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Abstract

In this paper numerical simulations are used to calculate
the turbulence dynamics simultaneously with the sound
field for a high-speed near-sonic (Ma=0.9) compressible jet
at two Reynolds numbers of 3,600 and 72,000. LES in
conjunction with accurate numerical schemes is used to
calculate the unsteady flow and sound in the near f'mld of
the jet. it is shown that the jet mean parameters, mean
velocity fields and turbulence statistics are in good
agreement with experimental data and results from other
simulations. The sound in the near-fidd is calculated
directly from the simulations. The calculations are shown

to capture the peak in the dilatation and pressure spectra
around a Strouhal number St=0.25-0.3, in agreement with
typical jet-noise spectra measured in experiments.
Dilatation contours in the near-field show the formation of

acoustic waves with a dominant wavelength of 3.2-4 jet
diameters, corresponding to the peak in the dilatation
spectra. As expected, the non-compact noise sources are
found to be most dominant in the region corresponding to
the end of the potential core. The contribution of the LES
model to the radiated noise appears to be weak and does not
contaminate the sound field with spurious high-frequency
noise. However, the frequency spectra of the sound show a
rapid fall-off away from the peak frequency. This is
attributed to the quasi-laminar state of the shear-layers in
the region prior to potential core closure, and a possible
effect of insufficient azimuthal resolution at the

location. Further analysis of the effect of the LES model,
especially at high frequencies, is needed.

1 Introduction

The motivation of this work is to use LES techniques to
Calculate the acoustic emissions of jet engines. Once the
jet simulations are validated in terms of turbulence

dynamics, our focus is to predict the radiated jet noise,
which is a dominant noise component for most aircraft jet
engines at take-off conditions. A study of jet turbulence
and its acoustics is relevant for many areas of applications

including mixing enhancement for hot jet-exhaust plumes,
but its primary motivation comes from the need to design
more efficient engines with _ noise emissions.

Flight tests and wind-tunnel tests are useful but they am
expensive, and quantitative measurements of those aspects
of turbulence that represent the sources of noise radiation

are very difficult, particularly in high-speed flows. This
has led to the interest in using computational methods to
try to better understand the noise generation. These

insights should ultimately allow strategies for controlling
or modifying the flow mechanisms to achieve the reduction
of the noise emitted by jet engines.

An accurate prediction of the sound radiated by a
turbulent jet requires a method capable of reproducing the
near-field turbulence dynamics with sufficient fidelity to
allow the direct evaluation of the non-compact (distributed)
sound sources. Obviously, RANS based methods require
too much empirical input and are not suitable to describe

accurately the distribution of the acoustic sources in
and time. A great _ of recent understanding of the
turbulence physics in high-speed shear flows has come
from direct numerical simulations (DNS) at low Reynolds
numbers. In fact, Freund n has recently conducted DNS of a
high-speed jet and its noise. However, as DNS is restricted

to Reynolds numbers well below the values of engineering
interest, LES techniques appear to be the only realistic
available tool to obtain the necessary near-field flow data
upon which to base the prediction of sound emitted by
propulsive jets. Though still significantly more expensive
than RANS methods, LES offers the advantage that little or
no empirical input is needed, which is a significant
advantage when one is interested in a robust method to
predict the radiated sound field. This should allow us to
better understand the role of the coherent structures to the

noise generation. The-fact that the noise spectrum is
dominated by the contribution of the large coherent
structures justifies the use of LES for noise calculations.
However, at very large Reynolds numbers the contribution

of the smaller scales to the noise spectrum may be non-
negligible in the range of the frequencies of interest, and
this problem is yet to be investigated.
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Over the last decade LES techniques have advanced to
a point where they have been shown to predict complex
flows (characterized by a large disparity between the
different time and spatial turbulent scales) fairly accurately
(e.g., Piomelli 2 and Wang3). Use of LES for aeroacoustics

applications is a natural development, but one which
presents new challenges. The main challenge is related to
the large disparity which exists between the energy levels
associated with the fluctuations due to the large-scale
turbulent motions and those associated with acoustic
fluctuations. As most of the acoustic sources are situated

in the early part of the turbulent region of the jet, a first
requirement is to simulate correctly this turbulent flow so
as to be able to calculate accurately the distribution and
strength of the acoustic sources. Only the information
about the high-frequency turbulence and hence its associated
sound is lost in the LES method due to the inherent

filtering. Furthermore, no simplifying assumptions about
the acoustic wave propagation are required. The only
difficulty is numerical; accurate simulation of sound waves

concomitantly with the flow structures of the underlying
turbulent flow is a considerable task. An important-
consequence is that accurate prediction of the radiated jet
noise using LES techniques requires the use of numerical
schemes with low dispersion and dissipation errors.
Moreover, the quality of the noise data can be easily
compromised by the boundary condition treatment. High_
Reynolds numbers and coarser grids put in turn a higher
burden on the robustness and accuracy of the numerical
methods used in aeroacoustic simulations. This is why
attempts to simulate compressible jets and their radiated
noise using LES are quite recent.

Recently the group at NASA Lewis (e.g., Shih et
al. 4) performed a three-dimensional LES calculation of a

circular jet at Ma=l.4 in a Ma=0.4 flight stream using a
multiblock solver for curvilinear grids. A Kirchhoff
method was used to propagate the acoustic emissions to the
far-field. Choiet al. s simulated a Ma=l.2 jet with coflow
at Ma=0.2, while Zhao et al. 6 have simulated a Ma=0.4 jet
at Re=5,000. The success of most of these simulations

was limited to a certain extent by the number of points
used. This dictated what scales of fluctuations could be

resolved and that in turn limited the frequency content of
the simulated noise. Bogey et al. 7conducted LES of a near
sonic jet with a DRP scheme and artificial selective
damping of high frequency waves on a Cartesian grid with
6 million mesh points. They used the classical
Smagorinsky model to calculate the subgrid (SGS) stresses.
To decrease the cost of the computation the grid was refined
only in a sector of the computational domain where data
was collected in order to calculate the far-field radiated

noise. Boersma and Lele mperformed LES calculations of
the near-field of a Ma=0.9 jet using a numerical method

very similar to the one used here. The present work is a
continuation of their efforts. Finally, it is relevant to

mention efforts devoted to develop hybrid schemes which
have a cost intermediate to LES and RANS. These

schemes, though not as accurate as full LES computations

of the near-field flow, are much less expensive. This
approach is being developed at Penn State by Morris a-d
co-w0rkers (e.g., Morris et al. 9"1°) arid was applied to
calculate circular and rectangular jets at Ma=2.1. In their
method the Navier-Stokes equations were rewritten as
equations for the nonlinear perturbations about the RANS
solution to the mean flow. This made possible a
decomposition of the instantaneous fluctuations into a

time-averaged part, a resolved large-scale perturbation and

an unresolved small-scale perturbation. The last part was
accounted for using a SGS model.

The paper is organized as follows. We start with a

description of the numerical method, including the
governing equations, implementation of the LES model,
flow and boundary conditions, including the treatment of
the flow equations at the polar axis. Next, we focus on the

jet aerodynamics and we validate our simulations using
experimental data obtained for turbulent jets at similar flow

conditions. Finally, we use our simulations to investigate
the radiated sound in the near-field of these jets. We
conclude with a discussion of several issues that we aim to

address in future work related to jet noise simulation using
LES methods.

2 Description of Numerical Method
and Flow Conditions

2.1 Numerical Method

The primary focus of this paper is on near-sonic
compressible cold jets with an acoustic Mach number
Ma= U o I c0=0.9 and Reynolds numbers R_Uo(2ro)Iv

=3,600 and 72,000 based on the jet diameter at the inlet
(2r0), the jet centerline velocity at the inlet (U0) and the
speed of sound at infinity (co). At this Mach number the

turbulent flow was investigated experimentally by Lau et
at.", and numerically by Freund jz" who performed a DNS
simulation at Re=3,600, by Boersma and Lele s who
investigated the flow at R_3,600 and 36,000, and by
Bogey et al. 7 who performed LES simulations at
Re---65,000. These near-sonic conditions are motivated by
the fan-stream exhaust conditions in a modem turbo-fan

engine. Furthermore, due to the relatively high convection
speed of the turbulent structures, the total computation
time needed to obtain a statistically steady jet is also
reduced. Our jet calculations are visualized in figure l(a)-
(b) using snapshots of the vorticity magnitude contours.

The general numerical method is described in Freund
et al. _, while Boersma and Lele 8 give the details of the

implementation of the dynamic LES model in the original
DNS code. Following Boersma and Lele 8, the LES solver

uses the non-density weighted compressible filtered
variables (no Favre averaging). They found that the non-
density weighted filtering as opposed to more widespread
Favre filtering improves the robustness of the numerical
solution, especially when compact schemes are used. They
explained this by observing that the Favre averaged
continuity equation is still a non-linear equation that can
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Figure 1: Instantaneous contours of vorticity magnitude.
(a) R_3,600 azimuthal section; (b) R_72,000 azimuthal
section; (c) R_72,000 x= 17.5r0; (d) Re=72,000 x=30.5r0

cause numerical instabilities with centralMiffemnces

schemes. The downside to the non-density weighted
filtering is that the form of the filtered equations is slightly
more complex. The governing LES filtered equations are
(an overbar is used to denote the grid filter):

P., + (P"Ui).i = --(pUi- P-Ui).i (I)

(_"_+)., + (__++j).j =
(2)

-P.i + t+j.j -(puiuj - _uiuj),j - (pui - Pui ),t

(E).t + ((E + P)uj ).j = -qj.j + ('_+jui)j
(3)

-(Eu i - E_j + pu i - _fij) j

where -6i are the velocity components, _ is the pressure, 7

is the ratio of specific heats, qi = -_T..i is the conductive

heat-flux, _ij=ld.(_i.j+_j.i--2/3_ij_lt.k)=21.lSi_ is the

Newtonian stress tensor, S_ is the deviatoric part of the

rate of strain tensor, E=_/(y - 1) + 0.SP-uiH i is the resolved

total energy density and _/(y-l)=_TIy is the equation

of state. Note a further approximation related to using T
rather than the Favre averaged temperature in the equation
of state. The Fdtered continuity equation contains a subgrid
mass flux while the fdtered momentum equation contains,
besides the subgrid momentum flux, an additional term due

to subgrid mass flux in the non-density weighted filtering.
The presence of the subgrid mass flux in the continuity
equation has the effect of improving the robustness
properties of the numerical method. In equation (3) we
neglected the unsteady term containing the time variation of

the subgrid kinetic energy (0.5(pule i --p"Hi_i)) as well as

the acklitional subgrid term originating from filtering of
tiju +. Using the equation of state and neglecting the

convection of the subgrid kinetic energy by the resolved

velocity, the last term in (3) representing the subgrid

energy flux can be rewritten as (pujT-p-'ujT). All these

operators are discmtized in cylindrical coordinates. The

errors introduced by the non-commutativity of the filtering
and di_rete differentiation operations, as well as the
contribution of the trace of the SGS stresses were also
ignored.

The code employs a centered six-<m:ter compact
scheme to evaluate the spatial derivatives in the non-

homogeneous directions, and Fourier spectral methods in
the homogeneous (azimuthal) direction. The solution is
advam_ in time using a four-step Runge-Kutta method.
These discretization schemes introduce very little artificial
dissipation and allow sound waves to propagate accurately
with only few grid points per wavelength (Freund ard
Lele_). The number of modes is dropped near the polar axis
(this is equivalent to Fourier filtering) so that the CFL
constraint will be determined by the radial (or axial)
spacing. This avoids the use of a very small time step in
our explicit method. The time step is At=O.01r0/U0,
corresponding approximately to CFL= I. The computation
was carried out on 32 processors of an Origin2000 using
message passing interface (MPI).

2.2 Subgrid Scale Model

In LES the large, energy-containing scales ate
comput_ directly, while the small, unresolved scales that
are nearly isotropic and their (non-linear) interaction with
the large scales are modeled. However, there is no cut-off

between the smaller scales and the larger ones. A lot of
progress was made in LES of incompressible flows,
particularly of jet flows. However, when applied to
compressible flows eslxvially for aeroacoustic applications
the effect of the LES model on the flow fields is less
understood.
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Inthepresentimplementation,theLES filtering is
implicitly defined by the computational grid used for the
large-scale equations. The dynamic procedure is used to
calculate the Smagorinsky-like constants in the SGS fluxes

in equations (1)-(3). The main idea behind this approach is
to determine dimensionless scaling coefficients in SGS
models for the filtered nonlinear terms (PierceZ7). If such a

term n(a 3 is filtered (a_'s are the dependent variables), it can
be written as the sum of the resolved part and the modeled
(subgrid) part:

I

n(al)=n(ai)+m(ai) (4)

In (4) the grid filter was denoted with an overbar and the

filter width is A=VAx, Ax Ax_ . A similar relation can be

obtained if we apply a second filter, denoted by a hat

symbol, and having a width /_ = 2A:

_(ai)=n(_i)+m(_i) (5)

Generally, the subgrid model is written as -

m(a i) = c s(ai,A), where the 'constant" c now has a spatio-

temporal variation. If we subtract the two previous
relations, and allow the 'constant" c to pass unchanged

through the test Faltering operator, we obtain an equation in
which all terms are computable from the resolved field:

fi(ai) - n(ai ) = c (m(a i)- rh(_ i)) (6)

The left-hand side in (6) is called the Leonard term (L),
while the right hand side is called the model term M. To

obtain a single value for c (L mad M are generally non-
parallel vectors or tensors), equation (6) is renormalized and
solved by least-squares following the procedure developed
by Lilly'_:

c = (L.M)/(M.M) (7)

where the square bracket denoted averaging in the

homogeneous azimuthal direction. Only the ratio ._ / A is
needed in (7).

Returning to the governing equation system (1)-(3),

the subgrid terms in the continuity, momentum and energy
equations are modeled according to (6). The dynamic
coefficient corresponding to the subgrid mass, momentum
and energy fluxes are calculated as follows:

cp=-(LiM i)/(MiM i) ,n i=pu i ,m i=AzIS_.i

(8)

(9)
% = pu_uj , m_j = pa_lsls_

c E = -(LiMi)/(MiMi)

n i = PuiT , m i = pA2lSlT.i
(!o)

Note that, instead of calculating first the turbulent Prandtl

number Pit and then the equivalent 'eddy-viscosity" in the

energy equation, v e = CEA2[S'I= Vr/PIT, we calculated c E

directly. In the previous relations ISI is the modulus of the

sWain-rate tensor Si], and v r is the eddy viscosity in the

momentum equations. The unsteady term in equation (2)
does not require separate modeling; the subgrid mass flux
model used in (1) is sufficient.

To maintain stability of the solution field, the
resolved flow variables are f'dtered in all three directions

every 2rJc0 time units (or every 200 time steps) using an
explicit fourth-order accurate filter given by:

fi = (-fi-2 + 4fi-t + 10fi + fi+t - fi÷2)/16 (11)

A new centerline treatment described in appendix A replaced
the old method in which the equations were solved in
Cartesian Coordinates. This allowed us to increase
substantially (more than 12 times) the time interval at

which this filter had to be applied. A detailed discussion of
this issue is provided in Constantinescu and Lele tT. As this

filter is applied on the resolved variables, it is important to
quantify its effect. In figure 2 the percentage change in the
density field is shown. Note that the maximum change
relative to the unfiltered density field is around 0.5%, with
most of the change at much lower levels, including the area
corresponding to the breakup of the potential core. Even
though the effect of the damping on the large-scales
structures is very low, there is still the possibility that this
damping may affect the acoustic waves that originate in the
near field. We expect that filtering the resolved variables

can be avoided by using freer grids with near-unity aspect
ratio cells. In our simulation the aspect ratio is close to
4.0 in most of the physical domain and this is believed to
trigger some spurious oscillations. The development of
higber-order schemes with behave robustly in treating

4
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Figure 2: Estimate of error introduced by filtering on the
resolved density field
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broadbandnon-linearproblems(see,e.g.Nagarajanetal.a)
willeliminatetheneedfortheintroductionof anyexplicit
numericalviscosityin thesolution.

The filter defined by (11) is also applied to the rate of

strain tensor S_j at every time step before the terms in the
SGS stresses are calculated. This is done to avoid the

formation of grid-to-grid oscillations in the solution due to
undea'-resoived flow structures. This damping operation is
important especially at the higher Reynolds number
simulation where practically all the damping comes from
the LES tenn. As noted by Boersma and Lele s this

filtering affects only the sub-grid terms, and the error
associated with it is smaller than the uncertainty involved
with the use of the gradient hypothesis to obtain the SGS
stresses.

Snapshots of the SGS viscosity fields are displayed in
figure 3(a)-(b), corresponding to the two Reynolds
numbers. Again the difference in the position of the end of
the potential core between the two calculations is obvious.
However, if one takes this into account along with the
scaling factor equal to the ratio between the two Reynolds
numbers, the distribution of the SGS viscosity is very.
similar. Instantaneous values of the SGS viscosity relative
to the molecular viscosity as high as 100 are observed at
couple of points in the interior of the jet for Re=72,000,
but 'average' values in these regions are about ten times
less.
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Figure 3: Snapshots of eddy-viscosity fields normalized by
molecular viscosity (a) Re=3,600; (b) Re=-72,000

2.3 Inflow Forcing
As the shear layers are already turbulent at this

Reynolds number, ideally we would need to have enough
points to resolve the turbulence inside these shear layers.
This would necessitate a lot of coniputational points inside
the shear layers. The reader is referred to Freund and Lele 's

for an in depth discussion of the issue. Additionally, the
presence of the nozzle should be accounted in some way.
All these requirements would increase substantially the
computer requirements to perform such calculations.
Instead, we started with laminar shear layers that were
jittered to force transition. This is also evident from the
snapshots of the vorticity magnitude shown in figure l(a)
and (b). The mean flow distribution at the inlet plane is
assumed to be a rounded top-hat profile with periodic
sinusoidal disturbances in the streamwise direction given
by:

r: '°///2 7o-7 "
(1 + 0t- sin(2_. St. t))

(12)

where the Strouhal number St=2r0f/U0 is 0.9, the value of

the thickness parameter is b=2.8 (corresponding to a
momentum thickness of 0.09r 0) and the amplitude of the

oscillations is ot---O.005. Randomized azimuthal forcing
with an amplitude of 0.025U0 and zero mean is applied at
the inlet plane to trigger the three-dimensional instabilities
and finally transition to turbulence using the following
distribution:

u0 = [0.025U0 •exp- (-3(1- r/ro)2)], e (13)

where _: is a random number between -0.5 and 0.5. The

exponential function allows the random disturbances to be
introduced only in the laminar shear layers. Low amplitude
forcing was used because these disturbances do not satisfy
the flow equations and generate spurious noise. This can
be observed in the lower part of figure 9(a) where waves
with wavelength close to 2r 0 are originating from the inlet
region near the centerline. We could have forced earlier
transition, especially at the lower Reynolds number, by
increasing the amplitude of the disturbances, but we
prefened to keep the spurious noise generated at the jet
orifice to a small level.

2.4 Boundary Conditions
The computational domain extends to X.,--6Or0 in the

streamwise direction and R=I lr 0 in the radial direction. The
computational grid consists of 320"192"64 points in the
(x,r,0) directions, or a total of about 3.9 million mesh

points, which is about an order of magnitude less than the
one used by Freund _zto calculate a similar jet at R_3,600
using DNS, but comparable to the meshes used by
Boersma and Lele s and Bogey et all in their LES

simulations. The points in the radial and streamwise
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Figure 4: Variation of grid spacing in the computational
domain (a) streamwise direction; (b) radial direction

directions are clustered in the region r<5r0 and 10ro<x<40r _
where most of the sound sources are expected to be situated
(see also figure 12(a)). In these regions the mesh spacing
in the radial and axial directions is approximately 0.04r 0 and
0.16r0, respectively. This mesh should be fine enough to
allow an accurate representation of the large-scales
structures. Figure 4 displays the distribution of Ax/ro and
At/to with the streamwise direction. One can see that near
the boundaries the mesh spacing increases to 0.16r0 and
0.40r 0, respectively. The number of points in the radial
direction corresponding to the initial core region (r<r0) is
equal to 25, and the ratio between the initial momentum
thickness and the radial grid spacing is 2.2.

The frequency range of the fluctuations which can be
captured on this mesh also needs to be kept in mind. Near
r=0 the largest mesh spacing is Ax=0.16r o. A wavelength
with twice this spacing gives a Nyquist cut-off Strouhal
number St,=6.9. However, as the sound waves spread
outwards they encounter a mesh with increasing azimuthal
spacing. At r=8.5r0, a location where much of the acoustic
data for the current LES is refxmed we have rA0--O.8ro
which gives a cut-off Strouhal number St==l.4. Evidently
the range St> 1.0 is poorly represented by the azimuthal
mesh. This value of the Strouhal number is marked in the

figures in which spectral information is presented at
r=8.Sr0.

The formulation of the outflow and to a certain extent

of the lateral boundary conditions for aeroacoustic

computations is very important. This is because even a
small reflection of a large-scale coherent structure exiting
the computational domain can dominate the sound field, as

generally the turbulence is several orders of magnitude more
energetic than the sound. In the present simulations, zonal
boundary conditions with artificial damping are used rear
the inlet and outlet to absorb outgoing disturbances before
they reach the boundary and to avoid spurious noise
generation via acoustic reflections at these boundaries. The
target solution in these sponge layers was taken to be the
self-similar solution of an incompressible jet. Non-
reflecting boundary conditions are used at the lateral

boundary, as well as damping terms in a layer close to this
boundary to avoid the introduction of reflected waves into

the domain. The inflow, outflow and lateral sponge layers
are 2.5r0, 6.Or0, and 1.0r 0 wide, respectively. Taken
together they contain roughly 20% of the computational
points. The grid in the lateral and outflow sponge layers is
stretched and an explicit 6 'h order accurate filter is applied

inside these layers every 40 time steps to further damp the
near-grid scale turbulence and avoid reflections into the
physical domain.

3 Results

3.1 Mean Properties and Turbulence
Statistics of the Jet

The general structure of the turbulent jet at is
highlighted using snapshots of absolute vorticity contours
in an azimuthal plane in figures l(a)-R_3,600 and (b)-

R_72,000 and in two plane situated at x/ro=lT.5 and 30.0
shown in figures l(c) and (d) for R_72,000. It is observed
that vc_'tical structures are generated in the initially laminar
shear-layers due to the shear layer forcing. Quasi
axisymmetric vortex rings are generated via Kelvin-
Helmholtz instabilities as a result of the streamwise forcing
of the m=0 mode at the inlet. Three-dimensionality leading
to turbulence is accelerated by the interactions of these

shear layers. The analysis of the jet mean velocity and
turbulence statistics in figures (5)-(6) shows that the
transition towards turbulence starts at the end of the

potential core situated around x=18r0 for R_3,600 and
x=12r 0 for R_72,000; the shear layers prior to the end of
the 'potential core' in these simulations are quasi-laminar.
This has important consequences on the noise la'oduced by
this jet. The transition is followed by a region where the
turbulence is fully developed and where the mean profiles
will be self-similar in the streamwise direction. This

region starts at x=24r o for the jet at Re=3,600, and x=18r0
for the jet at R_72,000.

We discuss in detail the distribution of the mean

quantities and turbulence statistics for the jet at Re=3,600,
but similar results were obtained for the other case, too.
The region in which the jet is self-similar is found to
extend up to x---40r0, after which the influence of the
outflow sponge layer is felt. The statistics were collected

over 8,000 time steps, corresponding to 80rdc 0 time units.
Before the statistics were collected, the simulation was run

for about 18,000 time steps, corresponding to 3X,,/Co; all
flow structures associated with the initialization of the
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Figure 5: Streamwise evolution of: (a) Mean centerline
velocity normalized by the inflow centerline velocity and
its inverse; (b) Streamwise turbulent intensity; (c) the half-
width of the jet normalized with the jet radius; R_3,600

simulation had enough time to be convected out of the
domain.

In figure 5(a)-(b) we show the distribution of the
mean centerline velocity and the longitudinal turbulent
intensities as a function of the distance to the jet orifice.
Starling at the end of the potential core the centerline
velocity decreases and some distance downstream the jet
evolves to yield a self-similar jet. As the length of the
potential core (core region where the centerline velocity is
constant) is different in our simulation from the one

corresponding to the experiment of Stromberg et al. ta as
well as the DNS data of Freund _2we shifted the data from

these experiments/simulations by approximately 7r0,
corresponding to the difference in the length of the p_tential
cores. The data of Lau et al._ was not shifted, even though
the potential core in their experiments appears to end closer
to 1 lr0. The differences in the length of the potential cores
and hence the position of virtual origin are not dlae to a
problem in our simulation, but rather they are a
consexluence of the absence of the jet nozzle in the
simulations, and the shear-layer state (quasi-laminar). As

already mentioned, we avoided the introduction of very
strong disturbances in the flow that may have forced earlier
transition, as these disturbances are known to radiate sound

that will contaminate the sound radiated by the jet itself.
Figure 5(a) clearly shows the decay of the centerline

velocity with l/x, as the inverse of the centerline velocity
is seen to grow linearly with x, starting some short
distance after the end of the potential core. One can also
infer from the same plot the virtual origin of the jet
corresponding to the intersection of that line with Uo/Uc=0,
which is at x0=7.5r0. The decay constant

13=Uc (x)/U 0 •((x - x0) / 2r0) is reported to be between 5.4

(Wygnanski and Fiedler u) and 6.1 (Panchapakesan _ld
Lumley2°), depending on the experimental setup. A least-
square fit through our LES data gives a value for the decay
constant B=5.9 which agrees well with the value found in
the experiments of Hussein et al. 2_ (B=5.9), the
incompressible DNS simulation of Boersma et al. _
(B=5.9), and the LES simulation of Boerma and Lele 8

(B=5.5). In fact, Boersma and Lele 8 suspected that the
small length of their domain (45r0) was responsible for the
relatively lower value of the decay constant. Same cause
may explain the results of Bogey et al. 7 who also found
B=5.5 in their simulation. The length of their
computational domain was 30r0, compared with 60r 0 in our
simulations.

The distribution of the streamwise non-dimensional

velocity rms fluctuations _, is presented in figure 5(b)
along with the experimental data of Lau et al. n _,d
Zaman:k The overall shape and range of turbulent
intensities is correct, but the streamwise fluctuations are

overestimated consistently compared to the two sets of
experimental data, especially in the earlier part of the jet.
The recent PIV data ofSeiner et al. 29 is also plotted on the
same figure for comparison. Unfortunately, it covers only
the initial region of the jet core. We suspect some of the
observed differences aredue to the way in which transition
to turbulence was forced in our simulations, via jittering,
compared to their experiment where a nozzle was present.
One should mention that Bogey 22 obtained even larger
values for the longitudinal fluctuations in the fully
develoixxl region, while collecting statistics over a much
longer time interval. Their data is also plotled for
comparison in figure 5(b). Unfortunately, both Hussein et
ai. -'_ and Panchapakesan and Lumley -'° do not provide this
data.
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The growth of the jet is shown in figure 5(c) using
the half-width of the jet 51__,, defu-ed as the distance at

which the centerline velocity decays by a factor of two,
plotted versus the streamwise coordinate. Again, we
observe that starting with x/r0=24 in the fully-turbulent
region the jet is growing linearly due to the lateral
entrainment of potential flow from the irrotational region,
and the slope of this line which def'mes the spreading rate of
the jet is A=Sll 2/(x-x0)=0.096, a value that is close to

the one _ from the experiments of Panchapakesan et
al. 2° (A=0.096)and Hussein et ai. n (0.094) and the

simulations of Boersma et al.23 (A=0.095) and Bogey et al.7
(A---0.096). The location of the virtual origin deduzed from
the distribution of the half-width of the jet and the one
inferred from the distribution of Ut/U_ are very close, as
expected.

The radial profiles of the mean streamwise velocity,
u, normalized by the centerline velocity, U¢, are plotted
versus the nondimensional radial coordinate rl=r/(x-x0) in
figure 6(a) at five stations (x/r0=22, 26, 30, 34, 38) inside

the self-similar region. As expected, these profiles are
collapsing to a curve that is close to the gaussian velocity

profile given by U(r)/Uc = exp(-K(r/(X-Xo))2), where

K=ln2/AZ=75.2. Panchapakesan and Lumley 2° also found
K=75.2, while the simulations of Boersma et al. z3 and

Bogey et al. 7 found K=76.1 and K=75.2, respectively.
2 2

The radial profiles of turbulent fluctuations u a, u r ,

u02and primary shear stress uxu r in the self-similar region

are also seen to collapse to curves that agree well with the
experimental curve-fits (shown with symbols) obtained by
Hussein et al. 2_ and Panchapakesan and Lumley 2°. The
non-dimensional turbulent intensities in the streamwise

(c_,,) and radial (o,,) directions are shown in figure 6(b)-(d)
versus 1"1, while the nondimensional shear stress (o,,) is
shown in figure 6(e). The nondimensionalization of the
turbulent rms fluctuations and shear stresses is done using

Ouiaj =_/[lliUjl/U c. The agreement a_ to be better

with the data of Hussein et al. for the streamwise turbulent
intensities, while the radial intensities and the shear stress

curves appear to be closer to the data of Panchapakesan ad
Lumley. The fact the agreement is not perfect may be
caused by the insufficient radial extent of the computational
domain, Reynolds number and Mach number differences

between these experiments and our simulations, as well as
the effect of the lateral and exit boundary conditions.

Figure 7 shows power spectra of the resolved
turbulent kinetic energy (normalized with the kinetic energy
at the inflow) in the azimuthal direction at several

streamwise locations corresponding to x/r0= 10, 17, 24, 30,
37 for r=r0 r=-2r0 and r=-3r0, respectively. Except for stations
at which the flow is not fully turbulent at that radial
location, the form of the spectra shows that the flow is
well resolved. It can be observed that the spectra at the
stations situated far downstream (x/r0>24) have a slope that
approaches -5/3 for the intermediate wavenumbers before

8
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fallingoff at the high wavenumbers, in agreement with
Kolmogorov's theory.
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Figure 7: Azimuthal power spectra of the resolved kinetic
energy at different streamwise locations for: (a) r=-r0; (b)
r=-2r0; (c) r---4r0; R_3,600

Finally, it is also of interest to look at the effect of

the LES model on the jet turbulence. This is done by
comparing at the relative strength of the different terms on
the right-hand side of equation (2) for the streamwise
velocity component for the Re=72,000 jet where we expect
a larger effect of the LES model, in figure 8(a) we plotted
the instantaneous fields corresponding to the sum of the
convective, pressure and viscous terms, while in figures
8(b) and 8(c) we plotted the contributions from the sub-grid

momentum flux and the time derivative of the subgrid mass
flux, respectively. The contour levels go between

-+O.5poco/r o in figure 8(a), between iH).01p0cZ0 /r 0 in

figure 8(b), and between _+0.00 IPoJ o / ro in figure 8(c).

This shows that the LES contribution via the SGS stresses

is far from being dominant. The results at Re=3,600 show
a very similar picture in terms of relative magnitude of the
LES terms relative to the resolved terms, in conclusion we

can say that the agreement of the mean and turbulent
properties between the present simulations and the available
experimental data is satisfactory. It would be advantageous
to compare this LES data with turbulence measurements in
a Ma=0.9 jet. We are aware of several groups that are
attempting such laboratory experiments, but published data
are not available at the present time.

3.2 Analysis of Near-Field Acoustic Data
in this section we start using the LES fields as a

database for acoustic calculations. A good measure for the
sound waves emitted by a flow is the dilatation field.
Snapshots of the dilatation fields in an azimuthal plane for
both Reynolds numbers are shown in figures 9(a) and (b),
while the fields in sections situated at streamwise locations

deemed by x/r0=23.5, 33, 36.5 and 42 are presented in
figures 9(c)-(f), respectively. The presence of the patches of
high positive and negative dilatation near the jet center that
form a rather regular pattern corresponds to the large-scale
vortex tings that are shed at the inlet excitation frequency
(St=0.9). As these highly coherent structures start to
interact, transition to turbulence take place and the
distribution of the large scales becomes random. It is in
this region that we expect most of the noise to originate.

Away from the region where the noise sources ate
situated the dilatation is a direct measure of the pressure

variation in time, in fact, the linearized (inviscid) energy
equation gives:

=___L_
_'- fi poc_ p.t (14)

We checked relation (14) at points situated away from the
region where the non-linear interactions are expected to be
important. For instance, the time series corresponding to
the RHS and LHS in equation (14) nondimensionalized by
r0/c0 are shown for a point situated at r=8.5r 0 and x= 25r 0.
The two time series are practically identical, when
superimposed one on topof the other in figure 10(a). The
pressure power spectrum at this point calculated starting
from the pressure signal and the dilatation signal (obtained
using the equivalent of (14) in Fourier space) are also very
similar for the range of resolved frequencies as shown in
figure 10(b). The differences are due to low-frequencies
variations that are still present in the flow at this region,
but it is clear that the dilatation oscillations at this location

correspond to sound waves.
With this in mind, one can try to describe

qualitatively describe the sound generation using the
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dilatation fields. Figures 9(a) and (b) clearly show
dilatation waves with a wavelength of about 6-8r0 that are
generated around a virtual origin situated at about x/r0=25
for the Re=3,600 simulation, and at x/r0=20 for the
Re=72,000 simulation. These locations correspond
physically with the termination of the potential core, where
most of the noise is expected to originate according to both
experimental (Jure et al._) and DNS data (Freund_2).

As in figure 9(a) the physical domain defined by
(r>5ro, x>2Ort# appears in to be in the acoustic 'near-field'
of the jet, meaning that the dilatation waves visible in the
instantaneous dilatation field are traveling as sound waves,
it is interesting to look at the time series of dilatation and
pressure (figure I l) at a particular location corresponding to
point P situated at r=8.5r0 and x=36r0 in figure 9(a). Indeed,
these time series plotted in figure 11 clearly show the
presence of a low-frequency component with a period of
about 700 time steps (or 7.88r0/c0) corresponding to
St-0.26. This Strouhal number matches the dominant

high wavelength visible in the dilatation field in figure
9(a). On top of the low-frequency waves, oscillations with
a higher frequency in the range St= 1-4 are also observed. It
is not clear if most of these higher frequency fluctuations
are spurious. We suspect that these fluctuations can be

reduced by running the simulation on a mesh with a

smaller aspect ratio Ax/Ar (--4.0 in the present
simulations). This is a task for future work. However,
physically generated acoustic waves in this frequency range
are expected to arise from turbulent shear layers. The
presence of dominant low frequency waves at St=0.25-0.3
also explains the dilatation patterns seen in figures 9(d)-(O,
where these waves are traveling from the jet center toward
the lateral boundary of the physical domain. Note that in
these figures we represented the dilatation field over exactly
this region that extends only 10r0, while the _,'avelength

associated with the low frequency wave is around 7-8r 0.
This explain why in figure 9(d) and (O we see only a region
of positive dilatation in most of the domain, while the
opposite is true in section 9(e) situated in between the

previous two. These regions correspond to the
compression and rarefaction fronts of the low-frequency
wave that is seen in the dilatation time series in figure 11.

In the lower part of figures 9(a) and 9(b) one can see
the effect of the disturbances introduced at the jet inlet in
terms of sound emissions. Though these disturbances
radiate sound at the main excitation frequency (wavelength
is close to 2r0), they do not contaminate the sound radiated
by the jet itself, which seems to be emitted at a much

higher wavelength. The other important observation is that
the outflow boundary appears to damp the turbulence
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without significant production of spurious sound that will
propagate back into the domain and contaminate the sound

pattern.
We already alluded to the fact that that as the

dominant sound waves originate from a region that
corresponds to the termination of the potential core, the
'sound sources' would be expected to be located in the same
area. Further evidence for this is given by figure 12(a)
where the instantaneous sound sources Spats (except the
contribution from the LES model denoted Stss, given in
figure 12(b)) are shown for the simulation at Re=72,000.
The acoustic sources are calculated directly from their
definitions:

S_s = co2(_-_+_j - _+j)._.j+ (_- c2oF) ,.,

st_s = c_(p-"_uj - p-_+_j),_,j
(15)

for this simulation the instantaneous acoustic

sources of relatively high intensity am mostly located in
the region 10r0<x<22r 0and r<4r0. Their pattern and overall
intensity levels (six equally spaced levels between

:t:2.5pU2o/to 2) is quite close to that shown by Freund t2.

Comparison of figures 9(a) and 9(b) also suggests that the
LES mtxiel does not become acoustically dominant, which
is an important concern for application of LES to
aeroacoustics. As the levels in figure 9(b) are between

_+0.25pU2o I roz the dominant instantaneous acoustic sources

are coming from the resolved-scale terms, while the
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contribution of the LES term is at least one _ of
magnitude lower.
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Figure I 1: Time evolution of the pressure and dilatation at

a point situated in the acoustic 'near-field' at (r=8.5r0,
x=36.Sr0, 0=0) for Re=3,600 jet

Figures 13(a)-(c) show power spectra of the dilatation

at points situated in the acoustic near field at r=-8.5r 0 and
x=50r0, 43r0 and 33r 0. These locations correspond to points

S l, $2 and $3 in figure 9(a). Their distance from the
'virtual' source center is 33r0, 26r 0 and 17r0 for Re=3,600

and at 39r o, 32r o and 23r o for Re=72,000. The polar angles
are 15°, 19°and 300 for Re=3,600 and 130, 150 and 220 for
R_72,000, respectively. The spectra are shown for both

simulations, with the data for Re=72,000 being shifted
down by a factor of 100 on the Vertical axis to allow a

better comparison. The noise spectra show that the range
of Strouhal numbers correspcmding to the peak noise
emission is between 0.2 and 0.5, as expected. The power
spectra at the higher Reynolds number appear to be more

physical in the sense that the second peak at St=l-5 is
much weaker and the shape of the spectra is closer to
experimental results. Overall one can observe the fact that
for Re=3,600 the peak in these spectra is found around

St---0.25 while the spectra at Re=72,000 appear to peak at a
slightly higher value of St=0.3. This is evident if we

compare the spectra at points S ! in the R_3,600 jet and
$2 in the R_72,000 jet that are situated approximately at
the same radius from the end of the potential core and have
same directivity angle. The second value (given in terms of
dominant wavelength X=6.6ro) agrees very well with the
value found in the simulation of Bogey et al. 7 at
R_68,000.
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The dilatation contours in the source region
sometimes show the formation of a series of wave groups
that seem to radiate sound very intensely for a certain period
of time. These wave packets with a wavelength smaller

than 2r0 seem to form and be destroyed on a relatively short
time-scale in a rather random fashion. They appear to be
correlated with the relative peak in the noise spectra at
St>l. However, as the cut-off Strouhal number at
locations where the acoustic near-field is measures is close

to these values, one probably should discard all together the

spectral information for St> 1.0. This is why a thick line
is drawn on our spectra at St= 1.0.

Re=3,600

...... ., =72:007.......
I 01 10°
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....... t ........ i

101 100
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........ |

10 _

lO
10"1 10° 10 t
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Figure 13: Dilatation power spectra for the simulations at
Re=3,600 and Re=72,000 at points (a) S 1 (r=-8.5r 0, x=50r o ,

0=-0); (b) $2 (r=-8.5r0, x=43r0, 0=0); (c) $3 (r=-8.Sro, x=33r0
,0=-0)

Finally, we use the pressure time series at points S l-
$3 to calculate the sound pressure levels (SPL) in decibels
for the simulation at Re=72,000. As observed in figure 14,
the maximum sound pressure level is olXained around 150-

160dB. which is somewhat high but this is expected since
the points are situated only 8.5ro from the jet axis. The
overall sound pressure levels (OASPL) for points S ! -$3 are
129, 134 and 133dB, respectively. The decay in the SPL
between St=0.2 and St=l is about 28dB (figure 14(b)L
which is rather sharp as in translates into a decay of the

SPL with frequency following a power law with n=-4,
while experimental data suggest n=-2.5 to -2. However,
one may speculate that the decay at higher frequetx:ies is
sharp because in our LES simulations we are not capturing
the higher frequency sound Lmodnced by the turbulent shear
layers prior to the potential core closure. Recall that these

shear layers were quasi-laminar. There is also some effect
of the increasing azimuthal spacing as St=l.O is
approached. Better resolved near-ricH data is _ to sort

out these effects. At the other ertd of the spectrum our
results do not seem to show the very energetic low
frequency waves that were present in the computed spectra
of Bogey et al. 7. This may be a consequence of the longer
domain and somewhat different treatment of the equations
near the outlet boundary that were suspected to be the cause
of these waves.
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Figure 14: Sound pressure level obtained from the pressure
at the points S I, $2 and $3 defined in figure 13 for the
simulation at Re=72,000 (a) Strouhal number range
between 0.01 and 5.0; (b) detail of the Strouhal number

range between 0.01 and 1.5
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4 Conclusions
In this paper we described the results of numerical

simulations of two jets at same Mach number Ma=0.9 but
at different Reynolds number of R_3,600 and R_72,000

with the aim of showing the feasibility of calculating
directly the sound sources and near-field noise using LES.
The jet was excited randomly at the inlet plane to force
transition. The code uses sixth-order compact schemes to
evaluate the derivatives in the radial and streamwise
directions while the evaluation of the derivatives in the

azimuthal direction is done in the Fourier space. This
ensures that a very little amount of artificial dissipation is
introduced, allowing the evaluation of the influence of the
SGS model separately from the effect of numerical
dissipation, as well as making the code suitable to compute
directly the radiated noise along with its aerodynamic
properties.

The lust part of the paper dealt with the description of
the jet aerodynamic flow characteristics in terms of the
main jet parameters that characterize the growth in the fully
developed region, mean profiles, and turbulence statistics.
The simulation in terms of aerodynamic data were validated "
successfully by comparing with available experimental data
as well as results of a DNS simulation carded out by
Freund _2 at Re=3,600, as well a recent LES simulation
carried out by Bogey et al. 7 at Re--68,000. Next the noise

computed directly in the near-field region corresponding to
the physical domain of our simulation was investigated.
As expected, the sound sources were found to be situated in
the region near the end of the potential core, and the
formation of sound waves was captured. The power spectra
of these sound waves had its peak around a Strouhal
number of 0.25-0.3, in agreement with various
experimental studies. A more extensive validation of the
sound results is under way. All these results establish that
we have a numerical method that allows us to investigate
in details the different mechanisms of sound generation.

An ongoing goal of this work is to establish a
benchmark LES database for cold jets, that would contain
similar calculations at higher Reynolds number (in the
range of 106), with the final aim to determine the range of
frequencies over which reliable noise data can be extracted
from LES and the range of frequencies that would require
modeling. We intend to use the near-field data to compute
the far-fieM sound using either a Kirchoff integral method
or a wave equation solver. The further development of
hybrid methods to calculate the far-field radiated noise
starting from direct calculations of the sound in the near-

field is essential, especially as more realistic exhaust jet
engine configurations are considered.

Our preliminary results suggest that the LES model
contribution to the radiated sound is not significant. To
address this issue in more details we intend to use the DNS

database of Freund _3 to extract space-time correlations of
acoustic sources and compare with our LES results) at the
same Reynolds number. This would allow to
quantitatively estimate the attenuation and suppression of
sound, especially at high frequency due to the unrepresented

scales in LES, as well as to investigate in more details the
noise contribution of the LES model. We estimate that a

more consistent analysis on how the quality of jet-noise
predictions depends on the mesh sizes, filtering, etc is
necessary to further demonstrate the feasibility of LES
methods to aeroacoustics applications.

The question of estimating the higher-frequency sound
information that is missing from our simulations because
on one hand the LES filtered equations were used, and on
the other due to quasi-laminar shear layers, requires further
investigation. As pointed out by Freund and Lele j5
predictions methods that allow the acoustic output of the
small scales to be estimated and combined with the acoustic

output of the resolved scales in LES are highly desirable.

We expect that this database will provide valuable help in
efforts related to the development of SGS acoustic models
that are necessary to account for the noise information lost
due to the LES filtering and, in general, the development of
LES techniques tailored for noise predictions.
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Appendix A: CenterlJne treatment
As the governing system of equations is discretized in

cylindrical coordinates, special care is given to the
treatment of the equations at the polar axis, due to the
presence of singular terms at r=-0. Our experience shows
that the quality of the LES solution, especially when
compact finite-differences schemes are used, is especially
sensitive to the type of equation treatment at the singularity
axis.

In the present work we use a new formulation in
which a set of exact equations at the singularity axis is
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derivedusingtheappropriateseriesexpansionsfor the
variables in the original set of equations. The main idea is
to reinterpret the regularity conditions developed in the
context of pseudo-spectral methods. Besides increasing
considerably the robustness of the numerical method

compared to previous versions of the code, an advantage of
the proposed treatment is that it preserves the same level of
accuracy as for the interior scheme.

The reader is referred to Constantinescu and Lele I? for

a detailed description of the method. Here, we will

emphasize only the main points. The governing system of
equations (I)-(3) can be written in compact form as:

---_ = RHS(Q) (AI)
_t

where in our case the vector of unknowns is
Q=(p_,pu,,pth, p,e) and the right-hand-side term (RHS)

contains the usual operators in cylindrical coordinates
associated with the continuity (l), momentum (2) and

energy equations (3), including the LES terms. Following
Boyd zs, the most general expansion of a single-valued"
quantity (S) at the polar axis can be written as:

m _ 21 /co m0,+
m=O ka=O ]

m_=or m(, =_o_m_r2n)" sin( m0 )

(A2)

while the expressions for multi-valued quantities (e.g., u,
and th0 assume the following form:

- ]M(r,0) 1 ]_A0.r2m + ___lrm_ I ,,.r2m
r a=l

(A3)

cos(m0) + m_=r m-' (a=_Bm, r z ') - sin(m0)

As any scalar or Cartesian velocity component is uniquely
defined at the origin, one can write:

(A4)

This relation holds, in particular, for u, = u,sin(0)+u0cos(0),
where (y,z) plane is oriented perpendicular to the jet axis.
By taking the derivatives with respect to 0. and requiring
that the relation holds for any 0, one obtains:

_u, c3u_____e=
ig---6-=u0 and _0 Ur at r=0 (AS)

There is another important constraint on the general form

of the series expansions for u, and u0 . If A !y) Rtr) A to)"-U '--iJ ,'-ij
and R I°)-ij are the coefficients of the series expansions for u,

and u0 in (A3), the following relation holds for all i >_ i:

AtO) ntr) and o(0) __A(r)io = _io °it - "_io (A6)

By calculating the derivatives with respect to 0 and r of the

series expansions given by (A2) and (A3) for all operators
present in the RHS of the governing equations (AI) and

taking the limit r-¢ 0, a new form of the governing
equations that is valid at the polar axis is obtained. These

are exacL provided that we can calculate the coefficients
Am. Bin, 0t,,,o, _,,,, for all terms present in the RHS of
(AI). However, for a system of PDE's with second-order
radial derivatives, as is the case for the Navier-Stokes
equations, it is sufficient to calculate at most the
coefficients whose indices m and n vary between 0 and 2.
For instance, the dilatation operator, which is a scalar
quantity and should contain only the m=0 mode, can be
expressed as:

+"--_-" + +--_-) =--_x + 2A(o_) (A7)ax r k

where the streamwise derivative can be calculated with the

same method used for points situated away from the polar
axis. For a complete description of the form of the RHS

expressions corresponding to the fully compressible flow
equations including the LES terms, the reader is referred to
Constantinescu and Lele tT.

The last step is to describe how the asymptotic series
coefficients that are needed to evaluate the RHS in (A 1) are
computed. All that is required to calculate these
coefficients accurately is to estimate numerically the lust
and second order radial derivatives of all the variables in

RHS with the same _der of accuracy as for points away
from the polar axis. To do this, the following algorithm is
adopted. The computational domain is mapped at every
x--constant, such that there is no need to specify numerical
boundary conditions at r=0. The mapping function
(r, 0) _ (L 0) is:

_=r, 0<0<Tt
6=0 for 0<r<R

_ = -r, r( < 0 < 2n
0=0-Tt for 0<r<R

and

(AS)

The radial derivatives are now taken from -R to R with r=0

being a regular interior point instead of a "numerical'

boundary point. This is similar to the method proposed by
Mohseni and Colonius 2_, but in their case points in the
radial direction were distributed starting with r=-Ar/2, instead
ofr=O.

Once the values of the variables and of their radial

derivatives are known for all N o directions at r=0 (N o is the
number of points in the azimuthal direction), the relations
that define the limit of the series expansions at r=O for the
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variablesandtheirradialderivativesareusedtocalculatethe
coefficientsin theseexpansions.For instance,the
coefficients''10A(r)and BI_ ) that appear in the expansion of

the radial velocity u;

u r = AI_'cos(0) + BI_) sin(0) (A9)

can be calculated by solving the system of equations that is
obtained by writing (A9) at 0 and 0+n/2. If N9 is divisible
by 8, u_(0) and u,(0+n/2) corresponds to modes situated
Ng/4 apart. As these values are known, the calculation of

these coefficients is nxttx:ed to solving a system of two
linear equations with two unknowns. To eliminate the bias
toward a certain direction, one can solve the above system
for every 0=(2rd No) (n-I) with n= ! to No and average the

results to get final values for A_ ) and B[_). In a similar

way, the coefficients involved in the expressions for the
first (and second order derivatives) of u, and u_ require
solving two (and three) systems of two linear equations.

coefficients serve also to estimate the limit of terms

involving the azimuthal derivatives at the polar axis. The.

coefficients in the expansions are unique so we do not have
to choose any arbitrary directions as was the case when the
equations were solved in Cartesian coordinates at the
singularity axis.
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