_cos¢+ysm¢)dxd ¢
Irl _ =0 =0

where r = (x,y,z). From this expansion, we develop a method of computing multipole

expansions more efficiently than previous methods•

The PW-FMM is divided into several steps. These are described below. We first intro-

duce the following notation. Let a = (X, ¢) where X and Care continuous parameters. The

xi denote the coordinates of the particle i. The zk indicate the center coordinates of the

cluster Ck.

1. Initialization- We initialize the multipole coefficient fc_ at a discrete point a.

fck(a)= Z e-×(_'-zk)"ei×((_i-zk)xc°sc+(_'-_'k)_sme))"

xiECk

(1)

This shifts the information for each particle to the center of the cluster in which it is con-

tained. As the particles themselves are only stored in the lowest level of the tree, in the next

step we shift the particle information up the tree.

2. Multipole to Multipole- This step shifts the multipole information from the child to

its parent and for each parent sums this information over all of its children.
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fc(_) = F, fc,('_)e-,_(_'-_)'e'_((_'-z)xc°s¢+(_'-z)'sin_))
i=1

(2)

3. Multipole to Local- This step finds the local coefficients for each cluster by transferring



informations from the surroundingclusters. This is donethrough the useof six interaction
lists, oneeachin the +/- x, y, z directions. These interaction lists indicate clusters which are

well-separated from the cluster in question, yet whose parents are not well-separated from

the parent of the cluster. The following calculation is performed in each of the six directions

for all r such that Cr appears in the interaction list of Ck.

gck(a) = __,fcr(G)T,.o(zk- zr) (3)
r

We now elaborate on the construction of the transfer function T_,oq(Zk -- z_). In order to

construct this function we first identify the least number of frequencies I needed for T_,,,(zk --

z_) for a given accuracy e. We then Fourier transform the following function

e- ×(_k- zr ), e i×((zk- zr )xc°s¢+ (zk - zr )_sm ¢) (4)

retain only the frequencies through l, and inverse Fourier transform our function to obtain

our smoothed transfer function Tl,o(zk -- zr). This transfer function accommodates the op-

timal number of sample points for a given error e. Once the transfer function has been

constructed, the local coefficients are calculated by applying equation 3.

4. Local to Local - The information is then shifted from the parents back down to their

children.

gc,(O)+ = gc(a)e-×(z-zd'e i×((z-_d_c°s¢+(_-_)_sin¢)) (5)

This step moves down the tree, incorporating the transfer information from the parents in

to the local coefficients of their children.

5. Integration - We next integrate to find the force at each particle

vj = gck ( X, dp)e - ×(zk-x._ )" e i×( (zk-x' ).COS¢+(zk -_)_sin¢) )dx d¢" (6)
----0 ----0

This integration is done by using discrete points and associated weights• For each discrete

point (X_, ¢,_) we have an associated weight w×,,¢,,. Then

vj F__ (X,,¢,, ), ) cos o ) sin o)) (7)
n

6. Aggregation - As a final step we sum along all six directions +/- x,y, z and then in-

corporate the direct interactions between close particles to calculate the total force on each

particle.

1.3 Implementation

We first describe the data structures utilized before giving a detailed account of the imple-

mentation of the method.
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1.3.1 Data Structures

Tree Structure. We support a nonadaptive tree structure, stored as a 4-dimensional dy-

namically allocated array of pointers to cluster structures. The first index in the array

indicates the level of the cluster within the tree structure, and the remaining three indices in-

dicate the x, y, and z indices of the cluster respectively. This 4-D array provides a convenient

notation. Note, for instance, that the parent of the cluster pointed to by 5oxes[n][x][y][y]

is pointed to by boxes[n-1][x/2][y/2][z/2] (integer division). This 4-D array is wrapped in

a higher level tree structure which also contains the array of particles for the tree and pa-

rameters describing the size and depth of the tree. The discretization points and weights

used throughout the calculation are also stored in the tree structure. Additionally, this tree

structure stores arrays holding values of sines and cosines respectively that are calculated in

the initialization stages of the method and then reused in integration. Storing these values

instead of recalculating them proves to increase the efficiency of the method.

Cluster Structure. Each cluster stores its own center coordinates, the expansion data

(multipole and local coefficients) at the discretization points, and six interaction lists, in the

+/- x,y, z directions. These interaction lists are stored as statically allocated 2-D array

structures which contain a pointer to the cluster interacted with and indices indicating which

periodic instance of this cluster is being considered. The first index of the 2-D array indicates
the direction of interaction for the list. In each direction these lists contain elements which

are well-separated from the cluster in question yet whose parents are not well-separated from

the cluster's parents. The local and multipole coefficients at each discretization point are

also stored in the cluster structure. Additionally, the cluster structure contains an array of

pointers to the particles contained in that cluster. Finally there are two arrays stored in each

cluster that contain values used in the multipole to local step. These values are independent

of the particle locations and charges, and thus can be computed in preprocessing stages and

stored for later retrieval.

1.3.2 Details of the PW-FMM

Preprocessing. The preprocessing portion of the code is executed only once for each size

system. In this section the tree structure itself is built, the discretization points are created,

coefficients are dynamically allocated and initialized, and values are computed and stored

that will later be used in the multipole to local stage. We now elaborate on a few of these

steps.

Discretization points are generated as follows. The discretization of X is given by an opti-

mal quadrature point routine which uses an iterative Newton-Raphson solver. This routine

provides the values and weights for X. We then generate a uniform discretization of ¢ by

finding the minimum number of discretization points needed for an accuracy _. This is done

by sampling many values of ¢, calculating

e-XZ ei×(_cos¢+_sin¢)
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for these values of 4) and X and then fast Fourier transforming our vector. We then use this

transformed vector to truncate at the given error epsilon, thereby determining the number

of discretization points necessary for a given value of X on a given level. This is done for

all X on all levels and the maximum of these values is chosen. This will give us a good

representation of our function at all levels.

Many of the values needed for the transfer, or multipole to local, step of the method can

be calculated in preprocessing and stored for later retrieval and use. Thus in preprocessing

stages we calculate

e-X(Zk-zr), eiX((zk-z_)xcosC,+(_k-_)ysin_), (8)

storing the result in its real and imaginary parts.

Direct Interactions. Following the preprocessing stages, for each cluster the direct inter-

actions are calculated between each particle with the other particles in the cluster, and also

between it and the particles in the immediately surrounding clusters (i.e. those clusters that

are not well-separated from the cluster in question).

FMM. The FMM portion of the method is separated into stages as introduced earlier. The

decomposition of the implementation follows the above outline. The FMM as coded imple-

ments the equations for each discretization point, then uses these points and the associated

weights in the final integration step to generate the forces and potentials. We now elaborate

on a few noteworthy details of the implementation. The computations in the FMM are only

executed for the first half of the discretization points of 4_. Since we are using a uniform

discretization from 0 to 27r we are able to calculate only for values of _b between 0 and 7r,

inferring the remaining results from this data. Additionally, in order to avoid recalculation

we store many of the values calculated when initializing the multipole coefficients for reuse

in the integration step. Finally, noting similarities in calculations between the positive and

negative interactions in a given direction allows us to reduce the number of total calculations

by exploiting these similarities.

Remark 1 For explicit details of implementation, see the README file in the FMM direc-

tory and the extensive eommentin 9 in fmm.c.

1.3.3 Usage

The program is executed by running from. The user is then prompted to enter the number

of separate input files to be considered (note all input files must have the same number of

particles in the same size boxes), the names of these input files, the name of the file to which

output should be written, the number of levels in the tree structure, and the error epsilon

for the forces to be calculated.

The program assumes a particular structure of input file. See the README file in the

FMM directory for explicit details on this structure.



1.3.4 Results

Timings were done on an SGI with a 225 MHz Mips R10000 processor. While efforts were

made to increase the speed of the PW-FMM, it remains quite slow due to the large number

of computations, particularly sines, cosines, and exponentiations, that are required. For a

system of 8000 water molecules (24000 atoms)and an absolute accuracy of .001, the calcu-

lation after preprocessing takes 41 seconds, 19 of which is the direct interactions and 22 of

which is the PW-FMM itself. For a system of 27,000 water molecules, the calculation after

preprocessing takes 275 seconds, 216 seconds accounted for by direct interactions and 59 ac-

counted for by the PW-FMM. Note that the PW-FMM section of the code is approximately

linear with the number of particles. While these results may be slow, analysis of where in

the calculation the most time is consumed reveals that most time is used in the initialization

of multipole coefficients in each cluster and in the integration of each cluster (8 seconds, and

8 seconds respectively for the 8000 molecule case). The advantage of time being consumed

in these stages is that these steps are easily parallelizable.

The error in forces produced by this implementation can be reduced as low as 10 -12 .

2 Electronic Structure Calculations on Nucleic Acid

Bases

(point of contact: Galina Chaban)

Latasha Salter, Jackson State University

Electronic structure and spectral properties of tautomers of adenine were studied. Struc-

ture and vibrational spectra were computed in an effort to better understand the effects of

conformational structure and hydrogen bonding on vibrational frequencies and intensities.

The results should be helpful in possible identification of these molecules in space or interpre-

tation of laboratory measured infrared spectra of biological systems. In addition, electronic

excitation spectra and excited state proton-transfer reactions in adenine were investigated

using multi-configurational wave functions. Tautomerization processes, that occur as a result

of photoinduced proton transfer reactions, are believed to be the first step in the mutation

of DNA. Therefore, it is important to study the effect of the electronic excitation on the

proton-transfer process.

The Multi-Configurational Self-Consistent Field was utilized in this study. MCSCF is one

of the fundamental methods in electronic structure theory that accounts for non-dynamic

correlation. It is, especially, important for correct description of chemical reactions that

involve multiple bond breaking. Part of orbitals in a MCSCF wavefunction can be fixed to

be doubly occupied in all configurations. The orbitals are known as core because they are

inactive. Active orbitals are allowed to have variable occupation numbers. Virtual orbitals



are those that are always empty. In this study, an active space of eight electrons and eight

orbitals were included in correlation. This is denoted as MCSCF(8,8). All eight electrons and

eight orbitals included in the active space have pi character. In this study, MCSCF method

was applied in order to evaluate excited states in addition to the ground state. Dunning-

Hay double-zeta plus polarization basis set (DZP) was utilized for geometry optimizations.

In addition, multi-configurational second order perturbation theory (MCQDPT2) was used

to improve the energetics. All calculations were done utilizing the General Atomic and

Molecular Structure System (GAMESS). Four different tautomers of the adenine molecule

were studied. Each has the hydrogen atom connected to the different nitrogen atom of the

adenine rings. Both, the ground and first excited electrons states were considered. After

geometrical structures of the tautomers were optimized, second derivative Hessian matrices

were calculated and vibrational frequencies were obtained.

All MCQDPT2 results have not been, yet, obtained, as of now 3-adenine is more stable

on the ground and excited states for this theory. The suspected transition state going from

tautomer 9 to 3 has been located. No hypothesis has been formulated, as to why, 3-adenine

is more stable than 7-adenine on the ground and excited stated when using MCQDPT2.

For MCSCF calculations, 9-adenine was the most stable on the ground state and the second

most stable on the excited state. Also, 1-adenine was the least stable on, both, the ground

and excited states. To our dismay, 3-adenine was the most stable on the excited state using

this theory.

In addition relative energetics, we plan to evaluate barrier heights for proton-transfer

reactions between the different tautomers. Transfer between 9-adenine and 3-adenine is of

special interest, since the hydrogen atom can transfer directly. It would be of great interest

to know whether the barrier height is lower on the excited state compared to the ground

state. It would mean that proton-transfer reactions can proceed more readily on the excited

state than on the ground state.

3 Quantum Mechanical Studies of Modified

Naontubes

Carbon

(point of contact: Richard Jaffe)

Tomekia Simeon, Jackson State University

Carbon nanotubes contain a range of properties that make them well suited for use as

probe tips in applications such as Atomic Force Microscopy. Initially, silicon probes were
used for AFM. Further studies indicated that these tips place significant constraints on

potential lateral resolution and the pyramidal shapes of the probe restricts the ability of

these tips to access narrow and deep crevices. By attaching Multiwall Carbon Nanotubes

(MWNTs) to the ends of the Si tips the cylindrical geometry of the tips provided imaging
with an excellent resolution. In addition, carbon nanotubes elasticity buckle above a critical

force. This buckling is relevant because it prevents damage to delicate organic and biological



samples.Thus the preparation of a wide range of functionalized nanotubes should be possi-

ble to use in various imaging applications. However, except for their ends, carbon nanotubes

are chemically inert. To make chemically selective probes there is interest in studying sub-

stitution reactions for nanotube tips. If that chemistry can be controlled, scientists should

be able to design highly selective single-molecule probes.

The goal of this project was to determine the properties of carbon nanotubes with chem-

ically modified ends. Using quantum chemistry techniques, the calculations were carried out

for fragments of nanotubes with amide and ester groups attached.

For each functional group, the aim was to determine the lowest optimized energy for

each functional group, with respect to the corresponding nanotube size. For each size (16-0,

10-0, 10-10), the functional groups were at different torsional angles (e.g. 90, -90/ -90,90)

to obtain the significant measurements for concise analysis. Next, the energies were plotted

with respect to the different torsions.

In conclusion, it clearly seen how carbon nanotubes contain a range of properties that

make them well suited for use as probe tips in AFM applications. The preparation of a

wide range of functionalized nanotube tips could provide the model for molecular probes

with usage in many areas of chemistry and biology. Using calculation methods as previously

mentioned, scientists can modify nanotubes to create probes that can manipulate matter

at the molecular level. Future studies could possibly determine bond strengths for func-

tional groups and derive force fields for molecular dynamics calculations of functionalized

nanotubes in aqueous solutions. Furthermore, carbon nanotubes offer amazing possibilities

to create future nanoelectronics devices, computers, sensors and the recognition platforms

for detecting biomolecules.

4 Metabolic Profiling by Multidimensional NMR

(point of contact: Shoudan Liang)

Vivek Guruswamy, U.C. Berkeley

4.1 Introduction

Although the knowledge of genes and their similiar statement patterns is useful informa-

tion, it would be much more useful if there were a way to find a correlation between that

information and the different metabolic processes. If this could be done, then much more

light could be shed on the unknown functions that genes or groups of genes play in life. The

basis of this project is to realize the different roles genes play in the regulation of metabolic

processes. In order to do this, it has been proposed that different computational techniques

and multidimensional NMR be developed in order to help locate different metabolites. The

metabolites would help, since they are a direct characterization of its metabolic functions.

The data obtained from the NMR could be used with the DNA micro-array gene statement

data to help interpret the metabolites.
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Developingalgorithms which calculate the peaksin a two-dimensionalNMR spectrum
is a promising new step in metabolic profiling. The algorithms will be developedso that
they identify a group of peaks that are associatedwith a certain compound. In order to
help in creating thesealgorithms, 162-DimensionalNMR spectra havebeen developedby '
ProfessorPeng (University of ConnecticutHealth Center). Thesespectra each contain a
random mixture of 20 naturally occurring amino acids. Using the algorithms which will be
developed,the peaksin eachspectrummust be analyzedand groupedtogether to seewhich
peaksbelongto the sameaminoacid andhow muchof eachaminoacid are in eachspectrum.

4.2 Developing the Algorithm

A. Reading the Data. The first step in creating the algorithm required reading the binary

data given by Professor Peng. To make sure the data was read in correctly, it was plotted

and compared with the plots given by Professor Peng. To read the data, a simple program

(in C++) was created. This program first read in the 512 bit header file to pass it over to

get the raw data. In this code, header was defined as a 512 x 1 array.
Once the header had been read in, the real data from the NMR spectrum was read into

a 1024 x 4096 matrix. Each piece of data (each number) was depicted as a 4 byte character

string in order to properly read it in as binary data. The string was then converted to a

floating point and read into a matrix.

After this process was finished, the data had to be checked to see if it was read in

properly. It was checked by comparing the plotted data from the matrix, and the plots given

by Professor Peng.

The plotting was achieved by using MATLAB. The data from the matrix was first printed

out to a file. This file was read in using MATLAB and then plotted as a contour plot. The

plot created matched the plot given, which proved that the data had been read in correctly.

These plots can be seen in the attached figures (in contour plot and mesh plot).

B. Locating the Peaks. After creating the matrix, the next step was to locate the peaks

and find the position and height of the peak. To do this the matrix had to be run through a

loop to find the maximum values, which would be the peaks. Finding the maximum values

required a recursive function which went through the matrix and found maximum values.

Once the maximum value was found, a variable was created which equaled the 10(it is only

until 10% because everything below that is assumed to be noise) was "tagged" so that it

wouldn't be counted when the next peak was being searched for.

The function takes in the x y values for the maximum value, and the maximum value

itself. When the function is called, the recursive code looks in the four directions (up, down,

left, right) to see if that value is under and part of the peak. Although this method has

not been perfected, it gives a good idea of where the peaks are located. The function also

calculates the value of the width and length of the base of the peak. These values are used

in the next step. The loop searches for peaks until the defined number of peaks has been

reached.

C. Using the Conjugate Gradient to fit the Peaks Once the data (peak height and

coordinates of peaks) have been collected, they are used as input for the conjugate gradient
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algorithm. The codefor the conjugategradient algorithmwasusedfrom "Numerical Recipes
for C". It wasmodified to fit with the parametersof the NMR data. Although it wasnot
fully implemented,dueto conflicts in modifying the programfrom C to C++, ageneralidea
of how the algorithm shouldbe written wasachieved.

The conjugatealgorithm wasusedin order to optimizethe parametersestimatedfrom the
spectrumdata. The parametersinclude the dimensionsof the baseof the peak, the height
of the peak, and the coordinatesof the peak. In order to fit the peaks into the spectrum,
a cost function is needed.This cost function is equal to the gaussianfunction of the peak
subtractedfrom the intensity of the peak squared.The derivativesof the gaussianfunction
with respectto all the parameterswerealsocalculatedin order to usethe conjugategradient
algorithm.

4.3 Conclusion

Due to variousconflicts (codemodification, translation from C to C++), the entire program
couldnot becompleted. Howeverwhat wasachievedcanbeusedtowardsdevelopinga good
algorithm which is capableof locating and calculating 2D spectrum peaks.The analysisof
the spectrum peaksis a new stepin metabolic profiling which can lead to the discoveryof
unknown genefunctions.

4.4 References

PressWH, Teukolsky SA, Vetterlink WT, Flannery BP. Numerical Recipes in C: The Art

of Scientific Computing (Cambridge University Press, Cambridge, 1992) pp. 4200-424.

Schildt, Herbert. C++ : The Complete Reference, Third Edition. (McGraw-Hill Professional

Publishing, New York, 1998).

5 Structural Homology Prediction and MD Modeling

to Find GdETmod Structure

(point of contact: Michael New or Andrew Pohorille)

Ryan J. Weber, U.C. Santa Cruz

5.1 Introduction

Here we are trying to find the structure of the Tropomodulin gene family and since "all Tmod

isoforms are of nearly the same length and display very few gaps and insertions relative to

one another,'(Conley) we can focus on E-Tmod. This sub-category of Tropomodulin is

primarily expressed in striated muscle. In particular, the sequence used here will be denoted

GdETmod. However, an alignment of eight 1 similar Tmods, Lmods, and Cmods is used to

1Actually nine sequences are used for modeling the NH-terminus including CionaTmod
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locate more remote homologsthat can be used asinitial structural models for GdETmod.
Theseeight sequencesare DmTmod, DrSkTmod, GdETmod, HmSMLmod, MmCLmod,
RnNTmod, SsUTmod,and embCel. The full alignment of thesesequencesis given here as
createdby SAMs prettyalign:

HsSMLmod

MmCLmod

GdETmod

RnNTmod

SsUTmod

DrSkTmod

DmTmod

embCel

MSRVAKYRRQVS---EDPDIDSLLETLSPEEMEELEKEL

MSTFGYRRGLSK-YESIDEDELLASLSPEELKELEREL

............ MSYRKELEK-YRDLDEDKILGALTEEELRKLENEL

MALPFQKGLEK-YKNIDEDELLGKLSEEELKQLENVL

MALSFRKDLEK-YKDLDEDELLGNLSEVELKQLETVL

MSKSDP ..... RDIDEDAILRGLSAEELEQLDIEL

METSATTKTTTLTTPAKLYGKDLS-EYDDVDVESLLAQLSPE---EITILA

MSQAKTDYYSEEKTFSAPSANSQQGTQLPSKVYNKGLKDLEDNDIEGLLSSLSIDELEDLN

HsSMLmod

MmCLmod

GdETmod

KnNTmod

SsUTmod

DrSkTmod

DmTmod

embCel

70 80 90 100 110 120

I I I I I I

DVVDPDG-SVPVGLRQRNQTEKQSTGVYNREAMLNFCEKETKKLMQREMSMDESKQVETKT

EDIEPDR-NLPVGLRQKSLTEKTPTGNFSREALMAYWEKESQKLLEKERLGECGK ......

EELDPDNALLPAGLRQRDQTQKPPTGPFKREELMAHLEQQAKDIKDREDLVPFT .......

DDLDPESATLPAGFRQKDQTQKAATGPFDREHLLMYLEKEALEQKDREDFVPFT .......

DDLDPENALLPAGFRQKNQTSKSATGPFDREHLLSYLEKEALEHKDREDYVPYT .......

QELDPENTTLPAGFRQRDQTKKSPTGPFDRFALMDYLEKQAIEHKDRDDLVPFT .......

KEVDPDDNFLPPDQRNSYECTKEATGPLNRKQLIEHINKQAIETPDQPEFEPFVQ ......

NDFDPDNSMLPPSQRCRDQTDKEPTGPYKRDNLLKFLEDKAKTEKDWEDVCPYTP ......

HsSMLmod

MmCLmod

GdETmod

RnNTmod

Ssirrmod

DrSkTmod

DmTmod

embCel

130 140 150 160 170 180

I I I I I I

DAKNGQERGRDASKKALGPRRNSDLGKEPKRGGLKKSFSRDRDEAGGKSGEKPKEEKIIRG

.... VAEEDKEESEE--

.... GEKRGKAWIP--

.... GEKKGRVFIP .....

.... GEKKGKIFIP ....

.... GEKRGKAFVP ....

.... GKVRGKKWVPP--"

.... GQKRGKVYDSD

........ ELIFTESNSEVSEEVCTEDEEE .....

........ KQKPMDPVLE---SVTLEP ........

KEKPVETRKEE--KFTLDP--

KQKPVQTFTEE--KVSLDP-

KPGSGQIPADE---QITLEP-

PRDARDIEAEEQI .... AIDMG

......... SGRNSEEPENGKMEMPIEIDLDDDEE ......

190 200 210 220 230 240

I I I I I I

HsSMLmod IDKGRVRAAVDKKEAGKDGRGEEKAVATKKEEEKKGGDRNTGLSRDKDKKREEMKEVAKKE

MmCLmod .......... SQEEEEDSEEEEDSEEE ............ EETTEATKHINGTV

GdETmod ELEEALANASDAE ................... "LCDIAAIL

RnNTmod ELEEALASASDTE ........... LYDLAAVL

SsUTmod ELEEALTSASDTE .......... LCDLAAIL
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DrSkTmod ..................... ELEEALRNATDAE- MCDIAAIL

DmTmod EEYEHALNDATQEE-- IIDLAAIL

embCel ..................... ELECALVTAPEKD- LVDLAGIL

250 260 270 280 290 300

I I I I I I

HsSMLmod DDEKVKGERRNTDTRKEGEKMKRAGGNTDMKKEDEKVKRGTGNTDTKKDDEKVKKNEPLHE

MmCLmod SYNSVNTD

GdETmod GMHTLMSN

RnNTmod GVHNLLNN

SsUTmod GMHNLITN

DrSkTmod GMYTLMSN

DmTmod GFHSMMNQ.

embCel GMHNVLNQ

NSKPKTFKSQIENINLTNGNSGRTQRN ....

QQYYEALGSSTIV--NKEGLNSVIKPT ....

PKFDEETTNGQG---RKGPVRNVVKGE

TQFCNIVGSSNGV--DQEHFSNVVKGE ....

KQYYDALNTTGKI-ANTEGINSVVKPD .....

DQYHASLLNKGQP--VGLGWDGITKST ....

PQYYNALKGKTQDESTGTTFNGIMQSY .....

310 320 330 340 350 360

I I I I I I
HsSMLmod KEAKDDSKTKTPEKQTPSGPTKPSEGPAKVEEEAAPSIFDEPLERVKNNDPEMTEVNVNNS

MmCLmod

GdETmod

RnNTmod

SsUTmod

DrSkTmod

DmTmod

embCel

.......... SESPAAIHPCGNPTVIEDALEKIRNNDPDTTEVNLNNI

KYKPVPDEEP-NSTDVEETLKRIQNNDPDLEEVNLNNI

KAKPVFEEPP-NPTNVEASLQQMKANDPSLQEVNLNNI

KILPILDEPP-NPTNVEESLKRIKEDDVRLVEVNLNNI

VYKIYPEEPP-NDTNVEETLRYIQKNDNRLQEVNLNNI

QQKLFPMDPP-NNTDVEESIKRVKDDDSKLIDLNLNNI

VPRIVPDEPD-NDTDVESCINRLREDDTDLKEVNINNM

370 380 390 400 410 420

I I I I I I

HsSMLmod DCITNEILVRFTEALEFNTVVKLFALANTRADDHVAFAIAIMLKANKTITSLNLDSNHITG

MmCLmod ENITTQTLSRFAEALKENTVVKTFSLANTHADDAAAIAIADMLKVNEHITSVNVESNFITG

GdETmod MNIPVPTLKACAEALKTNTYVKKFSIVGTRSNDPVAFALAEMLKVNNTLKSLNVESNFISG

RnNTmod KNIPIPTLKEFAKALETNTHVRKFSLAATRSNDPVALAFAEMLKVNKTLKSLNVESNFITG

SsUTmod KNIPIPTLKDFAKALETNTHVKYFSLAATRSNDPVAAAFADMLRVNKNLKSLNMESNFITG

DrSkTmod PDIPIPTLKEIFEAMKRNTHVLCLSIAGTRSNDPVAYAIAEMLQANKNLQSLNIESNFITA

DmTmod KNISDEKLEQLFAALPQNEHLEVLSLTNVGLTDKTALLLAAAIEKSKTLRVLNVETNFISP

embCel KRVSKERIRSLIEAACNSKHIEKFSLANTAISDSEARGLIELIETSPSLRVLNVESNFLTP

430 440 450 460 470 480 4

I I I I I I

HsSMLmod KGILAIFRALLQNNTLTELRFHNQRH-ICGGKTEMEIAKLLKENTSLLKLGYHFELAGPRM

MmCLmod KGILAIMRALQHNTVLTELRFHNQRH-IMGSQVEMEIVKLLKENTTLLRLGYHFELPGPRM

GdETmod SGILALVEALQSNTSLIELRIDNQSQ-PLGNNVEMEIANMLEKNTTLLKFGYHFTQQGPRL
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RnNTmod AGILALVEALRENDTLTEIKIDNQRQ-QLGTAVEMEIAQMLEENSRILKFGYQFTKQGPRT

SsUTmod AGILALMDALRDNETLAELKIDNQRQ-QLGTAVELEMAKMLEENTNILKFGYQFTQQGPRT

DrSkTmod QGMMAIVKALRKNSTLIEIKIDNQRQ-KLGDSVEMEIASMLEKNSSIIKIGYHFTQQGPRA

DmTmod PVIVKLVQALLKCHTIEEFRASNQRSAVLGNKIEMEITDLVEKNSSLLRLGLHLEFNDARH

embCel ELLARLLRSTLVTQSIVEFKADNQRQSVLGNQVEMDMMMAIEENESLLRVGISFASMEARH

90 500 510 520 530 540 55

I I I I I I

HsSMLmod TVTNLLSRNMDKQRQKRLQEQRQAQEAKGEKKDLLEVPKAGAVAKGSPKPSPQPSPKPSPK

MmCLmod SMTSILTKNMDKQRQKRMQEQKQQEGHDGGAALRTKVWQRGTPG-SSPYASPRQSPWSSPK

GdETmod RASNAMMNNNDLVRKRRLAELNGPIFPKCRTGV--

KnNTmod RVAAAITKNNDLVRKKRVEGDRR-

SsUTmod RAANAITKNNDLVKKRKVEGDHQ"

DrSkTmod RAAMAITRNNVILRQQRVK

DmTmod RVAAHLQRNIDRIRVKRLNQRK ....

embCel KVSEALEKNYEKVRLRRLGKDPNV

0 560 570 580 590 600 610

I I I I I I I

HsSMLmod NSPK ...... KGGAPAAPPPPPPP--

MmCLmod VSKKVHTGRSRPPSPVAPPPPPPPPPLPPHMLPPPPPPPAPPLPEKKLITRNIAEVIKQQE

GdETmod

KnNTmod

SsUTmod

DrSkTmod

DmTmod

embCel

620 630 640 650 660 670

I I I I I I

HsSMLmod ........ LAPPLIMENLKNSLSPATQhKMGDKVLPAQEKNSKDQ-LLAA

MmCLmod SAQRALQNGQRKKKGKKVKKQPNNILKEIKNSLRSVQEKKMEDSSRPSTPQRSVHENLMEA

GdETmod

KnNTmod

SsUTmod

DrSkTmod

DmTmod

embCel

680 690

I I

HsSMLmod IRSSNLKQLKKVEVPKLLQ

15



MmCLmod

GdETmod

RnNTmod

SsUTmod

DrSkTmod

DmTmod

embCel

IRGSSIRQLRRVEVPEALR

5.2 Finding Related Structures

The exact amino acid sequence of length 79 is given here for a region of the carboxy-terminus

of GdETmod:

DEEPNSTDVEETLERIKNNDPKLEEVNLNNIRNIPIPTLKAYAEALKENS

YVKKFSIVGTRSNDPVAYALAEMLKENKVLKTLNVESNFISGAGILRLVE

ALPYNTSLVEMKIDNQSQPLGNKVEMEIVSMLEKNATLLKFGYHFTQQGP

RLKA

First it is important to find other sequences with a known structure that are similar

to this one. A sequence can be found based on its amino acid similarity with substitution

matrices such as PAM or BLOSUM, or according to pre-defined structural motifs that are

often expressed as regular expressions.

5.2.1 Cassie's Original Ranking: UCLA/DOE Fold Server

The UCLA/DOE fold server at

http ://fold. doe-mbi, ucla. edu/

is one method for finding likely structural matches for GdETmod with unknown structure.

It returns a list of 500 top for each member of the hand-tuned alignment of eight different

Tmods, Cmods, and Lmods. The original algorithm used by the UCLA/DOE fold server

would look for small motif matches and it would return E-values and numerical rankings for

these top 500 hits.
Cassie made the first run and compiled the summation of all the top 20 rankings into

a table, giving the value 21 to those not in the top 20 of all eight query sequences. This

clearly showed that 2bnh was the closest match on all structures except Spdo. In addition,

lgky also scores quite highly. However, these two choices are based on ranking not Z-score.

Figure 1 shows lgky and Figure 2 shows 2bnh.

5.2.2 New and Questionably Improved UCLA/DOE Fold Server

Recent changes to the folder server, which are beyond our control, cause it to only look for

a global match and it is therefore not as sensitive to smaller motif matches. The top 500

matches that the folder server returns for each of the query sequences are summed by rank,
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Figure 1: 1GKY

Figure 2: 2BNH

as Cassie did to get 2bnh and lgky. Here are the top 5 scoring proteins with known structure

and the scores each of the eight query sequences get on them. The Z-scores are shown in

parenthesis and the rankings are in square brackets. These top 5 are chosen based on the

summation of Z-scores:

2tsl01:8 (0.023894) [170]

DmTmod.500 (0.00373351) [1]

DrSkTmod.500 (0.00282138) [14]

GdETmod.500 (0.0025288) [52]

HsSMLmod.500 (0.00307739) [3]

MmCLmod.500 (0.00322639) [5]

RnNTmod.500 (0.00285677) [11]

SsUTmod.500 (0.003277) [3]
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embCel.500 (0.00237277) [81]

2chr02:8 (0.0232777) [130]

DmTmod.500 (0.00301463) [6]

DrSkTmod.500 (0.00296071) [6]

GdETmod.500 (0.00290694) [14]

HsSMLmod.500 (0.00242952) [53]

MmCLmod.500 (0.00275897) [28]

RnNTmod.500 (0.0027975) [15]

SsUTmod.500 (0.00318337) [5]

embCel.500 (0.00322603) [3]

ladlBO: 8 (0.0228929) [228]

DmTmod.500 (0.00335088) [2]

DrSkTmod.500 (0.00258917) [29]

GdETmod.500 (0.00241064) [75]

HsSMLmod.500 (0.00290385) [7]

MmCLmod.500 (0.00235994) [96]

RnNTmod.500 (0.00289233) [10]

SsUTmod.500 (0.00325359) [4]

embCel.500 (0.00313252) [5]

lrpxAO: 8 (0.022691) [160]

DmTmod.500 (0.00262041) [28]

DrSkTmod.500 (0.00263561) [26]

GdETmod.500 (0.00300148) [9]

HsSMLmod.500 (0.00291542) [6]

MmCLmod.500 (0.0032492) [3]

RnNTmod.500 (0.00259599) [36]

SsUTmod.500 (0.00307804) [7]

embCel.500 (0.00259485) [45]

lctqAO: 8 (0.0226376) [196]

DmTmod.500 (0.00245809) [53]

DrSkTmod.500 (0.00256595) [32]

GdETmod.500 (0.00335598) [2]

HsSMLmod.500 (0.00255678) [29]

MmCLmod.500 (0.00318079) [83

RnNTmod.500 (0.00301087) [6]
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SsUTmod.500 (0.00297271) [11]

embCel.500 (0.00253641) [55]

To summarize, the top 5 matching sequences with known structure from Pdb are: 2tsl01,

2chr02, ladlB0, lrpxA0, lctqA0. These structures are illustrated in Figure 3. None of the

structures clearly scores best on all of the Tmods, Cmods, and Lmods. This is also illustrated

in Figure 4. It shows the -log(Evalues) for each of the 500 hits, with respect to each of the

eight novel sequences. Picking the best matches based on rank, instead of Z-score, produces

similar results.

Strangely, the structures 2bnh and lgky do not appear in any of the top 500 lists with

these new runs on the UCLA/DOE fold server. Cassie's confidence in the original scoring

(using the smaller local matches and a cutoff" of 21 for the top 20 hits) allows us to continue

by comparing the behavior of GdETmod when threaded onto 2bnh and lgky.

5.3 Building the Model

Using Modeller we create the models that will be used in minimization and MD for the

carboxy-terminus of GdETmod. This process requires an alignment between the GdETmod

sequence and the model sequence (either lgky or 2bnh). Modeller includes a tool for auto-

matically creating an alignment but here we rely on hand-crafted alignments guided by the

conservation of predicted secondary structure elements.

The input file given to Modeller for 2bnh also shows the alignment:

>P1;eTmod

sequence:eTmod

DEEPNSTDVEETLERIKNNDPKLEEVNLNNIRNIPIPTLKAYAEALKENS

YVKKFSIVGTRSNDPVAYALAEML-KENKVLKTLNVESNFISGAGILRLV

EALPYNTSLVEMKIDNQSQPLGNKVEMEIVSMLEKNATLLKF .... GYHF

TQQGPRLRA*

>Pl;2bnh

structureX:2bnh:232: :387: :

SNGLGDAGIAELCPGLLSPASRLKTLWLWECD-ITASGCRDLCRVLQAKE

TLKELSLAGNKLGDEGARLLCESLLQPGCQLESLWVKSCSLTAACCQHVS

LMLTQNKHLEELQL--SSNKLGDSGIQELCQALSQPGTTLRVLCLGDCEV

TNSGCSSLA*

The numbers after 2bnh refer the the starting and ending amino acid positions in the pdb

file for 2bnh. Similarly, the input file for lgky is:

>Pl;eTmod

sequence:eTmod

DEEPNSTDVEETLERIKNNDPKLEEVNLNNIRNIPIP ........... TL
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KAYAEALKENSYVKKFSIVGTRSNDPVAYALAEMLKENKVLKTLNVESNF

ISGAGILRLVEALPYNTSLVEMKIDNQSQPLGNKVE---MEIVSMLEKNA

TLLKFGYHFTQQGPRLRA*

>Pl;igky

structureX:igky:7: :166: :

ISGPSGTGKSTLLKKLFAEYPDSFGFSVSSTTRTPRAGEVNGKDYNFVSV

DEFKSMIKNNEFIEWAQFSGNYYGSTVASVKQVSKSGKTCILDIDMQG--

VKSVKAIPELNARFLFIAPPSVEDLKKRLEGRGTETEESINKRL

SAAQAELAYAETGAHDKV*

Notice the relatively large gap in the eTmod when aligned to the lgky and another smaller

gap in the lgky sequence itself. Only a _w smaller gaps exist with the 2bnh alignment

shown above. This provides some confidence that the 2bnh is actually a closer structure,

but it is also an artiNct of the alignment algorithm and parameters.

The actual Modeller script is very simple:

INCLUDE

SET ALNFILE =

SET KNOWNS =

SET SEQUENCE =

'other.all'

'Igky'

'eTmod'

SET ATOM_FILES_DIRECTORY = './'

SET STARTING_MODEL = 1

SET ENDING_MODEL = 1

CALL ROUTINE = 'model'

_r alignment file"other.all" and with 'lgky'replaced by '2bnh' Nrthat protein's modelof

eTmod.

5.4 Protonation and Equalizing the Charge

Before minimizing the new models it is necessary to add protons using the command

protonate -d $AMHOME/dat/PROTON_INF0 < prot.pdb > prot.H.pdb

Given the input file "prot.pdb", representing one of the two eTmod threaded models,

protonate outputs "prot.H.pdb". The environment variable $AMHOME must be defined

as the Amber home directory.

The program xLeap can add sodium (Na+) ions to the variable representing the input

file "prot.H.pdb" called prot with the command:

addIons prot Na+ 3

In this case three are needed to balance out the charge for both the model based on 2bnh

and the model based on lgky. The final structure of prot is then converted into a topology

file (prmtop) and a coordinate file (prmcrd) using xLeap. The initial threaded structures

are shown in Figure 5 and Figure 6 in cartoon format with the colors corresponding to their

secondary structures. These are used as input to Sander for minimization.
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5.5 Minimization

Thirty iterations of 2500 step minimization are performed using the Sander input script

shown here:

# Minimization Script (title is necessary)

&cntrl

imin=l,

nmrmax=O,

ntpr=20,

ntb=O,

idiel=O,

dielc=80.O,

cut=f2.0,

ntnb=l,

nsnb=25,

scnb=2.0,

scee=l.2,

maxcyc=2500,

ntmin=O,

ncyc=2500,

dxO=O.Ol,

dxm=0.5,

drms=.l,

ntc=l,

&end

//do minimization

//don't do nmr

//print energy info every 20 steps

//no periodicity

//distance dependent dialectic

//dielectric value

//non-bonded cutoff dist. (d)

//write non-bonded pair list (d)

//write pair-list every 25ns (d)

//vdw divisor (d)

//electrostatic interaction divisor (1994 d)

//2500 cycles of minimization

//full conjugate gradient minimization

//Only steepest descent

//initial step length(d)

//maximum allowed step length (d)

//stopping criteria

//Don't use SHAKE (d)

The comments must be removed from the script before running it and the (d) in the

comments refers to a default option that should be set that way initially if not explicitly

set in the input script. For a more detailed description of the scripting commands see the

Modeller4 manual.

Output from the minimization runs is shown for the lgky model in Figure 7 and the

2bnh model in Figure 8. One key point is that the lgky model was minimized with all bonds

involving hydrogen constrained and SHAKE on. This is not the best thing to do, but it

most likely has little effect in this case.

5.6 Molecular Dynamics

The MD process can be divided into two phases. The first heats the protein up and the

the second phase equilibrates the heated structure. Heating too fast can make the entire

structure simply fall apart, forming a glob.
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5.6.1 Heating

The heating process is divided into six iterations, where the total temperature change is from

OK to 300K. Each iteration changes the temperature 50K over a period of 10 picoseconds

and rescaling is performed in between iterations. The script used for the first iteration of

this process is:

# MD Heating: 10.0 ps

&cntrl

imin=O, nrun = 10,

ntx=l, irest=O, ntrx=l,

ntxo=l, ntpr=25, ntwr=lO00, ntwx=lO0, ntwe=lO0,

ntf=2, ntb=O, dielc=80.O, idiel=O, scnb=2, scee=l.2,

nstlim=lO00, ntcm=l, nscm=O, t=O.O, dt=O.O01,

tempO=50.O, tempi=O.0, ntt=O, dtemp=5.0,

ntp=O, taup=0.2,

ntc=2, toi=0.0005,

cut=12.0, nsnb=25,

&end

One small difference in subsequent iterations is the value of "ntx" is changed from 1 to

5 and the value of "irest" is changed from 0 to 1. This is small change based only on the

input format expected when restarting a heating run as opposed to using the final output of

minimization. It has no effect on the underlying MD algorithm.

Output from the heating runs is shown in Figure 10 and Figure 11 for the lgky model

and the 2bnh model respectively. Already, the model based on the lgky has lost a lot of

its structure and the 2bnh model has lost some of the beta sheets in the center. The total

energy and temperature throughout the process is shown for the lgky model in Figure 9.

5.6.2 Equilibration

After heating, equilibration is necessary hopefully find a stable global minimum energy

structure (or show that none exists). This process is performed in two iterations with the

same Sander script:

# MD Equilibration: I00.0 ps

&cntrl

imin=O, nrun=lO,

ntx=5, irest=l,

ntpr=lO0, ntwr=lO0, ntwx=lO0,

nsnb=25, cut=f2.0, cut2nd=14.0, scee=l.2,

ntb=O,

nstlim=5000,

ntt=l, tempi=297.0, tempO=29Z.O, tautp=0.2,
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ntf=2, ntc=2, dtemp=5.0,
dt=O.O02, ntwxm = O,

&end

Unfortunately none of these simulations were sucessful. The scripts were tested on what

turned out to be the wrong structure and they worked, but not with the output of these

particular heating runs. This may be due to the escaping sodium ions that make the output

pdb files impossible to view without explicity removing them. Perhaps another method of

equalizing the charge is more appropriate. Therefore there was not possible to create pdb

output for these runs.

5.7 Amino-Terminus

Now as a side note, we attempt to find the structure for the Amino-terminus half of all the

eight or nine query sequences. Contact Cassie Conley for the full-alignment. Here are the

top 5 scoring proteins with known structure and the scores each of the eight query sequences

get on them. The Z-scores are shown in parenthesis and the rankings are in square brackets.

lqhfA0: 8 (0.0228278) [401]

DmTmod.500 (0.00328202) [2]

DrSkTmod.500 (0.00307936) [4]

GdETmod.500 (0.00244043) [86]

HmSMLmod.500 (0.00271905) [51]

MmCLmod.500 (0.00396204) [2]

RnNTmod.500 (0.00276913) [21]

SsUTmod.500 (0.00214828) [149]

embCel.500 (0.00242748) [86]

lfrb00:8 (0.0210617) [479]-

DmTmod.500 (0.00230092) [87]

DrSkTmod.500 (0.0025925) [37]

GdETmod.500 (0.00227617) [125]

HmSMLmod.500 (0.00258113) [66]

MmCLmod.500 (0.00362146) [7]

RnNTmod.500 (0.00237861) [68]

SsUTmod.500 (0.00261374) [50]

embCel.500 (0.00269721) [39]

3pgmO0:8 (0.0215033) [533]

DmTmod.500 (0.00287323) [8]

DrSkTmod.500 (0.00294547) [93
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GdETmod.500(0.00246389) [78]
HmSMLmod.500(0.00237424) [117]
MmCLmod.500(0.00362146) [6]
RnNTmod.500(0.00220111) [130]
SsUTmod.500(0.00212441) [160]
embCel.500 (0.0028995) [25]

lc9wAO: 8 (0.0201347) [628]

DmTmod.500 (0.00245276) [59]

DrSkTmod.500 (0.00236125) [87]

GdETmod.500 (0.00226443) [128]

HmSMLmod.500 (0.00236439) [125]

MmCLmod.500 (0.003349) [10]

RnNTmod.500 (0.00242595) [60]

SsUTmod.500 (0.0026018) [52]

embCel.500 (0.0023151) [107]

lzinO0:8 (0.0207094) [647]

DmTmod.500 (0.00230092) [85]

DrSkTmod.500 (0.00278724) [22]

GdETmod.500 (0.00247563) [76]

HmSMLmod.500 (0.00192107) [244]

MmCLmod.500 (0.00217969) [141]

RnNTmod.500 (0.00314782) [2]

SsUTmod.500 (0.00341338) [5]

embCel.500 (0.00248368) [72]

And here are the top 5 summed results using the normalized Z-scores instead of the rank:

lqhfAO: 8 (0.0228278) [401]

DmTmod.500 (0.00328202) [2]

DrSkTmod.500 (0.00307936) [4]

GdETmod.500 (0.00244043) [86]

HmSMLmod.500 (0.00271905) [51]

MmCLmod.500 (0.00396204) [2]

RnNTmod.500 (0.00276913) [21]

SsUTmod.500 (0.00214828) [149]

embCel.500 (0.00242748) [86]

3pgmO0:8 (0.0215033) [533]
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DmTmod.500 (0.00287323) [8]

DrSkTmod.500 (0.00294547) [9]

GdETmod.500 (0.00246389) [78]

HmSMLmod.500 (0.00237424) [117]

MmCLmod.500 (0.00362146) [6]

RnNTmod.500 (0.00220111) [130]

SsUTmod.500 (0.00212441) [1603

embCel.500 (0.0028995) [25]

IfrbO0:8 (0.0210617) [479]

DmTmod.500 (0.00230092) [87]

DrSkTmod.500 (0.0025925) [37]

GdETmod.500 (0.00227617) [125]

HmSMLmod.500 (0.00258113) [66]

MmCLmod.500 (0.00362146) [7]

RnNTmod.500 (0.00237861) [68]

SsUTmod.500 (0.00261374) [50]

embCel.500 (0.00269721) [39]

lzinO0:8 (0.0207094) [647]

DmTmod.500 (0.00230092) [85]

DrSkTmod.500 (0.00278724) [223

GdETmod.500 (0.00247563) [76]

HmSMLmod.500 (0.00192107) [2443

MmCLmod.500 (0.00217969) [141]

RnNTmod.500 (0.00314782) [2]

SsUTmod.500 (0.00341338) [5]

embCel.500 (0.00248368) [72]

lvom05:8 (0.0203922) [1012]

DmTmod.500 (0.00198556) [198]

DrSkTmod.500 (0.00265336) [33]

GdETmod.500 (0.0029684) [I0]

HmSMLmod.500 (0.00147775) [414]

MmCLmod.500 (0.0031333) [21]

RnNTmod.500 (0.00299398) [7]

SsUTmod.500 (0.00344918) [4]

embCel.500 (0.00173071) [325]
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So to summarize, choosing the minimum sum of ranks from the set of proteins that are

in the intersection of all eight top 500 lists gives top 5: lqhfA0, lfrb00, 3pgm00, lc9wA0,

and lzin00, in that order. Choosing the maximum sum of normalized Z-scores from all the

proteins in the union of the eight top 500 lists gives top 5: lqhfA0, 3pgm00, lfrb00, lzin00,

and lvom05 in that order. The top hit, lqhfA0, is still best for both scoring methods and the

second and third hits are identical but in reverse order. However, there doesn't appear to be

an obvious connection between these top scoring structures. Graphs of the -log(Evalues)

for each of the eight sequences and CionaTmod are shown in Figure 12 with a line drawn

horizontally, dividing the top 10 hits from the others. The top two structures according to

Z-score (lqhf and 3pgm) are given in Figure 13 and Figure 14.

5.7.1 Pfam-Vector

As a side experiment, we scored a few of the novel sequences against 2866 HMMs built

from the Pfam-A seeds. The -log(Evalues) are compared in Figure 15 for HsSMLmod,

MmCLmod, and embCel. The top 5 Pfam IDs for each of the queries are shown here:

HsSMLmod: PF02674, PF01547, PF00854, PF00915,

MmCLmod : PF00118, PF00533, PF02665, PF01486,

embCel : PF02009, PF00817, PF02489, PF01068,

PF00251

PF01047

PF01476

Unfortunately there is no clear line between the best hits and the background noise, and the

intersection between the three sequences top 5 is empty. However, looking further into these

Pfam families may uncover some connection.
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Figure 3: These five structures are tile highest scoring, according to the maximum sum of

the Z-scores from eaxzh of the eight query sequences, for the carboxy-terminus of GdETmod.

They all share some beta strands in the center with alpha helices around them, but they are

still distinctly different. PDB is only concerned with the first 4 letter of each identifier so

the last 2 characters are ignored.
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Figure 4: For each of tile eight query sequences, the -lo9(Evalues) are plotted against the

indices of the top 500 hits. The horizontal line indicates the divider between the top 10 hits

and the rest.

Figure 5: Initial model created by threading the GdETmod C-terminus onto the structure

offhe m_tching region from lgky. This is the odd structure since it is differentfrom Cassie's

other high ranking matches such as ld0B and lxum
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Figure 6: The starting model createdby threading the GdETmod C-terminusonto the
structureof the matchingregionfrom 2bnh. This is the predictedbeststarting modelsince
it is similar to all the other top hits (exceptlgky).

Figure7: This figureshowsthe minimizedstructurefor the C-terminuseTmodmodel,based
oil the structureof lgky.

Figure8: This figure showsthe minimizedstructurefor the C-terminuseTmodmodel,based
on the structureof 2bnh.
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Figure 9: This figure shows the total energy and temperature during the heating portion of

minimization. The idea is to slowly add heat to the protein and rescale each 10 picosecond.

Figure 10: This figure shows the structure for the C-terminus eTmod model of lgky, after

heating it to 300K somewhat slowly, over 60 picoseconds.
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Figure 11: This figureshowsthe structurefor the C-terminuseTmodmodel of 2bnh, after
heatingit to 300K somewhatslowly,over60picoseconds.
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Figure 12: These are the compiled results for the top 500 hits from the UCLA/DOE fold
server. A line divides the top 10 hits from the rest for each of the eight original sequences

and CionaTmod.

31



t_ oo

_o

°°



gl • o og D •
• ee • . _ • 8 • • o o

_-I ' ,°o .',* ,.. oo "°,_'°- . °°; "•. ° °° ° , . " I
• ° o• e _o -_ • • o _Jo -° • ° w• e• • • 6_ ° o° e• •

•4b •

o _o laco I_oo _ moo

o • ° o o o

© °o • o ° o • ° o o • o • •

N _ o° • 5,% _ • 0* * •° O

o so• _ooo 1so• zo_ _)o

PNMk,_

lelbCel

• °

ooQ• ° • ° °

Figure 15: The -log(Evalues) are compared for HsSMLmod, MmCLmod, and embCel.

None of the hits are clearly higher than all the rest for all three sequences.
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