Approximating Fluid Flow from Ambient to Very Low Pressures – Modeling ISS Experiments that Vent to Vacuum.

September 11 2001

Robert Minor
MSFC TD 62/NASA
Background

- Two ISS experiment payloads will vent a volume of gas overboard via either the ISS Vacuum Exhaust System or the Vacuum Resource System. A system of ducts, valves and sensors, under design, will connect the experiments to the ISS systems.
Background
The Task

- Create an analysis tool that will verify the rack vacuum system design with respect to design requirements, more specifically approximate pressure at given locations within the vacuum systems.
- Determine the vent duration required to achieve desired pressure within the experiment modules.
- Update the analysis as systems and operations definitions mature.
Unknowns

- Final configuration of rack based vacuum system.
- Some material specific characteristics of the ISS vacuum system, particularly off-gas rates for components with company proprietary material specifications.
- Gas to be vented.
- Gas temperature, pressure and volume.
- Operations scenarios which could impact pressure and temperature of downstream systems.
Known

- Final Configurations of ISS Vacuum Exhaust and Vacuum Resource Systems.
- At some point, in all operations scenarios, there will be a venting of an experiment chamber from ambient to very low pressure.
- Pressure outside ISS is $\sim1.2e-7$ torr.
- Volume outside ISS is infinite.
Three Regimes of Fluid Flow

- Continuum (viscous) flow can be laminar or turbulent, and can be predicted by the laws of conservation of mass and energy.

- Transitional flow has characteristics of both molecular and continuum and is approximated with a conductance method.
Fluid Flow (Continued)

- Molecular flow can be characterized by the mean free path of the molecule (λ). The mean free path is the distance a molecule is predicted to travel without colliding with another molecule or vessel wall. Molecular flow occurs when λ is relatively large so the likelihood that a molecule will collide with a vessel wall is greater than the likelihood that there will be intermolecular collisions. Molecular flow will be analyzed using a conductance method.
Determining Flow Regime

- Predicting flow regime is accomplished with Knudsen number (Kn).
 - A Knudsen number greater than zero and less than 0.01 indicates a continuum flow regime.
 - The transitional regime will occur where Kn is greater than or equal to 0.01 and less than or equal to 1.0.
 - A Knudsen number greater than 1.0 identifies the flow regime as molecular flow.
- Knudsen number is calculated by:
 - \(Kn = \frac{0.066}{D \times P} \)
 - Derivation for this equation can be found in the paper.
Determining Pressure

- Two distinct methods of determining the change in pressure over time are employed in order to evaluate performance over all flow regimes
 - Pressure changes through the viscous flow regime are evaluated using the Generalized Fluid System Simulation Program (GFSSP).
 - Flow in the low continuum, transitional, and molecular regimes is predicted using a conductance method.
GFSSP

- Assumes a Newtonian, non-reacting and one-dimensional flow.
- Requires resolution of the system into nodes (internal and boundary) and branches.
- Pressures, temperatures, and concentrations of fluid species are specified at the boundary nodes.
- Flow rates are computed in the branches.
- Results are in english units.
Conductance Method

- Flow for the molecular and transitional regimes are predicted by measuring the ability of a gas to flow through a control volume, called conductance.
- In a manner similar to GFSSP analysis a conductance model is developed as a series of connected nodes.
- Control volumes are modeled in terms of pipe and orifice.
- Control volume conductances can be added, in a manner analogous to electrical resistance, so that systems with parallel or series branches can be simplified into single volumes.
Conductance Method (Continued)

\[\dot{P}_j = \frac{1}{V_j} \left[G_j + L_j + C_{ij} \cdot (P_i - P_j) - C_{jk} \cdot (P_j - P_k) \right] \]

Where:
\[\dot{P}_j = \text{Change in pressure in control volume } j \text{ (torr/sec)} \]

\[V = \text{Volume (L)} \]

\[G = \text{Off-gas rate (torr L/sec)} \]

\[L = \text{Leak (torr L/sec)} \]

\[C = \text{Conductance (L/sec)} \]

\[P = \text{Pressure (torr)} \]

i and k are upstream and downstream respectively from j.
Meshing the Models

- GFSSP output becomes the conductance model input file.
 - Design both models so node information mesh.
 - GFSSP calculates in English units, conductance code in SI, be sure to convert.
 - Expect a settling in period, the duration will depend on step size.
Helpful Assumptions for ISS Venting Approximations

- The experiment will either fly at ambient pressure to the station or at some point an on-orbit operation will fill an experiment chamber with station air. This allows for the following assumptions:
 - The gas to be vented is air.
 - Gas temperature and pressure are standard.
- If the valve configuration is under study, let valves open instantaneously.
- Station vacuum systems are vented from ambient pressure along with experiment modules.
Helpful Assumptions for ISS Venting Approximations

- **Seals**
 - All seals, within the system under design, will leak, the maximum allowable amount, per seal specification.
 - Seals leaking the maximum allowable amount, will not impact continuum pressures, i.e. GFSSP model.
 - Seals within Vacuum Exhaust and Vacuum Resource systems do not leak.
 - Other experiments connected to these vacuum systems do not leak.
Helpful Assumptions for ISS Venting Approximations

- Off-gassing is described by an exponential decay function.
 - Pressure must be low enough for the escape of entrained gases to be significant, which won’t occur to a noticeable degree in continuum regime.
 - When off-gassing rates are unavailable use a known rate for a material with chemical similarities.
Conclusions

When designing a new analysis tool:

- Gather information from system designers, operations planners, and principal investigators,
- Fill in the blanks with assumption,
- Create modular software,
- Share results,
- Iterate.