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Abstract 

This paper presents the results of a study involving single 
and multiple-cycle numerical simulations of vruious 
PDE-ejectoT configurations utilizing hydrogen-oxygen mix
tures. The objective was to investigate the thrust, impulse 
and mass flow rate characteristics of these devices. The 
results indicate that ejector systems can utilize the energy 
stored in the strong shock wave exiting the detonation tube to 
augment the impulse obtained from the detonation tube 
alone. Impulse augmentation ratios of up to 1.9 were 
achieved. The axial location of the converging-diverging 
ejectors relative to the end of the detonation tube were shown 
to affect the performance of the system. 

Introduction 

Ejectors are thrust augmentation devices whose perfor
mance depends on the efficient energy transfer between the 
primary and secondary flows . Most of the past research on 
ejectors has focused on steady primary flows , however, some 
experimental studies have shown that the introduction of 
unsteadiness into the primary flow can enhance the energy 
transfer process and consequently improve the thrust 

augmentation 1. The reason for the improvement in perfor
mance is that, while a steady ejector relies on viscous sheru' 
mixing for the energy transfer, the unsteady ejector achieves 
part of the energy transfer through more efficient flow 
entrainment mechanisms that are essentially inviscid. In 
addition, unsteady ejectors generally require shorter lengths, 
as compared to steady ejectors, for completing the energy 
transfer, and therefore have the potential to achieve a more 
efficient structural design. 

It is important to point out that two types of ejector aug
mentation systems have been considered in the past. They 
are based on different physical principles to obtain thrust 
augmentation, and are effective at different fhght speeds. 

The low-speed ejector systems rely on the low pressures 
generated by the secondary flow accelerating around the 

inlet contou? The thrust augmentation is primarily a result 
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of suction forces on the leading edge of the ejector shroud. 
Such ejector systems, which include those investigated by 

Lockwood 1 , generate thrust gains at static conditions. How
ever, they rapidly lose their thrust augmentation ability with 
forward flight. The reason being that, wi th forward flight, 
the secondary flow is no longer accelerated around the inlet 
leading edge. This causes a decrease in the leading edge suc
tion force and a reduction in thrust augmentation. The 
changes in the secondary flow with flight speed may actually 

produce thrust losses at cruise conditions2
. 

The second type of thrust augmentation ejector system is 
the ejector-ramjet, which is most effective from high sub-

sonic to low supersonic speeds3. Two classes of ejector-ram
jet systems have been proposed; the simultaneous mixing 
and combustion cycle (SMC), and the closely related inde
pendent ramjet stream cycle (IRS) recently proposed by 

Trefny and Yungster4.5. 

In the SMC cycle, exhaust from a primary fuel-rich 
rocket provides some fraction of the fuel required for com
bustion with the entrained secondary airflow. The rocket and 
air streams mix and burn simultaneously. This process gener
ally resul ts in thermal choking where mixing is complete, 
followed by expansion through a nozzle. However, the 
requirement for complete mixing of the rocket and air 
streams may result in very long mixing/combustor ducts. 

In the IRS cycle complete mixing of the rocket and ram
jet streams is not required. In this cycle, the airstream is 
fueled independently using fuel injectors located upstream in 
the inlet. The rocket serves as a pilot for the fueled airstream. 
The IRS cycle has several potential advantages over the 
SMC cycle which are described in ref. 5. 

Numerou methods for introducing unsteadiness into the 
primary flow have been proposed, including the Spin-Jet, 

Oscillating-Primary-Jet and Pulse-Jet ejectors l
. In recent 

years, the Pulse-Detonation-Engine (PDE) has been recog
nized as a promising propulsion system that offers advan
tages in thermodynamic cycle efficiency and hardware 



simplici ty6,7. Since PDEs are highly unsteady devices there 
is considerable interest in investigating their perfonnance in 
an ejector configuration. 

The objective of this paper is to present an initial study 
of the performance of several PDE ejector configurations at 
static conditions, and for single and multiple cycles. 

Numerical Method 

The analysis was carried out using an in-house devel

oped time-accurate CFD codeB. The code solves the axisym
metric Navier-Stokes equations for a nonequilibrium mixture 
of thermally perfect gases, using an implicit, total variation 
diminishing (TVD) algorithm. 

Since the main flow entrainment mechanisms in 
unsteady ejectors are essentially inviscid, we neglect the vis
cous tenns, and therefore, use the Euler equations with finite 
rate chemistry. In our fonnulation, the global continuity 
equation is replaced by ns species conservation equations, 

where ns denotes the number of species. 

The numerical method used for solving the governing 
equations is described in detail in Ref. 8, and briefl y summa
rized here. The equation set is solved using a fully implicit, 
first-order-accurate in time, variable-step backward differen
tiation fonnula (BDF) method. The numerical flu xes are 
evaluated using a second-order spatially accurate TVD 
scheme. The resulting equations are then linearized in a con
servative manner and solved iteratively, by using a 
lower-upper relaxation procedure consisting of successive 
Gauss-Seidel (LU-SGS) sweeps. 

The chemical reaction mechanism for hydrogen-oxygen 
combustion was based on Jachimowski 's model (Ref. 9,10), 
and consists of 19 elementary reactions among 9 species. 
Reactions involving N2 were neglected. 

In order to maintain adequate numerical resolution of the 
detonation wave front without the need to use thousands of 
grid points, a multi-level, dynamically adaptive grid is uti
lized. Figure 1 shows a section of the grid at three different 
times as the detonation wave moves from left to right. The 
grid constantly adapts to keep the detonation front within the 
finest grid level. An arbitrary number of levels can be speci
fied. Nine grid levels were used in the present study, and 100 
points were included in the finest grid level. 

Results 

Finite rate chemistry calculations were used to compute 
the flow in various PDE ejector configurations. In this paper, 
only development of detonations with direct initiation were 
considered. A high pressure, high temperature driver gas, 
consisting of H2-02 equilibrium combustion products, was 
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used in a small region next to the closed end (head-end) of 
the detonation tube, as described in Ref. 10. A chiver pres
sure ratio of 50 was used in the present study. 

To verify that this computational approach yields Chap
man-Jouguet detonations, the detonation velocity was plot
ted as a function of time for a stoichiometric Hr 0 2 mixture, 

at Po = 0.4 atm. and TO = 298 K, and compared the results 

with predictions from the CEA equilibrium code of Gordon 

and McBride II. It is observed in figure 2a that after an initial 
overshoot dUling the short transient phase, the detonation 
speed reaches a nearly constant value which is in very good 
agreement with that predicted by the CEA code. Figure 2b 
plots nondimensional pressure and temperature profiles 
immediately behind the detonation front, showing that the 
von Neumann spike conditions are computed accurately. 

A schematic of the PDE-Ejector configuration consid
ered in this study is shown in fig. 3. The boundary conditions 
at the ejector inflow plane depend on the direction of the 
flow. If the fl ow was into the ejector, total pressure and tem
perature, PIOI and Tlol were specified (subsonic inflow bound

ary). If the fl ow was out of the ejector, the static pressure was 
specified and the remaining variables were extrapolated fro m 
the interior (subsonic outflow boundary). At the ejector exit 
plane, the subsonic outflow boundary condition was speci
fied. All calculations considered a stoichiometric Hr 0 2 
mixture at Po = l.0 atm. and TO = 298 K, and PIOI / Po = 1.05. 

The ambient pressure was set to 1.0 atm. All the calculations 
were carried out for a detonation tube diameter, dt , of 2.6 in. 

and for ejector dimensions LI = 13 in., and ~ = 26 in. 

The first calculation considered a detonation tube hav
ing a length, Lt , of 72 in. The ejector cone angles were 8 1 = 

10° and 82 = 3.5°. The location of the ejector throat, Lth, was 

set at Lth = 2.6 in. downstream of the detonation tube end. 

The ejector throat diameter was set at Dth = 8.22 in., corre

sponding to an ejector area ratio, RAth = 10, where RAth is 
defined as 

= ejector area at throat 
detonation tube area 

Figure 4 shows the contribution to the thmst force and 
impulse from the detonation tube, ejector shroud and the 
small base area at the end of the detonation tube, for a single 
PDE cycle. The total force and impulse on the PDE-ejector 
system is also shown. The contribution of the base area was 
always negligible in all cases considered. All forces were 
computed by integrating the instantaneous pressure over the 
surface area. 

The force on the detonation tube (fig. 4a) shows an initial 
large value that arises from the ignition mechanism used in 



• 

the numerical simulations. No attempt to correct for tills arti 
ficial force was made in the present study, since the focus is 
to investigate the relative thrust augmentation obtruned in the 
various configurations stuilied. Tills illitial short duration 
spike is followed by a longer plateau region of 2.5 ms dura
tion and a subsequent decay to zero. It is primarily during 
tills level pressW'e duration that PDE thnlst is generated. The 
ejector force plot shows a sharp negative spike near 0.7 ms 
that is caused by the strong shock impinging on the converg
ing section of the ejector. Figure 5b shows that the total 
impulse is smaller than that obtained by the PDE tube alone. 
That is, the ejector is exerting a drag fo rce that reduces the 
performance of the system. 

The poor perfom1ance in tills case is the result of the 
strong shock exiting the detonation tube reflecting from the 
converging section of the ejector shroud. Therefore, an obvi
ous improvement could be acilleved by sliiling the ejector 
upstream. Also, one could take more advantage of tills strong 
shock by increasing the diverging angle 82, The second case 

therefore considers the same ejector, but moved upstream 
relative to the tube, such that the ejector throat is 1.4 in. 
upstream of the end of the detonation tube (that is Lth = -1.4) 

In adilition, the ilivergence angle was increased to 82 = 10°. 

Figure 5 shows the force and impulse results for the sec
ond case. These changes had no effect on the detonation tube 
force and impulse, however, there was a substantial effect on 
the forces acting on the ejector shroud. At 0.7 ms, there is 
now a sharp positive spike in the ejector force. The positive 
force continues until around 2.2 ms followed by alternating, 
smaller negative and positive forces . Figure 5b shows that in 
tills case there is a sigllificant increase in the total impulse of 
the system, (29.96 N-s compared to 15.70 for the PDE tube 
alone), corresponiling to an impulse augmentation, 'II, of 
'II = 1.9. 

Adilitional cases were computed to exarrune the effect of 
ejector area ratio, RAth, on the performance of the PDE-ejec

tor. The results are shown in fig. 6. The delay in the arrival 
of the shock front at the ejector shroud for increasing area 
ratio can be seen in the first peak in total force between 0.7 
and 1.0 ms approximately. This results in an steeper rise in 
total impulse initially for the R Ath = 10 case. After nearly 8 

ms, however, there are small ilifferences in the total impulse 
generated. There is no general trend in performance over tills 
range of area ratios. 

The mass flow rate for area ratios of 20' and 30 is shown 
in fig. 7. Tills figure shows that the secondary flow is alter
nating between positive and negative mass flow rates for 
both cases. On average (over the nearly 8 ms of operation) 
there is a net positive secondary flow of 1.55 kgls for fig. 7a, 
and 1.17 kg/s for fig. 7b. The average primary mass flow rate 
for both cases is 1.36 kg/so 
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The next case considers the same detonation tube, but 
instead of an ejector shroud, a iliverging nozzle, having the 

same length (~ = 26 in.) and divergence angle (82 = 10°) as 

the previous ejector, is attached at the end of the detonation 
tube. There is no secondary flow in tills case, and only the 
constant area tube is fueled. Since the "throat" area is identi
cal to the detonation tube area, tills case will be denoted as 
having an area ratio R Ath = 1.0. 

Figure 8 shows the force and impulse for till s configura
tion. The force on the detonation tube remruns unchanged 
from the previous cases. The force on the nozzle is also plot
ted. Tills force is illitially zero until the shock wave reaches 
the end of the detonation tube. At that time, a sharp rise is 
observed. The force on the nozzle peaks at around 1.2 ms 
and subsequently decreases and remruns negative from 
around].8 ms until the end of the calculation. Note that the 
force on the nozzle is a smooth function of time as opposed 
to the force on the ejector in the previous cases which show 
perioilic oscillations resulting from shock reflections in the 
ejector. 

Figure 8b shows that in till s case, there is also an increase 
in the total impulse over that obtruned for the PDE tube 
alone. The impulse augmentation, however is 'II = 1.4, sig
nificantly smaller than that acilleved with the ejector sys
tems. The lower performance for this case is a result of the 
below ambient pressures acting on the nozzle once the shock 
front leaves the nozzle. A comparison of the total impulse 
obtained in the present case and in two of the previous ejec
tors is shown in fig. 9. 

Note that other nozzle geometric configurations could 
have been considered for comparison with the ejector (for 
example, a nozzle having a ilifferent di vergence angle but the 
same exit area as the ejector). Such adilitional configurations 
are currently being investigated. 

Experimental stuilies of the effects of nozzles on the per

formance of PDEs have been carried out by Darnau et a1. 12
. 

They reported impulse augmentation values ranging from 
1.2 to 1.8 for ilifferent diverging nozzles. 

The results presented so far have considered a single 
PDE cycle. However, PDE-ejector systems normally require 
several detonation cycles before they reach a "lirllit cycle" 
operation. The final case presented in tills paper attempts to 
address tills issue by carrying out a multi-cycle computation 
of a PDE-ejector system. 

In order to reduce the computational time, a shorter tube 
<Lt = 39.4 in.) was considered, and the ejector convergence 

angle was reduced to 8 1 = 5°. An ejector with an area ratio of 

10 was considered. 

3 



Results of this calculation are presented in fig. 10, which 
shows the temporal evolution of the PDE ejector flowfield 
duIing almost three complete cycles. The detonation is initi
ated at t=O.O ms, and propagates downstream until it reaches 
the end of the detonation tube at approximately 0.35 ms. 
Subsequently, a strong shock followed by the combustion 
products expand into the ejector. At 4.52 ms a fresh combus
tible mixture is introduced into the tube (a pure oxygen 
buffer zone is used to separate the hot combustion products 
from the fresh combustible mixture). At 7.63 ms the detona
tion tube is completely filled with the new combustible mix
ture, and at 8.21 ms the second detonation cycle is started. 
Subsequent times (t=8.42 ms to t=15.31 ms) show the same 
sequence of events descIibed fo r the first cycle. At 
t=16.37 ms, the third detonation cycle has been started, and 
the remaining figures show the subsequent propagation of 
the detonation wave. 

The thrust forces over the 5 cycles are shown in fig. 11 , 
and the impulse and mass flow rates are shown in fig. 12. 
While the oscillatory pattern is similar from cycle to cycle, 
some differences are clearly observed, such as the peak val
ues in the ejector shroud force. More cycles may be required 
to establish some kind of limit cycle. The impulse plot shows 
that, after the first cycle, the ejector augmentation is smaller. 
After fi ve cycles the in1pulse augmentation was 'JI = 1.7. The 
mass flow rate plot shows the same alternating between 
inflow and outflow for the secondary stream. The average 
secondary mass flow rate varies from cycle to cycle but is 
always positive, as shown in table I. Note that the mass fl ow 
rates in the first cycle are substantially different from the oth
ers. This is due to the fact that the first cycle does not include 
the filling process. The first cycle started with the tube 
already filled with the detonable mixture. 

Conclusions 

There is a significant amount of energy stored in the 
strong shock wave exiting the detonation tube. If no ejector 
or nozzle is added at the end of the tube, this energy will be 
simply di ssipated into the surrounding air. By adding an 
ejector (or a nozzle) some of this energy can be utilized for 
the production of thrust. 

The present computations indicate that a PDE-ejector 
configuration produces higher impulse than a PDE-tllbe-noz
zle combination having the same length and divergence 
angle. The higher performance of the PDE-ejector is partly 
due to its capacity to entrain secondary air, which prevents 
the sub-ambient pressures that develop in the PDE-tube-noz
zle system once the shock wave exits the nozzle. Impulse 
augmentations of 1.9 and 1.4 were obtained for the 
PDE-ejector and PDE-tube-nozzle configurations respec
tively. 

The axial location of the ejector shroud relative to the 
end of the detonation tube is an important parameter. The 
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ejector shroud should be placed in a location such that the 
shock wave exi ting the detonation tube impinges on the 
diverging section of the ejector shroud. The ejector area ratio 
had a small effect on the performance of the PDE over the 
range investigated in this study (l0 < RAth < 30). 

The multi-cycle PDE-ejector calculation showed that 
after 5 cycles, an impulse augmentation factor of 1.7 was 
achieved. The average secondary mass flow rate remained 
positive for each cycle. 
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Table 1: Average mass flow rates (kg/s) 

Cycle 
Secondary mass flow Primary mass flow 

rate rate 

l a 0.82 0.76 

2 2.44 1.20 

3 4.28 1.27 

4 2.18 l.21 

5 2.94 1.16 

aDifferent starting condition 

Fig. 1. Computational grid at three different times. 
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