ANALYTICAL METHOD FOR MAPPING FUNCTION TO FAILURE DURING HIGH-RISK COMPONENT DEVELOPMENT

Irem Y. Tumer, Ph.D.
Research Scientist
Computational Sciences Division
NASA Ames Research Center
Moffett Field, California 94035
Phone: 650 604 2976
Email: itumer@mail.arc.nasa.gov

Robert B. Stone, Ph.D.
Assistant Professor
Department of Basic Engineering
University of Missouri-Rolla
Rolla, MO 65409-0210
Phone: 573 341 4086
Email: rstone@umr.edu

ABSTRACT

Communicating failure mode information during design and manufacturing is a crucial task for failure prevention. Most processes use Failure Modes and Effects types of analyses, as well as prior knowledge and experience, to determine the potential modes of failures a product might encounter during its lifetime. When new products are being considered and designed, this knowledge and information is expanded upon to help designers extrapolate based on their similarity with existing products and the potential design tradeoffs. This paper makes use of similarities and tradeoffs that exist between different failure modes based on the functionality of each component/product. In this light, a function-failure method is developed to help the design of new products with solutions for functions that eliminate or reduce the potential of a failure mode. The method is applied to a simplified rotating machinery example in this paper, and is proposed as a means to account for helicopter failure modes during design and production, addressing stringent safety and performance requirements for NASA applications.

COMPONENT FAILURES AND FUNCTIONALITY

Failures in rotating machinery components in high-risk aerospace applications present unacceptable safety and performance problems. In this work, methods to understand and predict the potential failure modes are viewed as essential to advancing the field of fault monitoring and failure prevention. A novel approach is presented as a potential design-aid tool to help with this goal, by exploring the relationship between failure modes and the functionality of components. The underlying premise of the research is that failure modes ultimately correlate back to the function that a particular component addresses. If the link between failure mode and function can be established, then component solutions for each function can be designed to eliminate or significantly reduce a given failure mode. In this light, the following subsections introduce the concepts of failure modes and component functionality, leading to the development of an analytical method for design use.

Failure Information for Design

An important issue in using design-aid techniques is information feedback about all potential failure modes and their causes. Feedback of crucial failure information into the design stage is essential in producing high-quality parts that must satisfy stringent performance and safety requirements. Such is the case with high-risk aerospace components. As shown in Figure 1, a typical feedback loop into design must consider all phases...
where failures and variations can be introduced, including design, manufacturing and assembly, tooling and fixture, and operational considerations. The focus here is on operational considerations that lead to unacceptable failure modes when these components are placed in operation. This information is commonly gathered from experience and previous designs; their significance is typically re-evaluated for each application, depending on the design, manufacturing and assembly, and operational considerations. When designing a new product, or modifying existing products for new environments, it is often up to the designers to assess and draw conclusions about the similarity between different designs, components, and failure modes. To help with this daunting task, this work aims to provide a means to systematically and correctly identify and eliminate potential failure modes, based on the functionality of machinery components.

Mechanical Failures in Design The potential of mechanical failures is a crucial concern in design. Reliability, maintenance, and satisfactory performance of machines and systems depend heavily upon understanding, recognizing, and preventing/eliminating mechanical failures (Collins and Hagan, 1976; Mitchell, 1993; Smith, 1999). Mechanical failure may be defined as any change in size, shape, or material properties of a structure, machine, or machine component that renders it incapable of satisfactorily performing its intended function (Collins, 1993). Success in designing competitive products while preventing premature mechanical failures can be achieved only by recognizing and evaluating all potential failure modes. To this end, the designer must be acquainted with an array of failure modes observed in the field, and with the conditions leading to these failures.

In this work, failures are defined in terms of a basic set of standard mechanical failure modes that all components will be subject to during their lifetime. To define this vector of failures, failure modes presented in Collins (Collins, 1993) are adopted, summarized in Table 1. All new systems will be mapped to match these standard modes.

Failure Prevention To help with feedback from operation and production into design, it is crucial to provide designers and manufacturing engineers with techniques they can use to effectively account for the existing and potential failure modes and mechanisms. At the design and development stages, standard reliability tools are used for a thorough coverage and understanding of all possible and potential failure modes, lengthening the development time of such components considerably. At the manufacturing stage, quality control techniques are used to inspect components (some at a 100% rate) to assure satisfactory and safe operation, making the manufacturing of such components costly and time-consuming (Carter, 1997; Henley and Ku-
mamoto, 1992; Phadke, 1989). Despite these lengthy and costly steps during production, failures still occur at an unacceptable rate when components are placed in their operational states. The increasing pressure in the aerospace industry to reduce the production and development cycle and increase the life cycle of crucial aircraft components, while keeping safety the number one priority, requires more stringent steps during the development of high-risk components.

There are several supporting techniques that are often used by designers to account for potential failures (Carter, 1997). Examples (commonly used at NASA) are checklists, FMEA/FMECA, and FTAs. Checklists are listings of all relevant failure modes and mechanisms. They act as reminders to ensure that the design has been assessed as adequate to meet all possible circumstances. Although often the only source of such information, checklists are typically incomplete and do not provide the complete picture of the mechanisms for failure. A systematic method for drawing up an exhaustive list is lacking from the literature (Carter, 1997). In other words, there is no “algorithm” that enables one to draw up a comprehensive checklist for a specified part. This results in checklists being unreliable design tools.

FMEA (failure modes and effects analysis) and FMECA (failure modes effects and criticality analysis) are tools used to first identify each failure mode at some designated level (e.g., component, sub-assembly, machine), and then trace the effect of the failure through all the higher levels of the hierarchy in turn (Carter, 1997). It is used to establish whether each failure mode has unacceptable consequences on the system as a whole. The problem with this method is that, contrary to what the name implies, FMEA does not tell the designers what to do at the lowest level, if the consequences are unacceptable. While these traditionally-used methods are effective for identifying failure modes related to components, a common complaint is the difficulty in identifying system-wide failure modes (Bowles, 1998; Eubanks et al., 1997; Henning and Paasch, 2000). Traditional FMEA needs a systematic approach capable of capturing a wider range of failure modes, applicable early in the design stage (Eubanks et al., 1997).

FTA (fault tree analysis) performs the reverse. It starts with an undesirable top event and isolates possible causes at each successive lower level of the hierarchy in order to establish the prime cause(s). FTA is more powerful in the sense that it forces the designers to consider all the causes of unacceptable top events. However, the analysis is not pursued far enough, and the prime causes are not revealed (Carter, 1997). Although a well-accepted technique, large system-level fault trees are often difficult to understand, and difficult to build due to the complex logic involved (Henley and Kumamoto, 1992). The weakness of both FMEA and FTA is that the basic sources of unacceptable behavior cannot be identified (Carter, 1997).

Functional Modeling for Design

Functional modeling is a key step in the product design process, whether original or redesign. By developing a formal theory of functional modeling, the intent is to push functional modeling into the realm of repeatable, and even computable, engineering analysis. Stone et al. have had substantial success with their functional model derivation and common functional language as demonstrated by inter-institutional experimental results (Stone and Wood, 2000; Stone et al., 2000). In this work, their common functional language will be adopted for defining elemental functions.

From Value Engineering to Functional Basis

All functional modeling begins by formulating the overall product function. By breaking the overall function of the device into small, easily solved sub-functions, the form of the device follows from the assembly of all sub-function solutions. The lack of a precise definition for small, easily solved sub-functions casts doubt on the effectiveness of prescriptive design methodologies (Pahl and Beitz, 1988; Ullman, 1997; Ulrich and Eppinger, 1995) among engineers in more analytical fields. For instance, within a given methodology how does one reconcile different functional models of a product generated by different designers? Typically, such differences arise from semantics or poor identification of product function. The development of a standard set of functions and flows, referred to here as a functional basis, and a systematic approach to functional modeling offer the best case to erase remaining doubt.

Much of the recent work on a functional basis stems from the results of value engineering research that began in the 1940s (Akiyama, 1991; Miles, 1972). Value analysis seeks to express the sub-functions of a product as an action verb-object pair and assign a fraction of a product’s cost to each sub-function. Sub-function costs then direct the design effort (specifically, the goal is to reduce the cost of high value sub-functions). However, there is no standard list of action verbs and objects. Recognizing that a common vocabulary for design was necessary to accurately communicate helicopter failure information, Collins et al. (Collins and Hagan, 1976) develop a list of 105 unique mechanical functions. Here, the mechanical functions are limited to helicopter systems and do not utilize any classification scheme.

Function-based design methodologies have also pushed the development of functional languages in order to provide a clear stopping point in the functional modeling process and a consistent level of detail. Pahl and Beitz (Pahl and Beitz, 1988) list five generally valid functions and three types of flows, but they are at a very high level of abstraction. Hundal (Hundal, 1990) formulates six function classes complete with more specific functions in each class in order to make function-based design computable. Another approach uses the 20 subsystem representations from living systems theory to represent mechanical design functions...
A Functional Basis for Design Building on the above work, the concept of a functional basis is developed by Stone and Wood (Stone and Wood, 2000; Stone et al., 2000) which significantly extends previous research (Little et al., 1997; Otto and Wood, 1997). A functional basis is a standard set of functions and flows capable of describing the mechanical design space. The work expands the set of functions and groups them into eight classes. This initial functional basis subsumes all other classification schemes discussed above along with the 30 basic sub-functions found in TIPS. The standard list of functional descriptions is needed such that the matrices can be shared among different engineers. Summarized in Tables 2, 3, and 4, the functional basis is a vocabulary of function and flow words which may be combined to form a functional description (Stone et al., 2000). A functional description has a verb-object format where the verb is selected from the function list in Table 4, and the object is selected from the flow lists in Tables 2 and 3. The function and flow sets are divided into different categorizations, i.e., class, basic, sub-basic (or flow-restricted). Each successive categorization allows greater levels of detail to be captured in the functional description. Typically, the basic level is sufficient to convey the elemental functions at the basic level.

<table>
<thead>
<tr>
<th>Class</th>
<th>Basic</th>
<th>Subbasic</th>
<th>Complements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Human</td>
<td>Hand, foot, head, etc.</td>
<td></td>
</tr>
<tr>
<td>Gas</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Liquid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solid</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Signal</td>
<td>Status</td>
<td>Auditory</td>
<td>Tone, Verbal</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Tactile</td>
<td>Temp, Pressure, Roughness</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Taste</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Visual</td>
<td>Position, Displacement</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Class</th>
<th>Basic</th>
<th>Subbasic</th>
<th>Bond Graph Complements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Material</td>
<td>Energy</td>
<td>Force</td>
<td>Motion</td>
</tr>
<tr>
<td>Acoustic</td>
<td>Pressure</td>
<td>Particle vel.</td>
<td></td>
</tr>
<tr>
<td>Biological</td>
<td>Pressure</td>
<td>Volumetric flow</td>
<td></td>
</tr>
<tr>
<td>Chemical</td>
<td>Affinity</td>
<td>Reaction rate</td>
<td></td>
</tr>
<tr>
<td>Electrical</td>
<td>Elect. force</td>
<td>Current</td>
<td></td>
</tr>
<tr>
<td>Electromagn.</td>
<td>Intensity</td>
<td>Velocity</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Solar</td>
<td>Intensity</td>
<td></td>
</tr>
<tr>
<td>Hydraulic</td>
<td>Pressure</td>
<td>Volum. flow</td>
<td></td>
</tr>
<tr>
<td>Magnetic</td>
<td>Magn. force</td>
<td>Magn. flux rate</td>
<td></td>
</tr>
<tr>
<td>Mechanical</td>
<td>Torque</td>
<td>Angular vel.</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Force</td>
<td>Linear vel.</td>
<td></td>
</tr>
<tr>
<td>Pneumatic</td>
<td>Pressure</td>
<td>Mass flow</td>
<td></td>
</tr>
<tr>
<td>Radioactive</td>
<td>Intensity</td>
<td>Decay rate</td>
<td></td>
</tr>
<tr>
<td>Thermal</td>
<td>Temperature</td>
<td>Heat flow</td>
<td></td>
</tr>
</tbody>
</table>

Paper Focus In this work, tools are sought to make use of known failure modes and the required functionality of the components, across components and systems. It is the authors’ view that components have a “commonality” they share at some basic level in terms of their failure modes and functionality. This basic level of commonality is explored in this work by decomposing the knowledge about failures and functionality via matrix manipulations. Once the common modes of failures at the basic levels are determined, a larger family of components/systems can be considered. Using this generalization, this work proposes to formalize the process of feeding failure and reliability information into the design and manufacturing phases (Stone and Wood, 2000; Stone et al., 2000; Tumer et al., 2000a; Tumer and Huff, 2000). In this paper, the initial development of such a function-failure method is presented. The paper first presents the theoretical basis for the proposed method, followed by a detailed demonstration of the mechanics of the method by using a simple example in rotating machinery. Future work will establish this method as a design tool for real-world applications, including the domain of helicopter failures.

THEORETICAL BACKGROUND The method proposed in this work is based on two methods previously presented by the authors. The first method was presented by Tumer et al. (Tumer et al., 2000a; Tumer et al., 2000b) to extract high-variance modes from product surface profiles. This method is extended in this work to isolate the failure modes with the highest variance, to determine tradeoffs during component development. The second method was presented by Stone et al. (Stone and Wood, 2000; Stone et al., 2000) to derive the similarity between different designs based on functionality, and used to provide a repository for designers. This method is extended in this work to the domain of failure detection, to capture failure-function similarity in components.
High-Variance Mode Derivation

Tumer et al. (Tumer et al., 2000a; Tumer et al., 2000b) present a methodology to extract variation and defect features from machine component surfaces, providing manufacturing and design engineers with a mathematical tool to understand the various components of product surfaces and improve quality. The Karhunen-Loève (KL) transformation uses a covariance matrix and decomposes it into eigenvalues and eigenvectors, as well as weights to extract major modes and their significance, similar to Principal Components Analysis. For manufacturing surfaces, the modes (eigenvectors) correspond to the major components of the surface variation, decomposed into form, waviness, and roughness errors. The variation pattern of these individual modes can then be monitored by means of the coefficients (weights). The following is a brief presentation of the theory used for this method.

For an $m \times n$ input matrix X, whose columns consist of the variables under study, and whose rows correspond to each observation, the $n \times n$ covariance matrix is computed by first computing the $1 \times n$ mean vector \bar{X}, then removing the mean vector from each of the m observations, and forming the covariance matrix $\Sigma_X = X_0^T X_0 / (m - 1)$ ($m - 1$ is the rank of the $n \times n$ symmetric covariance matrix if $m < n$, losing one additional degree of freedom due to the removal of the mean vector) (Bendat and Piersol, 1986; Fukunaga, 1990).

Assuming the covariance matrix is positive definite ($\det \neq 0$), it will result in n nonnegative eigenvalues, and n corresponding eigenvectors. A semi-positive definite symmetric matrix will result in k nonnegative eigenvalues, where k is the rank of the matrix, determined by the number of independent rows. In this case, if $m < n$, and losing one degree of freedom by removing the mean vector, the rank k of the covariance matrix equals $m - 1$.

The eigenvalues and eigenvectors of the covariance matrix are computed using the characteristic equation of the Σ_X matrix, namely $|\Sigma_X - \lambda I| = 0$, with the eigenvectors corresponding to two different eigenvalues λ_i and λ_j being orthogonal. This equation can be rewritten in matrix form as $\Sigma_X - \lambda I = V \times D$, subject to the orthonormality constraint $V^T \times V = I$, with the following eigenvalue (diagonal) and eigenvector matrices:

$$D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_n \end{bmatrix}; \quad V = [V_1 \ V_2 \ldots \ V_n].$$

The eigenvector V can be used as the transformation matrix to transform the n-dimensional X_0 to another vector Y using the orthogonal transformation $Y = V^T \times X_0$, where the covariance matrix of Y is D (from $\Sigma_Y = V^T \times \Sigma_X \times V = D$).

Product-Functionality Similarity Derivation

Stone et al. (Stone and Wood, 2000; Stone et al., 2000) present a methodology for transforming customer need rankings...
and function structures into quantitative models, offering design-ers a novel way to archive and communicate product design knowledge. Specifically, they use matrix manipulations to extract product similarity using a product repository which groups products together based on functionality and customer needs. Scaled customer need rankings are first mapped to sub-functions of the product function structure in the form of a product vector \(\Phi \). An \(m \times n \) product-function matrix \(\Phi \) is then formed to create a product repository to archive product design knowledge. Each element of the product-function matrix, \(\phi_{ij} \) is the cumulative customer need rating for the \(i \)th function of the \(j \)th product. To compensate for variations due to different sources of information, the product-function matrix is normalized across the entire product space. The normalized product-function matrix \(\mathbf{N} \), has elements \(n_{ij} = \phi_{ij} \eta_j \). Here, \(\bar{\eta} \) is the average customer need rating, \(s_j \) is the customer rating for the \(j \)th product, \(\mu_j = \sum_{i=1}^{m} H(\phi_{ij}) \) is the number of functions in the \(j \)th product (\(H \) is the Heaviside function), and \(\bar{\mu} \) is the average number of functions (\(n \) is the number of products and \(m \) is the total number of sub-functions for all products.) Using such a method, a new product’s functional model can be used to find similarities so that existing knowledge can guide its development. This is accomplished by computing the product-product matrix using the renormalized matrix \(\tilde{\mathbf{N}} \) (so that the norm is equal to 1), defined as \(\tilde{\mathbf{N}} = \mathbf{N}^T \mathbf{N} \).

FUNCTION-FAILURE METHOD: A DESIGN TOOL

In this paper, the ideas of extracting “high-variance modes” and “product similarity” are extended to failure detection for a family of aerospace components and products. A simple example problem using a rotating machinery simulator model is used in this paper to show proof-of-concept. Future work is currently underway to apply this method to the domain of helicopter failures and functions.

Preliminary Definitions

Let \(\mathbf{C} \) be an \(m \times 1 \) vector of subsystems and/or components for the application domain under study (e.g., helicopter, aircraft, spacecraft). Let \(\mathbf{F} \) be an \(n \times 1 \) vector of failures commonly found in that application domain. Let \(\mathbf{E} \) be the \(r \times 1 \) vector containing all elemental functions for the components under study. To represent failure information, such individual vectors (containing information on failure modes, functionality and components) are weaved together into a matrix of information. To begin, consider failure information which is typically recorded with respect to components or subsystems. This information can be arranged succinctly using a component vector \(\mathbf{C} \) and a failure vector \(\mathbf{F} \) with elements indicating the failure modes that can occur for the component. The \(m \) component vectors are aggregated together to form \(\mathbf{C} \), the \(m \times n \) component-failure matrix, where \(n \) is the total number of failure modes occurring across all \(m \) components.

Similarly, components can be described in terms of their functionality. Here, an elemental function vector \(\mathbf{E} \) is constructed for each component with elements that indicate the functionality of the component. Aggregating each vector of \(r \) functions, together for the \(m \) components (represented in the columns), creates the \(r \times m \) function-component matrix \(\mathbf{EC} \), where \(r \) is the total number of functions necessary to describe all of the \(m \) components. The function-component matrix is closely related to the product-function matrix \(\Phi \), reviewed above, though this time functionality of components rather than that of the entire product, is considered. Thus, the \(\mathbf{EC} \) matrix may be constructed as a binary matrix with a 1 indicating the component solves a certain function and a 0 indicating the opposite, or the elements of \(\mathbf{EC} \) may be weighted to include additional information.

Once the component-failure and function-component matrices are computed, the relationship between function and failure can be computed as: \(\mathbf{EF} = \mathbf{EC} \times \mathbf{CF} \). This \(r \times n \) matrix, called the function-failure matrix, relates the failure modes to the elemental functions. Each element \(ij \) indicates whether any component solving function \(i \) has ever failed by failure mode \(j \). This information is useful when designing or redesigning components, offering failure modes to guard against during the design phase. For example, a new design or redesign of an existing component might proceed as follows. A component’s functional model is specified as a vector. That vector is multiplied by the function-failure matrix, \(\mathbf{EF} \), to produce a component-failure mode vector. This vector then indicates potential failure modes the component could experience and the likelihood of occurrence for each failure mode (the larger the failure mode value, the mode likely). The designer is then able to design out the identified failure modes during the conceptual design stage. This approach is shown schematically in Figure 2.
Application: Rotating Machinery Example

Consider the design of a simple rotating machinery system, consisting of a shaft attached to a motor by means of a coupling, supported by two sets of ball bearings, which drives a gear box via two belts, which in turn drives a load. A picture of a simple rotating machinery system is shown in Figure 3. This system represents the Machinery Fault Simulator located at NASA Ames Research Center, whose purpose is to simulate vibrational fault situations (Tumer and Huff, 2000). This machinery will serve as a preliminary test bed to demonstrate how the function-failure matrix can work. More realistic applications are currently being attacked, starting with helicopters. In the case of a helicopter, the load would be equivalent to driving the rotor blades with an epicyclic transmission gearbox. The input to the transmission would be equivalent to a shaft, supported by bearings, and driven by the helicopter engine (Huff et al., 2000; Huff et al., 2001).

For this simple example, three types of components are considered: namely, the shaft, gears, and bearings. These components can be subject to elementary failure modes, described in Table 1, that need to be considered at the early design stages. Selecting a subset from these failure modes, these components are assumed to be subject to wear, fatigue, corrosion, fretting, and impact failure modes. Table 5 presents an aggregated matrix of failures and components, with 1’s representing an occurrence of a failure for a given component, and 0’s representing non-occurrence. The failure modes are labeled as follows: F1 is wear, F2 is fatigue, F3 is corrosion, F4 is fretting, and F5 is impact. The components are labeled as follows: C1 is a gear, C2 is a bearing, and C3 is the shaft. The failure modes represent the variables (columns) and the components represent the various observations (rows).

Finally, functional descriptions are found using the functional basis of Tables 2, 3, 4. The function vectors for each component are aggregated together to form the function-component matrix EC (with r = 5 and m = 3) shown in Table 6. Once again, the components under consideration are the gear, C1, bearing, C2, and shaft, C3. The elemental functions these components have to satisfy are selected as E1: change mechanical energy, E2: guide mechanical energy, E3: transfer mechanical energy, E4: position mechanical energy, and, E5: stabilize mechanical energy (see Table 4 for basic function definitions.)

Capturing Modes and Variation for Design Tradeoffs

Using the matrices introduced above, the principal modes of variation in the data are derived here for the case of the simple example, providing designers with a means to make tradeoffs at the early stages of design.

Deriving Principal Modes and Weights

The covariance matrices for the aggregated component-failure, function-component, and function-failure matrices, are referred to as ΣCF, ΣEC, and ΣEF throughout the rest of this discussion. To demonstrate the fundamentals of the method, the m × n component-failure matrix, CF is selected here as an example. The component-failure matrix is composed of n failure modes in its columns (variables), and m components in its rows (observations). Let ΣCF = CF T × CF/(m − 1) be the covariance matrix of the component-failure matrix CF. ΣCF is an n × n symmetric matrix (n is the number of elemental failure modes). In the following, the principal mode derivation presented above is applied to the rotating machinery example, by applying Principal Components Analysis (PCA) to the input matrix CF.

Application to Rotating Machinery Test Rig

From Table 5, the input matrix CF, with m = 3 and n = 5, is defined as:

$$CF = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 0 & 1 \end{bmatrix},$$

whose mean vector is computed as:

$$\overline{CF} = [0.6667 0.6667 0.3333 0.6667 0.6667].$$
Using the centered input vector is \(\mathbf{CF}_0 = \mathbf{CF} - \overline{\mathbf{CF}} \), the covariance matrix \(\Sigma_{CF} \) is computed as:

\[
\Sigma_{CF} = \begin{bmatrix}
0.3333 & -0.1667 & 0.1667 & 0.3333 & -0.1667 \\
-0.1667 & 0.3333 & -0.3333 & -0.1667 & 0.3333 \\
0.1667 & -0.3333 & 0.3333 & 0.1667 & -0.3333 \\
0.3333 & -0.1667 & 0.1667 & 0.3333 & -0.1667 \\
-0.1667 & 0.3333 & -0.3333 & -0.1667 & 0.3333 \\
\end{bmatrix}
\]

Using Matlab, the PCA script results in the following outputs:

\[
p_c = \begin{bmatrix}
0.3943 & -0.5869 & 0.0425 & 0.7058 & 0.0000 \\
-0.4792 & -0.3220 & -0.5750 & 0.0347 & -0.5787 \\
0.4792 & 0.3220 & -0.7877 & 0.0475 & 0.2095 \\
0.3943 & -0.5869 & -0.0425 & -0.7058 & 0.0000 \\
-0.4792 & -0.3220 & -0.2128 & 0.0128 & 0.7882 \\
\end{bmatrix}
\]

\[
s_c = \begin{bmatrix}
-0.2163 & -0.7133 & 0.0000 & 0.0000 & -0.0000 \\
1.2214 & 0.2527 & -0.0000 & 0.0000 & 0.0000 \\
-1.0050 & 0.4606 & -0.0000 & -0.0000 & 0.0000 \\
\end{bmatrix}
\]

\[
lat = \begin{bmatrix}
1.2743 \\
0.3924 \\
0.0000 \\
\end{bmatrix}
\]

The \(pc \) matrix represents the eigenvectors of the \(5 \times 5 \) covariance matrix, providing the coefficients of the new coordinate system described by the principal axes, with respect to the old coordinate system described by the variables \(F_1, F_2, \text{etc.} \). The columns of this matrix correspond to each of the principal components, and the values in each row represent the coordinate based on the original variables \(F_i \). The principal axes give the direction of the new coordinate system defined by the eigenvectors of the covariance matrix, corresponding to the directions with maximum variability, and provide a simpler and more parsimonious description of the covariance structure (Johnson and Wichern, 1992). An illustrative schematic of the coordinate transformation is shown in Figure 4 for a case with three variables \(F_1, F_2, \text{and } F_3 \) only.

Based on the \(pc \) matrix, the first principal component can be used to describe the original variables in the new (transformed) coordinate system as a linear combination of all five failure modes as follows: \(pc1 = 0.3943F_1 - 0.4792F_2 + 0.4792F_3 + 0.3943F_4 - 0.4792F_5 \). Using this relationship, the designer can deduce that \(F_2, F_3 \) and \(F_5 \) have a higher effect than \(F_1 \) and \(F_4 \), and that \(F_2 \& F_3 \) have an equal but contrasting effect on the first principal component, and so on. The eigenvalues of the covariance matrix are represented in the \(lat \) vector. Note that with an eigenvalue of 1.27, the first principal component accounts for 76.46% of the total variance in the data, and hence is sufficient to represent the failure information in a simpler (more parsimonious) manner, and can be considered as a model of the sample data. The second principal component has an eigenvalue of 0.3924, and accounts for the remaining 23.54% of the variance. (There are only two eigenvalues since the rank of the covariance matrix is \(m - 1 = 2 \). The rest of the eigenvalues belong to the null space.)

While the eigenvectors of the \(n \times n \) covariance matrix are presented in the \(pc \) matrix, the scores in the \(sc \) matrix represent the weights for the eigenvectors on each of the observations \((\mathbf{CF}_0 \times pc) \). The scores are then interpreted as corresponding to the pattern of the variation for each eigenvector over the different machinery components \((C_i) \) under study. The first column of the \(sc \) matrix represents the first principal component, with each row corresponding to each component \(C_1, C_2, \text{and } C_3 \) (observations). The second column corresponds to the second principal component. The remaining columns belong to the null space, since the rank of the covariance matrix in this case was \(m - 1 = 2 \). The variance of the scores for the first principal component (first column of \(sc \)) equals the first eigenvalue \((\lambda_1 = 1.27) \), and the variance of the scores for the second principal component equals the second eigenvalue \((\lambda_2 = 0.3924) \). Using this example, for the first component \(C_1 \) (gear), the first principal mode has a weight of \(-0.2163 \), whereas for the second component \(C_2 \) (bearing), the same principal mode has a weight of 1.2214, hence indicating a stronger influence on this component.

Use as a Potential Design-Aid Tool The transformed representation of the failure information in terms of a principal mode can be used by designers to decide on tradeoffs in terms of failures. For example, failure modes \(F_2, F_3 \) and \(F_5 \) have a more
significant effect on the overall performance and quality of the product than failure modes F_1 and F_4, as indicated by the first column of the pc matrix. Depending on the application of the component and its functionality, the designer might want to pay closer attention to the first three modes, and not be as concerned with the last two modes. For example, in this case, the bearing component C_2 depends more heavily on these three modes, as indicated by the first column of the sc matrix. Tradeoffs are a common occurrence in design. A means to analytically decide on tradeoffs can result in significant savings in time and cost. Similar conclusions can be drawn by starting with the function-component and the function-failure matrices.

Capturing Similarity for Design and Redesign

The matrices described in this paper represent convenient ways to mathematically capture failure mode and function data for components. Additional useful design information may be obtained through matrix manipulations of the data. The resulting similarity matrices (equivalent to covariance matrices from above) provide tools for designers to assess and design against the impact of potential failure modes.

Deriving Similarity Matrices

Similarity matrices can be derived in several ways, depending on the purpose of the designer. For example, taking the transpose of the function-component matrix and post multiplying it by function-component matrix yields an $m \times m$ symmetric component-component matrix. Mathematically, the component-function similarity matrix is given by: $\hat{\Lambda}_{EC} = EC^T \times EC$, where EC is the normalized function-component matrix with each column normalized to unity for convenience. Each element ij of the component-function matrix indicates the similarity between component i and component j based on elemental functions. That is, if component i is functionally similar to component j, then element $\hat{\lambda}_{ij}$ will have a value in $[0, 1]$. Components that are completely similar with themselves have a similarity value of 1 due to the normalization of the function-component matrix. Likewise, components that share no functions in common will have a similarity value of 0. Similar derivations can be achieved using the remaining matrices, as demonstrated below.

Application to Rotating Machinery Test Rig

Using the CF and EC matrices from above, the function-failure matrix can be computed as $EF = EC \times CF$, which gives:

$$EF = \begin{bmatrix} 1 & 1 & 0 & 1 & 1 \\ 1 & 2 & 0 & 1 & 2 \\ 1 & 2 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 & 0 \\ 1 & 0 & 1 & 1 & 0 \end{bmatrix},$$

where the rows represent the elemental functions E_i and the columns represent the failure modes F_j. Observing the function-failure matrix, one sees that function pairs guide m.e.-transfer m.e. and position m.e.-stabilize m.e. experience the same failure modes. Also, the failure modes fatigue and impact occur more frequently for the functions guide m.e. and transfer m.e.. Though this is a limited example, the function-failure data can be used to identify traditionally occurring failure modes when only a component’s function is known and use that knowledge to design out the potential failure.

Additional design observations can be made by computing the similarity matrices. First, the component-function similarity $\hat{\Lambda}_{EC}$ is calculated from the function-component matrix after normalizing each column to unity as follows:

$$EC = \begin{bmatrix} \sqrt{\frac{8}{7}} & 0 & 0 \\ \sqrt{\frac{3}{7}} & 0 & \frac{\sqrt{7}}{2} \\ \frac{\sqrt{7}}{2} & \frac{\sqrt{7}}{2} & 0 \\ 0 & \frac{\sqrt{7}}{2} & 0 \\ 0 & \frac{\sqrt{7}}{2} & 0 \end{bmatrix}.$$

and,

$$\hat{\Lambda}_{EC} = EC^T \times EC = \begin{bmatrix} 1.000 & 0.000 & 0.816 \\ 0.000 & 1.000 & 0.000 \\ 0.816 & 0.000 & 1.000 \end{bmatrix}.$$

The component-function similarity matrix identifies that components 1 and 3 (i.e., the gear and the shaft) are similar in function (in terms of failure modes) when one is projected onto the other. This indicates that the gear could possibly be used as a replacement for the shaft (or vice versa) and that solution principles used in the gear could be used in a redesign of the shaft (again, the converse is also true).

Next, the component-failure similarity matrix is calculated from the component-failure matrix (non-normalized) as:

$$\Lambda_{CF} = CF \times CF^T = \begin{bmatrix} 4 & 2 & 2 \\ 2 & 3 & 0 \\ 2 & 0 & 2 \end{bmatrix}.$$

Note that the diagonal simply returns the count of failure modes each component experiences. Component 1 (the gear, from looking at column 1 or row 1) shares two failure modes in common with each of the other components, while components 2 and 3 (bearing and shaft) have no common failure modes (as indicated by the zeros in the off-diagonals). Consider components 1 and 3 which are functionally similar (with a similarity index of 0.816) and share two failure modes in common, as seen from
the component-failure matrix. If a design solution for one component is found that eliminates the common failure modes, then that solution will most likely be applicable to the remaining component as well.

Finally, the failure-component similarity matrix is calculated as:

$$ \Lambda_{FC} = CF^T \times CF = \begin{bmatrix} 2 & 1 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 & 2 \\ 1 & 0 & 1 & 1 & 0 \\ 2 & 1 & 1 & 2 & 1 \\ 1 & 2 & 0 & 1 & 2 \end{bmatrix}. $$

For this set of components and recorded failures, the failure modes F1-F4 (wear and fretting) and F2-F5 (fatigue and impact) tend to occur on the same component most frequently. Other combinations of failure modes are possible, but not as likely. Failure modes F2-F3 (fatigue and corrosion) and F3-F5 (corrosion and impact) have no incidence of occurring on the same component.

Use as a Potential Design-Aid Tool The component-function similarity matrix provides designers with a tool to identify possible replacement components that solve similar functions. It also provides a way to search and rank component solutions that are similar in function and use design by analogy techniques to embody a design. One possible use for the component-function and component-failure similarity matrices is to identify component solutions that prevent certain failure modes. If, between functionally-similar components A and B (as determined by Λ_{EC}), component B does not experience all of the same failure modes as component A (as determined by Λ_{CF}), then there is some characteristic of component B that could be incorporated into A to improve its performance.

Finally, the failure-component similarity matrix (Λ_{FC}) yields insight into possible interactions of two or more failure modes, with elements indicating failure mode combinations which occur across components. It can be used to direct component remedies that will eliminate more than one failure mode. In terms of current FMEA and FTA techniques, knowledge of failure modes that often occur interactively would give designers a more complete list of possible product failures to investigate.

CONCLUSIONS AND FUTURE WORK

In this paper, a function-failure method was introduced to take advantage of the link between failure modes and functionality of components. The method is meant to provide designers with an analytical means to make systematic tradeoff and design decisions to avoid potential failure modes. A crucial piece of the work is the inherent link between functionality and failure modes. The method is applied here to a simple example using a rotating machinery test rig, to illustrate its potential. The purpose of developing such analytical method is to meet the tight performance and safety requirements imposed on designers for critical NASA applications. As an ongoing collaborative project between NASA Ames and The University of Missouri-Rolla, the function-failure method will be applied to a more realistic example using helicopter failure data and design specifications (Huff et al., 2001). This initial investigation of helicopter failures will be followed by a thorough analysis of actual failures collected from accident data (Harris et al., 2000). A mapping of the assigned functions onto the basic set of functions presented in this work has begun. This mapping, accompanied by the standard failure modes described in Table 1, will be used to start analyzing the helicopter failure data. Such analysis is essential in establishing the function-failure method presented in this paper as a viable and useful design-aid tool.

REFERENCES

