RESEARCH STATUS OF
IEC EXPERIMENTS
AT NASA MARSHALL

CHRIS DOBSON
NASA MSFC, PRC/TD40, HUNTSVILLE, AL

IVANA HRBUD, ERC, INC., NASA MSFC GROUP, HUNTSVILLE, AL
PRESENTATION OUTLINE

* IEC HISTORY AT PRC-NASA MSFC

* EXPERIMENTAL APPARATUS

* IEC PLASMA IMAGES

* DIAGNOSTICS

* RESULTS

* 3RD US-JAPANESE EXCHANGE/IEC WORKSHOP

IVANA HRBUD/MSFC-TD40
IEC HISTORY AT PRC

1997
- Preliminary studies and discussions with UIUC

1998
- SBIR-Phase I, NPL Associates & UIUC

1999
- SBIR-Phase II, NPL Associates, UIUC.
- Dr. Jon Nadler (UIUC) and Ms. Chantelle Hurst (Purdue University) join PRC through SFFP.
- UIUC loans IEC experiment to PRC for initial operation and design template for PRC’s IEC experimental program.
- Submitted CDDF proposal.
- Design and procurement of 2-foot vacuum chamber.
IEC HISTORY AT PRC

* 2000

- CDDF approved for IEC propulsion research.
- Design of PRC vacuum chamber, procurement of all major components and build-up of laboratory facility.
- Identified grid manufacturing techniques and conducted grid fabrication experiments.
- Design of pulse forming network for pulsed, high-power operation.
- Ms. Chantelle Hurst (Purdue University) joins PRC as Accompanying Faculty Student.
- PRC's IEC experiment generates plasma with Ar, He, and N₂.

* 2001

- Set-up of all major diagnostics and IEC plasma with H₂ (safety certification).
- Ms. Chantelle Hurst (Purdue University) joins as USRP.
- IEC plasma with Deuterium
2-foot, double-wall Spherical Vacuum Chamber
5-kW High Voltage Power Supply by Hipotronics

Plasma Diagnostics
- Neutron Detector (Ag Counter, He3)
- Photon Emission Spectroscopy
- Thomson Scattering (under development)
- X-Ray Detectors
- Microwave Interferometer (near future)

Laser Specifications
- Pulsed Nd-YAG Laser
- 1J/pulse, 10Hz

ICCD Gated Camera

Propellant Feed System
IEC SCHEMATICS

- Bottle Valve
- Line Valve
- S.O.V.
- Relief Valve
- Inlet Line
- Choke Orifice
- Inlet
- Wall
- Exhaust Line
- Valve Panel
- Chamber Valve
- Vacuum Chamber
- Gate Valve
- Turbo Pump
- Turbo Valve
- Roughing Valve
- Foreline
- Purge Inlet
- Diaphragm Pump

Gas Feed Inlet
- Cathode Grid
- To Vacuum Pump
- High Voltage Feedthrough
- Power Supply

IVANA HRBUD/MSFC-TD40
FUSION AT PRC

* IEC Operation:
 - Ar, He, N₂ (12-00)
 - Protium (06-01, 01-02)
 - Deuterium (08-01, 01-02)

* Mid August fused Deuterium and generated Neutrons for the first time with PRC's IEC experiment.

* Experiment generated a stable, sustainable, continuous and fusible plasma at a variety of power levels and propellant mass flow rates.
IEC DEUTERIUM EXPERIMENTS

<table>
<thead>
<tr>
<th>Experiment</th>
<th>p (mT)</th>
<th>V (kV)</th>
<th>I (mA)</th>
<th>P (mA/kV$^{3/2}$)</th>
<th>D (cm)</th>
<th>r_+/r_-</th>
<th>S (10^6 n/s)</th>
<th>Q (10^{-9})</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hirsch[3]</td>
<td>0.1</td>
<td>150</td>
<td>10</td>
<td>0.005</td>
<td>18</td>
<td>3.0</td>
<td>50</td>
<td>40</td>
</tr>
<tr>
<td>Miley[5]</td>
<td>5</td>
<td>35</td>
<td>3.1</td>
<td>0.015</td>
<td>30</td>
<td>3</td>
<td>0.04</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>35</td>
<td>4.1</td>
<td>0.02</td>
<td>30</td>
<td>4</td>
<td>0.05</td>
<td>0.43</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>35</td>
<td>25</td>
<td>0.12</td>
<td>30</td>
<td>4</td>
<td>0.2</td>
<td>0.27</td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>11</td>
<td>20</td>
<td>0.55</td>
<td>30</td>
<td>4</td>
<td>0.003</td>
<td>0.016</td>
</tr>
<tr>
<td>Nebel[6]</td>
<td>0.3</td>
<td>25</td>
<td>20</td>
<td>0.16</td>
<td>56</td>
<td>3.5</td>
<td>10</td>
<td>23</td>
</tr>
<tr>
<td>Gu[15]</td>
<td>0.1</td>
<td>60</td>
<td>20</td>
<td>0.04</td>
<td>cylinder</td>
<td>axial</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ohnishi[16]</td>
<td>12</td>
<td>32</td>
<td>30</td>
<td>0.17</td>
<td>35</td>
<td>6.1</td>
<td>1.5</td>
<td>1.8</td>
</tr>
<tr>
<td>[13]</td>
<td>70</td>
<td>15</td>
<td>0.026</td>
<td></td>
<td></td>
<td></td>
<td>1.2</td>
<td>1.3</td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>140$^\wedge$</td>
<td>4.4</td>
<td></td>
<td></td>
<td></td>
<td>0.045</td>
<td>0.04</td>
</tr>
<tr>
<td>Thorson[9]</td>
<td>1.9</td>
<td>35</td>
<td>20</td>
<td>0.1</td>
<td>40</td>
<td>8</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>35</td>
<td>20</td>
<td>0.1</td>
<td>40</td>
<td>4</td>
<td>1</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>58</td>
<td>22</td>
<td>0.05</td>
<td>40</td>
<td>4</td>
<td>5</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>20</td>
<td>240</td>
<td>2.7</td>
<td>40</td>
<td>4</td>
<td>1.5</td>
<td>0.37</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>35</td>
<td>20</td>
<td>0.1</td>
<td>40</td>
<td>4</td>
<td>3</td>
<td>5</td>
</tr>
<tr>
<td></td>
<td>1.9</td>
<td>45</td>
<td>20</td>
<td>0.07</td>
<td>40</td>
<td>2</td>
<td>7.5</td>
<td>9.8</td>
</tr>
<tr>
<td>Nadler[7]</td>
<td>5</td>
<td>40</td>
<td>15</td>
<td>0.06</td>
<td>61</td>
<td>2.4</td>
<td>1</td>
<td>0.7</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>40</td>
<td>15</td>
<td>0.06</td>
<td>61</td>
<td>3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>50</td>
<td>17000$^\wedge$</td>
<td>48</td>
<td>61</td>
<td>2.4</td>
<td>(500)</td>
<td>3</td>
<td>800</td>
</tr>
</tbody>
</table>

$^\wedge$Pulsed Experiments

Where is our data?
Relative Electrode Size and Fusion

- Neutron Rate (MHz)
- D-D Fusion Q (ppb)

Anode to Cathode Radius Ratio

Ivana Hrbud/MSFC-TD40
Typical Experiment Configuration

- High Energy Laser
- Delivery Optics
- Vacuum Chamber
- Plasma
- Beam Dump
- Collection Optics
- Pulse Generator
- Low-Light Camera
- Spectrometer

IVANA HRBUD/MSFC-TD40
DETECTOR OPTIONS

Diffraction Spectrometer and Camera
- Spatial Information Available
- Many Wavelength Channels
- Spectral Flexibility

Interference Filters and Photodetectors
- Mechanically Simple
- Physically Robust
- Signal vs. Resolution Flexibility
RESULTS

Balmer Lines - D2 Plasma

 photons / pixel / sec

<table>
<thead>
<tr>
<th>Wavelength (nm)</th>
<th>Photons / pixel / sec</th>
</tr>
</thead>
<tbody>
<tr>
<td>400</td>
<td>1.0E+5</td>
</tr>
<tr>
<td>500</td>
<td>6.0E+5</td>
</tr>
<tr>
<td>600</td>
<td>1.1E+6</td>
</tr>
</tbody>
</table>

Note: Neutral Atomic Species

Upper State $n = 3$

- $n = 4$
 - H_δ
 - H_γ
 - H_β

- $n = 5$

- $n = 6$

Visible Spectrum
RESULTS

* IEC Data Set (8-21-01/Deuterium)

- Pirani Gage mT
- Flow Readout mlm
- High Voltage kV
- Supply Current mA
- Neutron Count cpm
- Rad 50 mrh
- PNR4 Neutrons mrh

Time (minutes)

Units

IVANA HRBUÐ/MSFC-TD40
RESULTS

Paschen Curves for Hydrogen Isotopes in IEC

Voltage (kV) vs Pressure (mT)

- Deuterium
- Protium
RESULTS

* IEC Radiation Conditions vs. Cathode Voltage

- Current (mA)
- Pressure (mT)
- Ag counter (n/s)
- Rad 50 (mrh)
- PNR-4 (mrh)
Calculation of Measurable Number Densities vs. Temperature

Central Number Density and Temperature Limits from IEC Thomson Scattering

Signal Noise Ratio = 10 for 8 Minute Measurement (T = -30°C)

7.6 mT D2, 12 kV.