NASA Exploration Team (NExT)
In-Space Transportation Overview

51st JANNAF Propulsion Meeting
November 19, 2002
Lake Buena Vista, FL

Bret G. Drake & Douglas R. Cooke
National Aeronautics and Space Administration
Lyndon B. Johnson Space Center
Houston, TX

Larry D. Kos
National Aeronautics and Space Administration
George C. Marshall Space Flight Center
Huntsville, AL

https://ntrs.nasa.gov/search.jsp?R=20020092018 2020-02-13T02:06:26+00:00Z
Enabling the Strategy

The Hurdles

• Space Transportation
 – Safe, fast, and efficient

• Affordable, Abundant Power
 – Solar and nuclear

• Crew Health and Safety
 – Countermeasures and medical autonomy

• Optimized Robotic and Human Operations
 – Dramatically higher productivity; on-site intelligence

• Space Systems Performance
 – Advanced materials, low-mass, self-healing, self-assembly, self-sufficiency...

The Criteria

• Compelling science objectives and benefits

• Knowledge about destinations

• Reliable and affordable mission concepts

• Acceptable technology readiness achieved

• Validation of capabilities for deep space missions

• Identified opportunities for partnership/leadership

• Inspiring and engaging to students and the public
Exploration of Earth’s Neighborhood

Human Mars Exploration
- Technology Development
- Deep-Space Operational Experience
- Mission Staging

Earth’s Neighborhood” Capabilities

Construct, Deploy, and Service Advanced Astronomical Instruments
- Detect Biological Activity on Extra-Solar Planets
- Image Surfaces of Extra-Solar Planets
- Search for Location and Mechanism of Solar Flares
- Increase Lead Time and Accuracy for Geospace Forecasts

Commercialization Opportunities
- Lunar Oxygen or Water Production
- Regolith Materials Processing
- Fuel Depot

Lunar Science
- Impact History in Near-Earth Space
- Composition of Lunar Mantle
- Past and Current Solar Activity
- Poles - History of Volatiles in Solar System
Earth's Neighborhood Architecture & Elements

Crew departs from LEO and returns to Earth

Lunar Transfer Vehicle
- Transports crew between LEO and Lunar L_1 (4-6 day trip)
- Nominal aerocapture-entry with contingency direct Earth return

High-Energy Propulsion Stage
- High-efficiency stage used to deliver cargo from LEO to a final destination.

Earth-Moon L_1 Outpost
- "Gateway" to the Lunar surface
- Outpost for staging missions to Moon, Mars and telescope construction

Lunar Lander
- Transports crew between Outpost and Lunar Surface
- 9-day mission (3 days on Lunar surface)

Lunar Habitat
- 30-day surface habitat placed at Lunar South Pole

Low-Energy Transfer
"Interplanetary Superhighway"

Earth L_2

Moon

Mars
Earth’s Neighborhood Transportation Elements

In-Space Transportation
- Deep-space propulsion for capture, orbital maintenance, and element return to Earth
- Key Technologies & Options:
 - Advanced Chemical (CH₄/O₂)
 - Long-term Cyro Storage

High-Energy Injection
- Injects mission payloads from low-Earth orbit (LEO) toward their intended destination
- Key Technologies & Options:
 - Advanced Chemical (H₂/O₂)
 - Solar Electric Propulsion
 - Long-term Cyro Storage

Earth-to-Orbit (ETO)
- Transports cargo elements and crew from Earth to LEO
- Options:
 - Shuttle-derived
 - Evolved EELV

Descent / Ascent
- Deep-space propulsion for descent to and ascent from the lunar surface
- Key Technologies & Options:
 - Advanced Chemical (CH₄/O₂)
 - Long-term Cyro Storage

Earth Return
- High-energy aeroassist for orbital capture and entry of Earth’s atmosphere
- Key Technologies & Options:
 - Advanced Ablators
Mars Mission Trajectory Options

Short-Stay Missions (Opposition Class)
Variations of missions with short Mars surface stays and may include Venus swing-by.

Long-Stay Missions (Conjunction Class)
Variations of missions with long Mars surface stays.
Delta-V Variations

Short-Stay Missions (Opposition Class)

Long-Stay Missions (Conjunction Class)

Earl Launch Date

Earth Departure Date

Minimum Total Propulsive DV (Km/Sec)
Mars Long-Stay Mission Overview Option
(Solar Electric Propulsion Option)

Habitat Lander and Descent/Ascent Vehicles delivered to Low Earth Orbit. Solar Electric Propulsion stages spirals cargo to High Earth Orbit. Chemical injection used at perigee. (Option: SEPs spiral back to LEO for reuse).

Crew travels to Mars in “fast transit” 180-206 day transfer. Aerocaptures into Mars orbit

Transit Habitat vehicle delivered to LEO. SEP spirals Transit Habitat to High Earth Orbit. Crew delivered to vehicle via crew taxi. (Option: SEP spirals back to LEO for reuse).

Surface Habitat and exploration gear aerocaptures into Mars orbit

Descent/Ascent Vehicle aerocaptures and remains in Mars orbit for the crew

Crew rendezvous with Descent/Ascent Vehicle in Mars Orbit then lands in vicinity of Habitat Lander

Crew lands on surface. 30 days provided to satisfy “long-stay” criteria.

In-depth regional exploration (500-600 days). Crew ascends and rendezvous with waiting Transit Habitat

Crew returns to Earth on “fast transit” 180-206 day transfer.

Total mission duration: 892-945 days
Time on Mars surface: 500-600 days

Ref. Johnson Space Center
Mars Architecture

Key Attributes

- Crew of 4-6
- Short (30-day) initial visits for focused local science evolving to long (500-day) stays for extensive regional exploration
- Total mission durations range from 365 to 950 days.
- Capability to go to Mars any opportunity
- Maximum use of capabilities developed for Earth’s Neighborhood
- Ability to introduce new technologies as they are developed
- Advanced transportation and enhanced launch capacity required to reduce risk and architecture cost
Mars Exploration Transportation Elements

In-Space Transportation
- Deep-space propulsion for element delivery and return to Earth
- Key Technologies & Options:
 - Nuclear Electric Propulsion
 - Solar Electric Propulsion
 - Advanced Chemical

Aeroassist
- Utilization of Mars atmosphere for capture, entry, and descent
- Key Technologies & Options:
 - Advanced Ablators
 - Integrated Launch Shroud / Aeroshell

Descent / Ascent
- Deep-space propulsion for descent to, and ascent from, the martian surface
- Key Technologies & Options:
 - Advanced Chemical (CH₄/O₂)
 - Long-term Cyro Storage

Earth-to-Orbit (ETO)
- Transports cargo elements and crew from Earth to LEO
- Options:
 - Shuttle-derived
 - Clean-sheet approach

Earth Return
- High-energy aeroassist for orbital capture and entry of Earth’s atmosphere
- Key Technologies & Options:
 - Advanced Ablators
Mars Architecture Mass History

1 1988 Mars Expedition (Chem A/B)
2 1989 Mars Evolution (Chem A/B)
3 1990 90-Day Study (NTR)
4 1991 Synthesis Group (NTR)
5 1995 DRM 1 Long Stay (NTR)
6 1997 DRM 3 Refinement (NTR)
7 1998 DRM 4 Refinement (NTR or SEP)
8 1999 Dual Landers (SEP)
9 2000 Short Stay (NTR or SEP)

ISS @ Assembly Complete (470 tons)
Mars Mission Launches Required and Associated Reliability

Launch Reliability = 99.7%
(STS Reliability)

97% (EELV Reliability Req.)

94% (World-wide Reliability)

- Integral Aerobrakes Lost
- Integral Injection Stages Lost
- Packaging Inefficiencies Increase
- Onorbit Integration Complexity Increases

Total Launch Mass
- 450 mt

Payload per Launch (Metric Tonnes)

Number of Launches Required

Cumulative Launch Reliability

Loss of Commonality with STS Infrastructure
Nuclear Electric Propulsion Advantages

- **High propulsive performance**
 - Captures energetically challenging Mars missions in all opportunities (for ~ same prop mass)

- **High power availability**
 - Robust power for crew, spacecraft systems (<1% of propulsion requirements)

- **Potential technology convergence with advanced robotic exploration and NSI**
 - Reactor, power conversion, thrusters
 - Human exploration nuclear power requirements ready to submit to Nuclear Space Initiative

- **Potential convergence with technology development of surface nuclear power**
 - Moon -> 14 days (non-polar) at fixed location
 - Mars – “long” stay

- **Allows Sustainable, Evolvable Exploration Capability**
 - High reactor energy content and low prop mass fraction allows high degree of vehicle reusability for Mars missions
 - Evolution of power/propulsion possible to even more ambitious missions
Artificial Gravity (AG) Option

- Alternative to long-duration μ-g crew countermeasures
 - 1-g @ 4 rpm
- May simplify qualification of some spacecraft systems
 - Ameliorates extensive μ-g qualification
- Impacts currently under study
 - Vehicle design
 - Mass penalty
 - Mission capabilities
 - Operational considerations
 - No show-stoppers so far
- Good synergism between AG requirements and NEP vehicle characteristics
 - Booms/masts for rad exposure amelioration and AG moment arm
 - “Power module” as counterweight
- May greatly enhance short-stay missions
 - Crew readaptation time avoided
Key In-Space Transportation Technology Options & Needs

Earth-to-Orbit Launch

Application: Affordable delivery of cargo elements and crew from Earth to LEO.

Needs: 80-100 mt with payload volumes up to 10 m x 30 m.

Key Options: Shuttle derived or clean sheet approaches

Advanced Chemical Propulsion

Application: High energy injection stages for transportation of elements in near-Earth space. Advanced chemical engines for descent and ascent at planetary destinations.

Needs: 5-6 klbf throttleable engines which are compatible with utilization of local resources.

Key Options: O2/Methane, O2/Hydrogen

Electric Propulsion

Application: High-efficiency propulsion for delivery of cargo and crew elements from Earth vicinity to planetary destinations & return.

Key Options: 6-20 MWe nuclear electric.

1-3 MWe solar electric (combined with chemical injection stages and aeroassist at Mars).
Key In-Space Transportation Technology Options & Needs

Aeroassist

Application: Utilization of planetary atmospheres (Mars and Earth return) for orbital capture, entry, descent, and landing.

Needs: Arrival speeds of 7.4 km/s (Mars) and 11.0 – 13.5 km/s (Earth return).

Key Options: Advanced ablators. Integrated aeroshell/payload shroud concepts.

Cryogenic Fluid Management

Application: Long-term storage of cryogenic fluids in space and on planetary surfaces.

Needs: Storage of cryogenic fluids (H₂, O₂, CH₄) for up to 1200 days.

Key Options: Combination of passive and active systems.