Incorporation of Condensation Heat Transfer in a Flow Network Code

Miranda Anthony & Alok Majumdar
NASA/Marshall Space Flight Center
Huntsville, Alabama
Content

• Introduction
• Problem Description
• Generalized Fluid System Simulation Program
• Condensation Heat Transfer
• Solid to Fluid Heat Transfer
• Numerical Model Results
• Conclusions
• References & Acknowledgements
Introduction

- Pure water is distilled from waste water in International Space Station
- Distillation assembly consists of evaporator, compressor and condenser
- Vapor is periodically purged from the condenser to avoid vapor accumulation
- Purged vapor is condensed in a tube by coolant water prior to entering purge pump
- The paper presents a condensation model of purged vapor in a tube
UPA Simplified Schematic

Diagram Description:*

- **Wastewater Tank**: Urine from Node 3 enters the Wastewater Tank.
- **Distillation Assembly (Distills wastewater)**: This component processes the wastewater.
- **Recycle Filter Tank Assy.**: Accumulates & stores brine for disposal.
- **Purge Pump**: Removes gases from Distillation Assy.
- **Separator**: Separates water from purge gases.
- **Coolant**: Promotes condensation within purge pump.
- **Purge Gas to Node 3 cabin**: Product water is directed to Water Processor Assembly.
- **Fluids Pump**: Assists in the flow of fluids.

Notes:
- Coolant is indicated as an essential part of the process, promoting condensation within the purge pump.
- The diagram illustrates the flow of water and gases through various components, ensuring efficient wastewater treatment.
Problem Description

Superheated Water Vapor
- $P_{\text{inlet}} = 0.95 \text{ psia}$
- $T_{\text{inlet}} = 101^\circ \text{F}$

Tinlet =

Saturated Water Vapor
- $P_{\text{outlet}} = 0.5 \text{ psia}$

Touter wall = 65°F

Inner Tube Diameter = 0.125 inch
Outer Tube Diameter = 1 inch
Length = 4 inches
Material is Titanium

Calculate the Quality and Heat Transfer Properties of the Water as it Condenses in the Pipe

Model consists of 2 Boundary Nodes and 28 Internal Nodes and Models Conduction through the Tube Wall
GFSSP calculates pressure, temperature, and concentrations at nodes and calculates flow rates through branches.
GFSSP

Finite Volume Method

- Finite Volume Method is based on conservation principle of Thermo-Fluid Dynamics
- In Classical Thermodynamics we analyze a single control volume
- In Finite Volume Method, flow domain is discretized into multiple control volumes and a simultaneous analysis is performed
- Finite Volume Method can be classified into two categories:
 - Navier-Stokes Solution (Commonly known as CFD)
 - Network Flow Solution (NFS)
GFSSP
Finite Volume Method

Network Flow Solution (NFS)

Navier-Stokes Solution (CFD)
GFSSP Process Flow Diagram

Solver & Property Module

Output Data File

- Equation Generator
- Equation Solver
- Fluid Property Program

User Subroutines

New Physics

- Time dependent process
- non-linear boundary conditions
- External source term
- Customized output

Preprocessor

Input Data File

- Command line preprocessor
- Visual preprocessor
Coupling of Thermodynamics & Fluid Dynamics

- p - Pressure
- m - Flowrate
- h - Enthalpy
- c - Concentration
- ρ - Density

Error

Iteration Cycle
GFSSP Solution Scheme

SASS : Simultaneous Adjustment with Successive Substitution

Approach : Solve simultaneously when equations are strongly coupled and non-linear

Advantage : Superior convergence characteristics with affordable computer memory
Condensation Heat Transfer

\[q', \text{ MW/m}^2 \]

\[v_g, \text{ m/s} \]

\[(T_s - T_w), \text{ K} \]

- Dropwise
- Transition
- Filmwise

\[76, 32, 13 \]
Heat transfer correlations

Akers, et al, 1959 – Annular Correlation
Boyko and Kruzhulin, 1967 – Annular Correlation
Chato, 1962 – Stratified Correlation

Chose Soliman correlation for its stability and generality

Annular Condensation

Stratified Condensation
Soliman Correlation for Heat Transfer Coefficient for Annular Flow Condensation

\[h = 0.036 \Pr^{0.65} F_0^{0.5} \left[\frac{k_i \rho_i^{0.5}}{\mu_i} \right] \]

\[F_0 = F_f + F_m \pm F_a \]

\[F_f = 0.045 \Re^{-0.2} \left[\frac{\pi^2 \rho_f D^4}{8W_f^2} \right] x^{1.8} + 5.70 \left(\frac{\mu_i}{\mu_v} \right)^{0.0523} (1-x)^{4.70} x^{1.33} \left(\frac{\rho_v}{\rho_i} \right)^{0.261} + 8.11 \left(\frac{\mu_i}{\mu_v} \right)^{0.105} (1-x)^{0.40} x^{-0.60} \left(\frac{\rho_v}{\rho_i} \right)^{0.522} \]

\[F_m = 0.5 \left(\frac{d}{dz} \left[\frac{\pi^2 \rho_f D^4}{8W_f^2} \right] \right) \left[2(1-x) \left(\frac{\rho_v}{\rho_i} \right)^{2/3} + \left(\frac{1}{x} - 3 + 2x \right) \left(\frac{\rho_v}{\rho_i} \right)^{4/3} + \left(2x - 1 + \beta x \right) \left(\frac{\rho_v}{\rho_i} \right)^{1/3} + \left(2 \beta - \frac{\beta}{x} - \beta x \right) \left(\frac{\rho_v}{\rho_i} \right)^{5/3} + 2(1-x - \beta + \beta x) \left(\frac{\rho_v}{\rho_i} \right) \right] \]

\[F_a = 0 \]

F_f: Effect of two-phase friction
F_m: Effect of momentum changes in the flow
F_a: Effect of axial gravitational field on the wall shear stress
Solid-to-fluid heat transfer

\[T_{\text{solid}} = T_{\text{cooant}} \]

\[Q_{\text{condensation}} = h A (T_{\text{fluid}} - T_{\text{solid}}) \]
Plot of Quality vs. Pipe Location for Selected Heat Transfer Correlations

For Grid Size = 20 and R = 1

Quality vs. Distance (in)
Quality Comparison for Different Tube Grid Resolution
(Soliman Correlation)
Outer Wall Temperature Comparison for Different Tube Grid Resolution
(Soliman Correlation)
Conclusions

- A condensation heat transfer model was successfully incorporated in a general purpose flow network code
- The numerical model considers solid-to-fluid heat transfer
- Soliman et al’s correlation of condensation heat transfer is recommended due to its generality and stability
References:

Acknowledgement:

Authors would like to acknowledge Mr. Bruce Tiller and Mr. Richard Schunk of MSFC for their suggestions and comments.