Reducing False Positives in Runtime Analysis of Deadlocks

Saddek Bensalem¹ and Klaus Havelund²

¹ VERIMAG, Centre quation - 2, avenue de Vignate, 38610 Gieres, France
Saddek.Bensalem@imag.fr,
http://www-verimag.imag.fr
² Kestrel Technology, NASA Ames Research Center, Moffett Field, California USA
havelund@email.arc.nasa.gov,
http://ase.arc.nasa.gov/havelund

Abstract. This paper presents an improvement of a standard algorithm for detecting deadlock potentials in multi-threaded programs, in that it reduces the number of false positives. The standard algorithm works as follows. The multi-threaded program under observation is executed, while lock and unlock events are observed. A graph of locks is built, with edges between locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock. The typical standard example is the group of dining philosophers sharing forks. The algorithm is interesting because it can catch deadlock potentials even though no deadlocks occur in the examined trace, and at the same time it scales very well in contrast to more formal approaches to deadlock detection. The algorithm, however, can yield false positives (as well as false negatives). The extension of the algorithm described in this paper reduces the amount of false positives for three particular cases: when a gate lock protects a cycle, when a single thread introduces a cycle, and when the code segments in different threads that cause the cycle can actually not execute in parallel. The paper formalizes a theory for dynamic deadlock detection and compares it to model checking and static analysis techniques. It furthermore describes an implementation for analyzing Java programs and its application to two case studies: a planetary rover and a space craft altitude control system.

1 Introduction

Concurrent programming can in some situations give a programmer a flexibility in organizing interacting code modules in a conceptually much simpler way than is possible with sequential programming. It can potentially also speed up a program in case a multi-processor architecture is used. The Java programming language [1] explicitly supports concurrent programming through a selection of concurrency language concepts, such as threads and monitors. Threads execute in parallel, and communicate via shared objects that can be locked using synchronized access (a keyword in Java) to achieve mutual exclusion. However, with concurrent programming comes a new set of problems that can hamper the quality of the software. Deadlocks form such a problem category. In [17] a deadlock is defined as follows: "Two or more threads block each other in a vicious cycle while trying to access synchronization locks needed to continue their activities". That deadlocks pose a common problem is emphasized by the following statement in [17]: "Among the most central and subtle liveness failures is deadlock. Without care, just about any design using synchronization on multiple cooperating objects can contain the possibility of deadlock". Most of NASA's software that controls planetary rovers and space crafts is concurrent, and hence therefore poses a risk to mission success.

The difficulty in detecting deadlocks comes from the fact that concurrent programs typically are non-deterministic: several executions of the same program on the same input may yield different behaviors due to slight differences in the way threads are scheduled. This means in particular that generating the particular executions that expose a deadlock is difficult. Various technologies have been developed
by the formal methods community to circumvent this problem, such as static analysis and, most recently, model checking. Static analysis, such as performed by tools like JLint [2], PolySpace [19], and ESC [8], analyze the source code without executing it. These techniques can be very efficient, but yield many false positives, and additionally cannot well analyze programs where the object structure is very dynamic. Model checking has recently been applied to software (in contrast to only designs), for example in the Java PathFinder system (JPF) developed by NASA [12, 23], and in similar systems [10, 7, 15, 22]. A model checker explores all possible execution paths of the program, and will therefore theoretically eventually expose a potential deadlock. This process is, however, quite resource demanding, in memory consumption as well in execution time, especially for large realistic programs consisting of thousands of lines of code. Using model checking for deadlock analysis has been discussed by J. Corbett [5]

Typically static analysis and model checking both try to be complete in the sense of avoiding false negatives: all possibilities are examined. Furthermore, model checking tries to be general in exploring all kinds of errors. In the development of tools there is sometimes a conflict between generality (an important theoretical criterion) and efficiency. In order to make the techniques accepted in practice an important strategy can be to identify simple sub-classes of properties, whose analysis is tractable. Deadlocks is such a sub-class. We shall in particular investigate a technique based on trace analysis: a program is instrumented to log synchronization events when executed. The algorithm then examines the log file, building a lock graph, which reveals deadlock potentials by containing cycles. This technique has previously been implemented in the the commercial tool Visual Threads [11] and scales very well since an arbitrary execution trace can reveal deadlocks even though such do not occur during the execution. The approach is essentially to turn a property (deadlock freedom) into a highly testable property (cycle freedom), that has higher probability of being detected if violated. The algorithm, however, can give false positives (as well as false negatives), putting a burden on the user to refute such. Our goal is to reduce the amount of false positives reported by the algorithm, and for that purpose we have modified it as reported in this paper. The modified algorithm has been implemented in Java to analyze Java programs, but the principles and theory presented are universal and apply in full to concurrent programs written in languages like C and C++ as well, using for example the POSIX threading library [18].

The paper is organized as follows. Section 2 introduces preliminary notation used throughout the rest of the paper. Section 3 defines the notion of deadlock, outlines how deadlocks can be introduced in Java programs, and then discusses different ways of analyzing programs for deadlocks such as static analysis and model checking. Trace analysis is then suggested as a solution with a purpose, and the notion of testable property is defined. Section 4 presents the algorithm in three stages, starting with the classical algorithm as it is imagined implemented in [11], and then continuing with two modifications, each reducing false positives. Section 5 shortly describes the implementation of the algorithm in the Java PathExplorer tool and presents the results of a couple of case studies. Finally, Section 6 contains conclusions.

2 Notations and Preliminaries
A labelled transition system is given by \((Q, E, R)\), where \(Q\) is the set of states, \(E\) the set of labels and \(R \subseteq Q \times E \times Q\) is the transition relation. A directed graph is a pair \(G = (S, R)\) of sets satisfying \(R \subseteq S \times S\). The set \(R\) is called the edge set of \(G\), and its elements are called edges. A path \(p\) is a non-empty graph \(G = (S, R)\) of the form \(S = \{x_1, x_2, \ldots, x_k\}\) and \(R = \{(x_1, x_2), (x_2, x_3), \ldots, (x_{k-1}, x_k)\}\), where the \(x_i\) are all distinct. The nodes \(x_0\) and \(x_k\) are linked by \(p\) and are called its ends; we often refer to a path by the natural sequence of its nodes, writing, say, \(p = x_1, x_2, \ldots, x_k\) and calling \(p\) a path from \(x_1\) to \(x_k\). A cycle is a path where the ends \(x_1\) and \(x_k\) are the same. In case where the edges are labelled with elements in \(L\), \(G\) is triplet \((S, L, R)\) and called a labelled graph with \(R \subseteq S \times L \times S\).

A labelled path, respectively cycle, is a labelled graph with the obvious meaning. Given a sequence
\[\sigma = x_1, x_2, \ldots, x_n, \] we refer to an element at the position \(i \) in \(\sigma \) by \(\sigma[i] \) and the length of \(\sigma \) by \(|\sigma| \).

We denote by \(\sigma' \) the prefix \(x_1, x_2, \ldots, x_i \). Given a mapping \(M : [A \rightarrow B] \), we let \(M[a \rightarrow b] \) denote the mapping \(M \) extended with a mapping to \(b \). Value lookup is denoted by \(M[a] \). We denote the empty mapping by \([] \).

3 Deadlock Detection

Deadlock is one of the most serious problems in multitasking concurrent programming systems. As early as in the 60's the deadlock problem was recognized and analyzed, Dijkstra [9] described it as the problem of the deadly embrace. In multitasking concurrent systems, a process can request and release resources local or remote (for example, data objects in database systems) in any order, which may not be known ahead of time and a process can request resources while holding others. If the sequence of the allocation of resources to processes is not controlled in such environments, deadlock can occur. Deadlock is a constant threat where the systems have high degree of resource and data sharing.

Two types of deadlocks have been discussed in the literature [21] [16]: resource deadlocks and communication deadlocks. In resource deadlocks, a process which requests resources must wait until it acquires all the requested resources before it can proceed with its computation. A set of processes is resource deadlocked if each process in the set requests a resource held by another process in the set. In communication deadlock, messages are the resources for which processes wait. Reception of a message takes a process out of wait. A set of processes is communication deadlocked if each process in the set is waiting for a message from another process in the set and no process in the set ever sends a message. In this paper we focus only on resource deadlocks. The deadlock-handling approach that we propose is based on a conservative algorithm that is an extension of a standard algorithm for detecting deadlock potentials in multi-threaded programs. Formally the concept of deadlock can be defined as follows.

Definition 1 (Deadlock): A deadlock can occur between \(n \) threads \(t_1, \ldots, t_n \) if they access \(n \) shared locks \(L = \{ l_1, \ldots, l_n \} \) and there is a state of the execution, and an enumeration \(E \) of \(L \), such that \(t_i \) holds \(E(i) \) in that state and \(t_i \) next wants to take \(E(j) \) for some \(j \neq i \).

3.1 Deadlocks in Multi-threaded Java Programs

Java [1] is a general purpose object oriented programming language with built in features for multi-threaded programming. Threads can communicate via shared objects by for example calling methods on those objects. In order to avoid data races in these situations (where several threads access a shared object simultaneously), objects can be locked using the synchronized statement, or by declaring methods on the shared objects synchronized, which is equivalent. For example, a thread \(t \) can obtain a lock on an object \(A \) and then execute a statement \(S \) while having that lock as follows: synchronized \((A) \{ S \} \). During the execution of \(S \), no other thread can obtain a lock on \(A \). However \(t \) can take the same lock recursively, corresponding to calling several methods on a shared object. The lock is released when the scope of the synchronized statement is left; that is, when execution passes the "}" bracket. Java also provides the wait and notify primitives in support for user controlled interleaving between threads. While the synchronized primitive is the main source for resource deadlocks in Java, the wait and notify primitives are the main source for communication deadlocks. Since this paper focuses on resource deadlocks, we shall in the following focus on Java's capability of creating and executing threads and on the synchronized statement.

Consider the classical dining philosopher example, illustrated in Figure 1. A fork is an object of class Fork. The Philosopher class extends the Thread class and provides a run method, which represents
the thread behavior when started with the \texttt{start} method. The constructor of the \texttt{Philosopher} class stores the forks it uses. The philosophers are created in a ring with the last philosopher using fork number 0 due to the application of the modulo operator \texttt{\%}. A counter is used to limit the amount of meals consumed. A deadlocked state occurs when all philosophers have taken their left fork, but not yet their right. In this state they cannot take their left fork since it has been taken by the left neighbor. This is the kind of cyclic resource deadlock situation that we will explore. In the next sections we shall explore different techniques for detecting such deadlocks.

\begin{verbatim}
class Fork{
 Fork left; Fork right;
 int count = 0;
 public Fork(Fork left, Fork right){
 this.left = left;
 this.right = right;
 start();
 }
 public void run(){
 while(count < 10){
 synchronized(left){
 synchronized(right){
 count++;
 }
 }
 }
 }
}

class Main{
 static final int N = 10;
 public static void main(String[] args){
 Fork[] forks = new Fork[N];
 for(int i = 0; i < N; i++){
 forks[i] = new Fork();
 }
 for(int i = 0; i < N; i++){
 new Philosopher(forks[i], forks[(i + 1) \% N]);
 }
 }
}
\end{verbatim}

Fig. 1. The Dining Philosophers

3.2 Detecting Deadlocks By Analyzing Code

A multi-threaded Java program can naturally be analyzed by simply executing it, or an instrumented version of it, on an existing Java Virtual Machine. This is the solution that we shall eventually explore. However, in this section some alternative solutions will be examined, namely static analysis and model checking. Each tool was applied to the above program, but none of the tools performed convincingly as shall be explained. The experiments were performed on a 2.2 GHz DELL desktop with 2GB available memory, of which 1.5 GB were allocated for the experiment.

\texttt{JLint} \cite{2} is a static analysis tool, that examines a Java program for a limited set of errors. It does this by analyzing the class files in bytecode format, but without executing them. The errors it can detect can be classified into sequential errors, such as null pointer references and array-out-of-bound errors; and concurrency errors, such as data races and deadlocks. \texttt{JLint}'s analysis is very local, without considering the larger context of a problem. Also, it does not perform a complicated alias analysis. For these reasons \texttt{JLint} is extremely fast. The above program was analyzed in less than 0.1 second. However, no warnings were emitted, in particular the deadlock potential was not detected. The main reason for this is the use of an array to store the forks and the use of the modulo-operator to create the cyclic ring of philosophers and forks. The program is simply "too dynamic" in its creation of locks for \texttt{JLint} to detect the problem.

\texttt{Java PathFinder (JPF)} \cite{23} is a model checker that can analyze a Java program dynamically, by executing it (the class files) on a specialized Java Virtual Machine. JPF, however, not only explores a single execution path, but all execution paths, thereby exploring all possible interleavings of threads in the program. If a resource deadlock is possible, it will then eventually be reached. In order to
minimize the search, JPF stores all reached states, and avoids the search of a subtree of a state if that subtree has already been explored before (the state is stored). JPF also uses various other techniques to minimize the search, such as heuristics for prioritizing execution paths. We used a particular heuristics called most-blocked, which should be suited for this problem. It causes JPF to maximize the number of threads that are blocked. For \(N = 15 \) JPF found the deadlock in 32.4 seconds using 343 MB of memory. For \(N = 20 \) JPF also found the deadlock, this time in 2 minutes and 51 seconds using 1.45 GB. For \(N = 21 \), however, JPF went out of memory after 4 minutes and 40 seconds, using 1.46 GB.

We finally tried to verify a version of the program that did not have a deadlock, to see how well JPF could verify that there were no deadlocks. This forces JPF to explore the entire state space, which of course reduces the amount of philosophers that can be analyzed. The modified version of the program contains a gate lock, say a shared salt shaker, which is taken as the first thing by all philosophers, before they take their forks, hence preventing the cyclic deadlocks. Hence each philosopher performs:

```java
class Philosopher {
    static Object salt_shaker = new Object();
    public void run() {
        while (count < 10) {
            synchronized (salt_shaker) {
                set();
            }
        }
    }
}
```

With \(N = 3 \) JPF verified the program correct (deadlock free) in 3 minutes, using 256MB. However, with \(N = 4 \) JPF goes out of memory after 26 minutes, using 1.46GB. The above program is of course not realistic, but illustrates the point: neither model checking, nor static analysis handles this example convincingly. For model checking this becomes even more clear for real-sized applications.

3.3 Detecting Deadlocks By Analyzing Traces

An alternative to the above mentioned code analysis techniques is to execute an instrumented version of the program, thereby obtaining an execution trace, and then regard this trace as a dynamic abstract model of the program that can be analyzed for deadlock symptoms. The assumption is that the program has not deadlocked, and hence the trace does not explicitly represent a deadlock situation. The goal is to determine whether one from the trace can deduce the existence another execution (trace) that deadlocks. In particular, as will be explained in the following, one can apply model checking or specialized analysis (as in static analysis) to the dynamic model. The advantage of the dynamic model approach is that a dynamic model contains precise information (although only for one trace), whereas a static model as used in JLint typically only contains partial information (although for all traces).

When analyzing a program for deadlock potentials, we are interested in observing all lock acquisitions and releases. The program can be instrumented to emit such events whenever locks are taken and released. Specifically, we are interested in two types of events: \(l(t,o) \), which means that thread \(t \) locks object \(o \); and \(u(t,o) \), which means that thread \(t \) unlocks object \(o \). A lock trace \(\sigma = e_1, e_2, \ldots, e_n \) is a finite sequence of lock and unlock events. Let \(E_\sigma \) denote the set of events occurring in \(\sigma \). Let \(T_\sigma \) denote the set of threads occurring in \(E_\sigma \), and let \(L_\sigma \) denote the set of locks occurring in \(E_\sigma \). In the remainder of this paper we assume the existence of an execution trace \(\sigma \) obtained by running an instrumented program. We assume for convenience that the trace is reentrant free in the sense that an already acquired lock is never re-acquired by the same thread (or any other thread of course) before being released. Formally this can stated as follows. A trace \(\sigma \) is reentrant free if:
For all positions i, j s.t. $i < j$, threads $t_1, t_2 \in T_\sigma$, and objects $o \in L_\sigma$: if $\sigma[i] = l(t_1, o) \land \sigma[j] = l(t_2, o)$ then there exists k s.t $i < k < j \land \sigma[k] = u(t_1, o)$

Note that Java supports reentrant locks by allowing a lock to be re-taken by a thread that already has the lock. However, the instrumentation can generate reentrant free traces if it is recorded how many times a lock has been acquired by each thread. Normally a counter is introduced that is incremented for each lock operation and decremented for each unlock operation. A lock operation is only reported if the counter is zero (it is free before being taken), and an unlock operation is only reported if the counter is 0 again after the unlock (it becomes free again).

In the following, two approaches to analyzing traces for deadlock symptoms will be outlined: model checking and use of specialized cycle detection algorithms. We shall conclude that specialized algorithms are to be preferred.

3.4 Model Checking Traces

The idea here is to apply model checking to the execution trace in order to examine all possible interleavings of the trace, and determine whether one of them reaches a deadlock state. This can be done as follows. First we project the trace on each thread in T_σ. This results in a trace for each thread, which contains exactly those events the thread contributed to the trace. Each such trace can be regarded as an abstract sequential program, denoting a corresponding transition system. The parallel composition (product) of these transition systems can then be formed, and examined for deadlock states. This can be formalized as follows. First we define the projection of the trace σ on each thread in T_σ, resulting in a transition system for each projection.

Definition 2 (Projected trace transition systems) Given an execution trace $\sigma = e_1, e_2, \ldots, e_n$ with $T_\sigma = \{t_1, \ldots, t_m\}$. Let σ_{i_τ} be the projection of σ on t_i for $i \in \{1, \ldots, m\}$, meaning the trace obtained by eliminating all events not performed by t_i. We associate a projected labelled transition system $S_i = (Q_i, E_i, \longrightarrow_i)$ for each σ_{i_τ} such that:

- $Q_i = \{1, 2, \ldots, k_i\}$, where $k_i = |\sigma_{i_\tau}| + 1$,
- E_i is $E_{\sigma_{i_\tau}}$, and
- $\longrightarrow_i \subseteq Q_i \times E_i \times Q_i$ is defined as $\{(i, \sigma[i], i + 1) \mid i \in \{1, \ldots, |\sigma_{i_\tau}|\}\}$

The states of the transition system for a projected trace are the positions in the projected trace and the events are the events of the trace. The transition relation relates neighbor positions in the trace corresponding to a sequential execution semantics. The product of the obtained transition systems represents the parallel composition of these, and hence represents all possible interleavings of the lock and unlock events from different threads, respecting that locks can only be held by one thread at a time. The composed transition system is defined as follows.

Definition 3 (Composed trace transition system) Given the projected transition systems $S_i = (Q_i, E_i, \longrightarrow_i)$, $i = 1, \ldots, m$, associated to σ_{i_τ}. We define the composition of the transition systems S_{i_τ}, denoted by $\bigotimes_{i=1}^m S_i$, by (Q, E, \longrightarrow) where:

- $Q = \{Q_1 \times Q_2 \times \ldots \times Q_m \times 2^\lambda(E)\}$, $\lambda(E)$ is the set of the resources that occur in the events of E,
- $E = E_1 \cup E_2 \cup \ldots \cup E_m$, and
A state of the composed transition system includes a set of locks that have been acquired so far. The transition relation defines the interleaved execution of the individual transition systems, updating this set when locks are taken and released. The effect of the set is to prevent a lock to be taken by more than one thread at a time. Hence, a thread cannot proceed if it needs to acquire a lock that is in the set.

An execution trace $\sigma = e_1, e_2, \ldots, e_n$ of $\prod_{i=1}^{m} S_i$ is a sequence of events such that there exist states s_1, \ldots, s_n in Q, such that $s_0 \xrightarrow{e_1} s_1 \xrightarrow{e_2} s_2 \xrightarrow{e_3} \ldots s_n$, where $s_0 = (1, 1, \ldots, 1, \{\})$ is the initial state, and s_n (the last state) can progress no further: there does not exist an event e and a state s_{n+1} such that $s_n \xrightarrow{e} s_{n+1}$. We let Σ denote the set of all execution traces of $\prod_{i=1}^{m} S_i$. We say that a trace in Σ is deadlocked if the last state s_n is different from the final state where all threads have reached their final state: $s_n \neq (k_1, k_2, \ldots, k_m, \{\})$. For such a deadlocked trace σ we further say for some thread t and lock o that:

- t holds o in σ if there exists a position i such that $\sigma[i] = l(t, o)$, and there does not exist a position $j > i$ such that $\sigma[j] = u(t, o)$.
- t wants o in σ if the last state $s_n = (\ldots, s_i, \ldots, \ell)$ and $s_i \xrightarrow{l(t, o)} s'_i$. Note that in this case $o \in \ell$.

We say that the trace σ is deadlock free if the interleaved parallel execution of the projections is deadlock free in the sense of Definition 1. The following lemma states that this can be determined by model checking the composed transition system.

Lemma 1 (Trace Model Checking for Deadlock Detection). Let $\prod_{i=1}^{m} S_i = (Q, E, \rightarrow)$ be the composition of the transition systems $S_i = (Q_i, E_i, \rightarrow_i)$, $i = 1, \ldots, m$, obtained from projecting the trace σ on the m threads in T. Let Σ be the set of all execution traces of $\prod_{i=1}^{m} S_i$. The trace σ is deadlock free if and only if there are no deadlocked traces in Σ.

As an experiment applying this approach, we handcrafted a Java program corresponding to the parallel composition of the individual traces obtained by running the deadlocking program given in section 3.1. Each trace from each thread is essentially 10 calls of the `eat()` method, resulting in a `run()` method of the form:

```java
public void run()
{
    eat(); eat(); eat(); eat(); eat(); eat(); eat(); eat();
}
```

The count variable and the while loop have been removed. For $N = 25$ JPF found the deadlock in 14.4 seconds using 105.29 MB of memory. For $N = 47$ JPF also found the deadlock, this time in 5 minutes and 6 seconds using 1.42 GB. For $N = 48$, however, JPF went out of memory after 6 minutes and 15 seconds using 1.46 GB. Although these numbers are quite impressive for a model checker, the results are a lot worse in the case of a deadlock free program, where the model checker has to explore...
all the states of the program in order to give a verdict. For \(N = 3 \) JPF verified the deadlock free program (introducing the gate lock) correct in 38.6 seconds using 116.53 MB of memory. For \(N = 4 \), however, JPF went out of memory after 35 minutes and 26 seconds, using 1.46 GB. Model checking the trace(s) amounts to become complexity wise the same as model checking an abstraction of the original program, where all statements except synchronization statements have been removed. That is, it compares to model checking a synchronization skeleton [3] or an abstraction [6] of the program. With more than 3 threads, we have seen that this problem can become intractable in practice in the case there are no deadlocks (although the approach seems to have some advantages). The next section explores an alternative.

3.5 Turning Deadlock Freedom to a Testable Property

The alternative approach pursued in this paper consists of building (in linear time) a specialized lock graph from the trace, which is then analyzed for cycles. A cyclic dependency between locks suggests that there exists an execution trace of the program that may deadlock. This technique has been implemented in the Visual Threads tool [11], and is mentioned in literature on operating systems [21] [16]. The approach may yield false positives since such a deadlocking execution may not exist due to program logic not visible in the trace – as well as false negatives, since only one trace is examined. The approach is a particular instance of a general approach, where a property \(\varphi \) (in our case: deadlock freedom) is reformulated as a testable property \(\psi \) (in our case: cycle freedom), which with high probability \(n \) will fall on any random execution trace if and only if the program does not satisfy the original property \(\varphi \) for some trace. In the ideal case, the probability \(n \) is 1. This ideal case can be formalized as follows, assuming a satisfaction relation \(\models \) between traces/programs and properties.

Definition 4 (Testable property) We say a property \(\psi \) is a testable property of a program \(P \) w.r.t. a property \(\varphi \) if and only if:

1. if there exists a trace \(\sigma \) of \(P \) such that \(\sigma \models \psi \), then \(P \models \varphi \)
2. if there exists a trace \(\sigma \) of \(P \) such that \(\sigma \not\models \psi \), then \(P \not\models \varphi \)

In particular 1 is equivalent to: \(P \not\models \varphi \) implies \(\forall \sigma \in P . \sigma \models \psi \), which states the desirable property that if the program \(P \) does not satisfy the property \(\varphi \) (that is, there exists a trace which does not satisfy \(\varphi \)) then no matter what execution trace we choose, this will be detected by verifying the property \(\psi \). The notion of testable property is an ideal in the sense that if some trace is correct or flawed we conclude the same for all the traces of the program. For the dining philosopher example above this is actually the case. In practice, we cannot rely on this idealized view. Consider for example the following program \(P_n^k \) consisting of \(k \) threads in parallel, where one thread makes a random choice between 1 and \(n \):

\[
T_1 : \quad T_2 : \quad \ldots \quad T_k :
\]

\[
\text{synchronized}(L1)\{
\text{if}(\text{random}(1,n)=1) \quad \text{synchronized}(L2)\{
\text{synchronized}(L1)\} \\
\text{synchronized}(L2)\}
\}
\]

The program \(P_n^k \) represents a dining philosopher problem containing a cycle between \(k \) threads. The first thread contains a randomized synchronization statement that causes the lock \(L2 \) only to be taken if the random function returns 1 amongst the numbers from 1 to \(n \). For a given \(n \) this happens with probability \(1/n \). That is, when running this program there is a probability of \(1/n \) that the deadlock potential will be detected as a cycle in the lock graph. Note that the probability of a deadlock occurring, however, is even lower on an ideally randomized scheduler since all \(k \) threads have to in
addition take their first lock before any one of them attempts to take the second. A model checker will reach complexity limits as \(k\) as well as \(n\) grows, while runtime analysis, will yield more false negatives as \(n\) grows. For runtime analysis, however, the size of \(k\) has no effect, except for memory consumption to store the lock graph. Even though the idealized testable property cannot be achieved, a property can be practically testable, meaning that the probability \(n\) has an acceptable size. In the following we shall present practically testable properties for deadlock-freedom based on the classical algorithm for testing cycle freedom in lock graphs. We shall extend this algorithm to avoid false positives of three different kinds, hence improving the precision of the algorithm.

4 Trace Algorithm Based on Testable Properties

The main task performed by the detection algorithm is to find cycles among transactions each waiting for a resource held by the other. In essence, the detection algorithm consists of finding cycles in the lock graph. In the context of multi-threaded programs, the classical algorithm sketched in [11] works as follows. The multi-threaded program under observation is executed, while lock and unlock events are observed. A graph of locks is built, with edges between locks symbolizing locking orders. Any cycle in the graph signifies a potential for a deadlock. The trace algorithm is interesting because it can catch deadlock potentials even though no deadlocks occur in the examined trace, and at the same time it scales very well in contrast to more formal approaches to deadlock detection. This algorithm, however, can yield false positives (as well as false negatives). In this section, we present first the classical algorithm and then we present two conservative extensions of this algorithm that reduce the amount of false positives. We start with a through-going example.

4.1 Basic Example

We shall with an example illustrate the three categories of false positives. The first category, single threaded cycles, refers to cycles that are created by one single thread. Guarded cycles refer to cycles that are guarded by a gate lock "taken higher" up by all involved threads, as demonstrated by the gate lock introduced in the example in Section 3.2. Finally, thread segmented cycles refer to cycles between thread segments that cannot possibly execute concurrently. The program in Figure 2 illustrates these three situations, and a true positive.

```plaintext
Main:
01: new T1().start();
02: new T2().start();

T1:
03: synchronized(G){
04: synchronized(L1){
05: synchronized(L2){
06: }
07: }
08: t3 = new T3();
09: j3.start();
10: j3.join();
11: synchronized(L2){
12: synchronized(L1){
13: }

T2:
14: synchronized(G){
15: synchronized(L2){
16: synchronized(L1){
17: }
18: }

T3:
19: synchronized(L1){
20: synchronized(L2){
21: }

Fig. 2. Example containing four cycles, only one of which represents a deadlock potential
```
The real deadlock potential exists between threads T_2 and T_3, corresponding to a cycle on L_1 and L_2. The single threaded cycle within T_1 clearly does not represent a deadlock. The guarded cycle between T_1 and T_2 does not represent a deadlock since both threads must acquire the gate lock G first. Finally, the thread segmented cycle between T_1 and T_3 does not represent a deadlock since T_3 will execute before T_1 executes its last synchronization segment.

For illustration purposes we shall assume a non-deadlocking execution trace σ for this program. It doesn't matter which one since all non-deadlocking traces will reveal all four cycles in the program. We shall assume the following trace of line numbered events (the line number is the first argument), which first, after having started T_1 and T_2 from the Main thread, executes T_1 until the join statement, then executes T_2 to the end, then T_3 to the end, and then continues with T_1 after it has joined on T_3's termination. The line numbers are given for illustration purposes, and are actually recorded in the implementation in order to provide the user with useful error messages. In addition to the lock and unlock events $l(ino, t, o)$ and $u(ino, t, o)$ for line numbers ino, threads t and locks o, the trace also contains events for thread start, $s(ino, t_1, t_2)$ and thread join, $j(ino, t_1, t_2)$, meaning respectively that t_1 starts or joins t_2 in line number ino.

$$\sigma = s(1, \text{Main}, T_1), s(2, \text{Main}, T_2), l(3, T_1, G), l(4, T_1, L_1), l(5, T_1, L_2), u(5, T_1, L_2), u(6, T_1, L_1), u(7, T_1, G), s(9, T_1, T_3), l(14, T_3, G), l(15, T_3, L_2), l(18, T_3, L_1), u(17, T_3, L_2), u(18, T_3, G), l(19, T_1, L_1), l(20, T_1, L_2), u(19, T_1, L_2), u(20, T_1, L_1), j(10, T_1, T_2), l(11, T_1, L_1), l(12, T_1, L_1), u(12, T_1, L_1), u(13, T_1, L_2)$$

In the remaining part of Section 4, we shall present three algorithms for detecting lock cycles in traces, being increasingly precise in eliminating false positives. First we shall present the classical algorithm that yields all four cycles as warnings. The final algorithm yields only the true positive for this example, and no false positives.

4.2 Basic Cycle Detection Algorithm

We shall initially restrict ourselves to traces including only lock and unlock events (no start or join events). In order to define the lock graph, we introduce a notion that we call a lock context of a trace σ in position i, denoted by $C_L(\sigma, i)$. It's a mapping from each thread to the set of locks owned by that thread at that position. Formally, for a thread $t \in T_\sigma$ we have the following:

$$C_L(\sigma, i)(t) = \{ o | \exists j : j \leq i \land \sigma[j] = l(t, o) \land \exists k : j < k \leq i \land \sigma[k] = u(t, o) \}$$

Below we give a definition that allows to build the lock graph G_L with respect to an execution trace σ. An edge in G_L between two locks l_1 and l_2 means that there exists a thread t who owns the object l_1 while taking the object l_2.

Definition 5 (Lock graph) Given an execution trace $\sigma = e_1, e_2, \ldots, e_n$. We say that the lock graph of σ is the minimal directed graph $G_L = (L, R)$ such that:

- L is the set of locks L_σ,
- $R \subseteq L \times L$ is defined by $(l_1, l_2) \in R$ if there exists a thread $t \in T_\sigma$ and a position $i \geq 2$ in σ such that:

$$\sigma[i] = l(t, l_2) \text{ and } l_1 \in C_L(\sigma, i - 1)(t)$$

The definition 5 above is declarative. In Figure 3 we give an algorithm for constructing the lock graph from a lock trace. In this algorithm, we also use the context C_L which is exactly the same as in the definition 5. The only difference is that we don't need to use explicitly the two parameters i and σ. The set of cycles (Section 2) in the graph G_L, denoted by $\text{cycles}(G_L)$, represents the potential deadlock situations in the program. The lock graph for the example in Figure 2 is also shown in Figure 3.
4.3 Eliminating Single Threaded Cycles and Guarded Cycles

In this section we present an algorithm that removes false positives stemming from single threaded cycles and guarded cycles. In [13] a solution was suggested, based on building synchronization trees. However, this solution could only detect deadlocks between pairs of threads. The algorithm to be presented here is not limited in this sense. The solution is to extend the lock graph by labelling each edge between locks with information about which thread causes the addition of the edge and what gate locks were held by that thread when the target lock was taken. The definition of valid cycles will then include this information to filter out false positives. First, we define the extended lock graph.

Definition 6 (Guarded lock graph) Given an execution trace \(\sigma = e_1, e_2, \ldots, e_n \). We say that the guarded lock graph of \(\sigma \) is the minimal directed labelled graph \(G_L = (L, W, R) \) such that:

- \(L \) is the set of locks \(L_\sigma \)
- \(W = T_\sigma \times 2^L \) is the set of labels, each containing a thread id and a lock set,
- \(R \subseteq L \times W \times L \) is defined by \((l_1, (t, g), l_2) \in R \) if there exists a thread \(t \in T_\sigma \) and a position \(i \geq 2 \) in \(\sigma \) such that:
 \[\sigma[i] = l(t, i), l_1 \in C(\sigma, i - 1)(t) \] and \(g = C(\sigma, i - 1)(t) \)

Each edge \((l_1, (t, g), l_2) \) in \(R \) is labelled with the thread \(t \) that took the locks \(l_1 \) and \(l_2 \), and a lock set \(g \), indicating what locks \(t \) owned when taking \(l_2 \). In order for a cycle to be valid, and hence regarded as a true positive, the threads and guard sets occurring in labels of the cycle must be valid in the following sense:

Definition 7 (Valid threads and guards) Let \(G_L \) be a guarded lock graph of some execution trace and \(c = (L, W, R) \) a cycle in \(\text{cycles}(G_L) \), we say that:

- threads of \(c \) are valid if for all labels \(e, e' \in W \) \(e \neq e' \) implies \(\text{thread}(e) \neq \text{thread}(e') \)
- guards of \(c \) are valid if for all labels \(e, e' \in W \) \(e \neq e' \) implies \(\text{guards}(e) \cap \text{guards}(e') = \emptyset \)

where, for a label \(e \in W, \text{thread}(e) \), resp. \(\text{guards}(e) \), gives the first, resp. second, component of \(e \).
For a cycle to be valid, the threads involved must differ. This eliminates single threaded cycles. Furthermore, the lock sets on the edges in the cycle must not overlap. This eliminates cycles that are guarded by the same lock taken "higher up" by at least two of the threads involved in the cycle. Assume namely that such a gate lock exists, then it will belong to the lock sets of several edges in the cycle, and hence they will overlap at least on this lock. This corresponds to the fact that a deadlock cannot happen in this situation. Valid cycles are now defined as follows:

Definition 8 (Guarded cycles) Let \(\sigma \) be an execution trace and \(G_L \) its guarded lock graph. We say that a cycle \(c \in \text{cycles}(G_L) \) is a guarded cycle if the guards of \(c \) are valid and threads of \(c \) are also valid. We denote by \(\text{cycles}_g(G_L) \) the set of guarded cycles in \(\text{cycles}(G_L) \).

We shall in this section not present an explicit algorithm for constructing this graph, since its concerns a relatively simple modification to the basic algorithm: the statement that updates the lock graph becomes: \(G_L := G_L \cup \{(o', (t, C(t)), o) \mid o' \in C(t)\} \), adding the labels \((t, C(t))\) to the edges. Furthermore, cycles to be reported should be drawn from: \(\text{cycles}_g(G_L) \).

Let us illustrate the algorithm with an example. We consider again the execution trace \(\sigma \) presented in Subsection 4.1. The guarded graph for this trace is shown in Figure 4. The graph contains the same number of edges as the basic graph in Figure 3. However, now edges are labelled with a thread and a guard set. In particular, we notice that the gate lock \(G \) occurs in the guard set of edges \((4, 5)\) and \((15, 16)\). This prevents this guarded cycle from being included in the set of valid cycles since it is not guard valid: the guard sets overlap in \(G \). Also the single threaded cycle \((4, 5) \leftrightarrow (11, 12)\) is eliminated because it is not thread valid: the same thread \(T_1 \) occurs on both edges.

![Fig. 4. Guarded lock graph](image)

The correctness of the guarded algorithm is stated in the following theorem, which states that any valid cycle reported by the algorithm for a trace \(\sigma \) corresponds to a deadlock situation in the composed transition system, and vice versa. We say that an execution trace \(\sigma \) reflects a cycle \(c = (L, W, R) \) if for all \((l_1, (t, G), l_2) \in R\), \(t \) holds \(l_1 \) in \(\sigma \), and \(t \) wants \(l_2 \) in \(\sigma \) (see Section 3.4 for a definition these terms).

Theorem 1 (Correctness of guarded cycles). Let \(\sigma \) be an execution trace, \(G_L \) its guarded lock graph, and \(\text{cycles}_g(G_L) \) the set of the guarded cycles. Let \(\Sigma \) be the set of all the execution traces of the system \(\bigoplus_{i=1}^m S_i \), where the transition systems \(S_i \), \(i = 1, \ldots, m \), are obtained from projecting the trace \(\sigma \) on the \(m \) threads in \(T_\sigma \). Then:

- for all cycles \(c \in \text{cycles}_g(G_L) \), there exists an execution trace \(\sigma' \) in \(\Sigma \), such that \(\sigma' \) is deadlocked and reflects \(c \) (no false positives with respect to \(\sigma \)).
– for all traces σ' in Σ, if σ' is deadlocked, then there exists a cycle $c \in \text{cycles}_G(G_L)$, such that σ' reflects c (no false negatives with respect to σ).

Note that when the above theorem states that there are no false positives or negatives, it is with respect to the execution trace σ. There may still be false positives and negatives with respect to the program, the execution of which resulted in the trace. The guarded deadlock algorithm may in rare cases miss deadlocks that the classical algorithm finds. As an example consider the program in Figure 2, and consider that the guard G in T_3 is computed as the result of a conditional statement, in one run it may be G, while in another run it may be G', different from G. In the latter case, the cycle between L_1 and L_2 in threads T_3 and T_2 is not guarded and there is a deadlock potential. The basic algorithm will detect this irrespective of whether G or G' is chosen, while the guarded algorithm will not in case G is chosen. Due to this observation one could report even guarded cycles, but marking them as likely less severe.

4.4 Eliminating Segmented Cycles

In the previous section we saw the specification of an algorithm that removes false positives stemming from single threaded cycles and guarded cycles. In this section we present an algorithm that furthermore removes false positives stemming from segmented cycles. We assume that traces now also contain start and joint events. Recall the example in Figure 2 and that the basic algorithm reports a cycle between threads T_1 (line 11-12) and T_3 (line 19-20) on locks L_1 and L_2. However, a deadlock is impossible since thread T_3 is joined on by T_1 in line 10. Hence, the two code segments: line 11-12 and line 19-20 can never run in parallel. The idea of using segmentation in runtime analysis was initially suggested in [11] to reduce the amount of false positives in data race analysis using the Eraser algorithm [20]. We use it in a similar manner here to reduce false positives in deadlock detection.

More specifically, the solution is during execution to associate segment identifiers (natural numbers, starting from 0) to segments of the code that are separated by statements that start or join other threads. For example, if a thread t_1 currently is in segment s and starts another thread t_2, and the next free segment is n, then t_1 will continue in segment n and t_2 will start in segment $n + 1$ (it could have been chosen differently, the main point being that new segments are allocated). From then on the next free segment will be $n + 2$. It is furthermore recorded in the segmentation graph that segment s executes before n as well as before $n + 1$. In a similar way, if a thread t_1 currently is in segment s_1 and joins another thread t_2 that is in segment s_2, and the next free segment is n, then t_1 will continue in segment n, t_2 will be terminated, and from then on the next free segment will be $n + 1$. It is recorded that s_1 as well as s_2 execute before n. Figure 6 illustrates the segmentation graph for the program example in Figure 2. Below we shall formalize these concepts, and finally suggest an algorithm.

In order to give a formal definition of the segmentation we need to define two functions. The first one, $C_S(\sigma)$, segment context of the trace σ, gives for each position i of the execution trace σ, the current segment of each thread t at that position. Formally, $C_S(\sigma)$ is the mapping with type: $[N \mapsto T \mapsto N]$, associated to trace σ, that maps each position into another mapping that maps each thread id to its current segment in that position. It is defined as follows. Let $C_{\text{cnt}} = [0 \mapsto \text{main} \mapsto 0]$, mapping position 0 to the mapping that maps the main thread to segment 0. Then $C_S(\sigma)$ is defined by the use of the auxiliary function $f_0: \text{Trace} \times \text{Context} \times \text{Position} \times \text{Current Segment} \rightarrow \text{Context}$:

$$C_S(\sigma) = f_0(\sigma, C_{\text{cnt}}, 1, 0)$$ (3)
The second function needed, \(\#_{\text{alloc}} \), gives the number of segments allocated in position \(i \) of \(\sigma \). This function is used to calculate what is the next segment to be assigned to a new execution block (the \(n.s \) in the above example), and is dependent on the number of start events \(s(t_1,t_2) \) and join events \(j(t_1,t_2) \) that occur in the trace up and until position \(i \), recalling that each start event causes two new segments to be allocated. Formally we define it as follows:

\[
\#_{\text{alloc}}(\sigma, i) = \big| \sigma \big\uparrow_i \big| \ast 2 + \big| \sigma \big\uparrow_i \big|.
\]

We can now define the notion of a directed segmentation graph, which defines an ordering between segments. Informally, assume that in trace position \(i \) a thread \(t_1 \), being in segment \(s_1 = C_S(\sigma)(i-1)(t_1) \), executes a start of a thread \(t_2 \). Then \(t_1 \) continues in segment \(n = \#_{\text{alloc}}(\sigma, i-1) + 1 \) and \(t_2 \) continues in segment \(n + 1 \). Consequently, \((s_1, n) \) as well as \((s_1, n+1) \) belongs to the graph, meaning that \(s_1 \) executes before \(n \) as well as before \(n+1 \). Similarly, assume that a thread \(t_1 \) in position \(i \), being in segment \(s_1 = C_S(\sigma)(i-1)(t_1) \), executes a join of a thread \(t_2 \), being in segment \(s_2 = C_S(\sigma)(i-1)(t_2) \). Then \(t_1 \) continues in segment \(n = \#_{\text{alloc}}(\sigma, i-1) + 1 \) while \(t_2 \) terminates. Consequently \((s_1, n) \) as well as \((s_2, n) \) belongs to the graph, meaning that \(s_1 \) as well as \(s_2 \) executes before \(n \). The formal definition of the segmentation graph is as follows.

Definition 9 (Segmentation graph) Given an execution trace \(\sigma = e_1, e_2, ..., e_n \). We say that a segmentation graph of \(\sigma \) is the directed graph \(G_S = (N, R) \) where

- \(N = \{ n \mid n \text{ is a natural number} \} \) is the set of segments
- \(R \subseteq N \times N \) is the relation given by \((s_1, s_2) \in R \) if there exists a position \(i \geq 1 \) such that
 \[
 \sigma[i] = s(t_1,t_2) \wedge s_1 = C_S(\sigma)(i-1)(t_1) \wedge (s_2 = \#_{\text{alloc}}(\sigma, i-1) + 1 \lor s_2 = \#_{\text{alloc}}(\sigma, i-1) + 2)
 \]
 or
 \[
 \sigma[i] = j(t_1,t_2) \wedge s_1 = C_S(\sigma)(i-1)(t_1) \wedge s_2 = \#_{\text{alloc}}(\sigma, i-1) + 1
 \]

Given a segmentation graph, we can now define what it means for a segment to happen before another segment, reflecting how the segments are related in time during execution.

Definition 10 (Happens-Before relation) Let \(G_S = (N, R) \) be a segmentation graph, and \(G_S^* = (N, R^*) \) its transitive closure. Then given two segments \(s_1 \) and \(s_2 \), we say that \(s_1 \) happens before \(s_2 \), denoted by \(s_1 \prec s_2 \), if \((s_1, s_2) \in R^* \).

Note that for two given segments \(s_1 \) and \(s_2 \), if neither \(s_1 \prec s_2 \) nor \(s_2 \prec s_1 \), then we say that \(s_1 \) happens in parallel with \(s_2 \). Before we can finally define what is a lock graph with segment information, we need to redefine the notion of lock context, \(C_L(\sigma, i) \), of a trace \(\sigma \) and a position \(i \), that was defined on page 10. In the previous definition it was a mapping from each thread to the set of locks owned by that thread at that position. Now we add information about what segment each lock was taken in. Formally, for a thread \(t \in T_\sigma \) we have the following :

\[
C_L(\sigma, i)(t) = \{(o, s) \mid \exists j: j \leq i \land \sigma[j] = l(t, o) \land C_S(\sigma)(j)(t) = s \land \exists k: j < k \leq i \land \sigma[k] = u(t, o)\}
\]
We can now give a definition of a lock graph G_L with respect to an execution trace σ, that contains segment information as well as gate lock information. An edge in G_L between two locks l_1 and l_2 means, as before, that there exists a thread t who owns an object l_1 while taking the object l_2. The edge is as before labelled with t as well as the set of (gate) locks. In addition, the edge is now further labelled with the segments s_1 and s_2 in which the locks l_1 and l_2 were taken by t.

Definition 11 (Segmented and guarded lock graph) Given an execution trace $\sigma = e_1, e_2, \ldots, e_n$. We say that the segmented and guarded lock graph of σ is the minimal directed graph $G_L = (L, W, R)$ such that:

- $W = N \times (T_{\sigma} \times 2^{L_{\sigma}}) \times N$ is the set of labels $(s_1, (t, g), s_2)$, each containing the segment s_1 that the source lock was taken in, a thread id t, a lock set g (these two being the labels of the guarded lock graph in the previous section), and the segment s_2 that the target lock was taken in,
- $R \subseteq L_{\sigma} \times W \times L_{\sigma}$ is defined by $(l_1, (s_1, (t, g), s_2), l_2) \in R$ if there exists a thread $t \in T_{\sigma}$ and a position $i \geq 2$ in σ such that:

 $\sigma[i] = l(t, l_2)$ and

 $(l_1, s_1) \in C_L(\sigma)(i - 1)(t)$ and

 $g = \{l' \mid (l', s) \in C_L(\sigma)(i - 1)(t)\}$ and

 $s_2 = C_G(\sigma)(i - 1)(t)$.

Each edge $(l_1, (s_1, (t, g), s_2), l_2)$ in R is labelled with the thread t that took the locks l_1 and l_2, and a lock set g, indicating what locks t owned when taking l_2. Furthermore, the segments s_1 and s_2 indicate in which segments respectively l_1 and l_2 were taken.

In order for a cycle to be valid, and hence regarded as a true positive, the threads and guard sets occurring in labels of the cycle must be valid as before. In addition, the segments in which locks are taken must now allow for a deadlock to actually happen. Consider for example a cycle between two threads t_1 and t_2 on two locks l_1 and l_2. Assume further that t_1 takes l_1 in segment x_1 and then l_2 in segment x_2 while t_2 takes them in opposite order, in segments y_1 and y_2 respectively. Then it must be possible for t_1 and t_2 to each take their first lock in order for a deadlock to occur. In other words, x_2 must not happen before y_1 and y_2 must not happen before x_1. This is expressed in the following definition, which repeats the definitions from Definition 7.

Definition 12 (Valid threads, guards and segments) Let G_L be a segmented and guarded lock graph of some execution trace and $c = (L, W, R)$ a cycle in cycles(G_L), we say that:

- threads of c are valid if for all labels $e, e' \in W$, $e \neq e'$ implies thread$(e) \neq$ thread(e'),
- guards of c are valid if for all labels $e, e' \in W$, $e \neq e'$ implies guards$(e) \cap$ guards$(e') = \emptyset$,
- segments of c are valid if for all labels $e, e' \in W$, $e \neq e'$ implies $\neg (\text{seg}_2(e_1) \triangleright \text{seg}_1(e_2))$.

where, for a label $e = (s_1, (t, g), s_2) \in W$, tread$(e) = t$, guards$(e) = g$, seg$_1(e) = s_1$ and seg$_2(e) = s_2$.

Valid cycles are now defined as follows.

Definition 13 (Segmented and guarded cycles) Let σ be an execution trace and G_L its segmented and guarded lock graph. We say that a cycle $c \in \text{cycles}(G_L)$ is a segmented and guarded cycle if the guards of c are valid, the threads of c are valid, and the segments of c are valid. We denote by cycles$_s(G_L)$ the set of segmented and guarded cycles in cycles(G_L).
The definitions of segmentation graph (Definition 9) and segmented and guarded lock graph (Definition 11) above are declarative. Figure 5 presents an algorithm for constructing the segmentation graph and lock graph from an execution trace. The set of cycles in the graph G_L, denoted by $\text{cycles}_s(G_L)$, see Definition 13, represents the potential deadlock situations in the program. The segmentation graph (G_s) and lock graph (G_L) have the structure as outlined in Definition 9 and Definition 11 respectively. The lock context (C_L) maps each thread to the set of locks owned by that thread at any point in time. Associated with each such lock is the segment in which it was acquired. The segment context (C_s) maps each thread to the segment in which it is currently executing. The algorithm should after this explanation and the previously given abstract definitions be self explanatory.

Input: An execution trace σ
- G_L is a lock graph;
- G_s is a segmentation graph;
- $C_L : [T \rightarrow 2^{L \times \text{nat}}]$ is a lock context;
- $C_s : [T \rightarrow \text{nat}]$ is a segment context;
- $n : \text{nat} = 1$ next available segment;

for($i = 1 .. |\sigma|$) do
 case $\sigma[i]$ of
 $l(t, o)$ \rightarrow
 $G_L := G_L \cup \{(o', (s_1, (t, g), s_2), o) | (o', s_1) \in C_L(t) \land g = \{(o'') | (o'', s) \in C_L(t)\} \land s_2 = C_s(t)\}$;
 $u(t, o)$ \rightarrow
 $C_L := C_L \cup \{t \rightarrow C_L(t) \cup \{(o, C_s(t))\}\}$;
 $s(t_1, t_2)$ \rightarrow
 $G_s := G_s \cup \{(C_s(t_1), n), (C_s(t_2), n + 1)\}$;
 $C_s := C_s \cup \{n \rightarrow n, t_2 \rightarrow n + 1\}$;
 $n := n + 2$;
 $f(t_1, t_2)$ \rightarrow
 $G_s := G_s \cup \{(C_s(t_1), n), (C_s(t_2), n)\}$;
 $C_s := C_s \cup \{t_1 \rightarrow n\}$;
 $n := n + 1$;

end;

for each c in $\text{cycles}_s(G_L)$ do
 print("deadlock potential":c);

Fig. 5. The final algorithm and the segmented lock graph

Let us illustrate the algorithm with our example. We consider again the execution trace σ presented in Subsection 4.1. The segmentation graph for this trace is shown in Figure 6 and the segmented and guarded lock graph is shown in Figure 5. The segmentation graph is for illustrative purposes augmented with the statements that caused the graph to be updated. We see in particular that segment 6 of thread T_3 executes before segment 7 of thread T_1, written as $6 \rightarrow 7$. Segment 6 is the one in which T_3 executes lines 19 and 20, while segment 7 is the one in which T_1 executes lines 11 and 12. The lock graph contains the same number of edges as the guarded graph in Figure 4, and the same (thread, guard set) labels. However, now edges are additionally labelled with the segments in which locks are taken. This makes the cycle $(19, 20) \rightarrow (11, 12)$ segment invalid since the target segment of the first edge (6) executes before the source segment of the second edge (7).
Concerning the correctness of the algorithm, a theorem similar to Theorem 1 can be formulated. However, the notion of composed transition system, as formulated in Definition 3, must be changed to incorporate start and join events. We shall not do that here, but just mention that two new rules must be added: one for start events $s(t_1, t_2)$ that adds the initial state of thread t_2 to the state, and one for join events $j(t_1, t_2)$, that is conditioned with the terminated status of t_2. We say that an execution trace σ reflects a cycle $c = (L, W, R)$ if for all $(t_1, (s_1, (t, g), s_2)), l_2) \in R$, t holds l_1 in σ, and t wants l_2 in σ (see Section 3.4 for a definition these terms). The correctness is now stated as follows (equivalent in formulation to Theorem 1, except for the use of cycles, instead of cycles).

Theorem 2 (Correctness of segmented and guarded cycles). Let σ be an execution trace, G_L its segmented and guarded lock graph and $cycless(G_L)$ the set of segmented and guarded cycles. Let Σ be the set of execution traces of the system $\Pi_{i=1}^m S_i$, where the transition systems S_i, $i = 1, \ldots, m$, are obtained from projecting the trace σ on the i threads in T_σ. Then:

- for all cycles $c \in cycless(G_L)$, there exists an execution trace σ' in Σ, such that σ' is deadlocked and reflects c (no false positives with respect to σ).
- for all traces σ' in Σ, if σ' is deadlocked, then there exists a cycle $c \in cycless(G_L)$, such that σ' reflects c (no false negatives with respect to σ).

5 Implementation and Experimentation

The algorithm presented in Section 4.4 has been implemented in the Java PathExplorer tool [14], in short referred to as JPaX. JPaX analyzes Java programs for deadlocks, using the presented algorithm, and for data races, using a homegrown adaption of the Eraser algorithm [20] to work for Java. In the following we shall primarily focus on the deadlock analysis. JPaX itself is written in Java, and consists of two main modules, an instrumentation module and an observer module. The instrumentation module automatically instruments the bytecode class files of a compiled program by adding new instructions that when executed generate the execution trace consisting of the events needed for the analysis. In our case lock events $l(t, o)$ and unlock events $u(t, o)$, together with start events $s(t_1, t_2)$ and join events $j(t_1, t_2)$ are generated. The generated events are either sent to a socket or written to a file (in both cases in plain text format), depending on whether the analysis should be on-the-fly, during the execution of the analyzed program, or whether it is acceptable that it is performed after the analyzed program has terminated. The file solution has been the one most frequently used in our case studies. The observer module consequently reads the event stream and dispatches this to a set of observer rules, each rule performing a particular analysis that has been requested, such as deadlock analysis and data race analysis. This modular, rule based design allows a user to easily define new runtime verification procedures without interfering with legacy code.
The Java bytecode instrumentation is performed using the Jtrek Java bytecode engineering tool [4]. Jtrek makes it possible to easily read Java class files (bytecode files), and traverse them as abstract syntax trees while examining their contents, and insert new code. The inserted code can access the contents of various runtime data structures, such as for example the call-time stack, and will, when eventually executed, emit events carrying this extracted information to the observer. As already mentioned, this form of analysis is not complete and hence may yield false negatives by missing to report synchronization problems. A synchronization problem can most obviously be missed if one or more of the synchronization statements involved in the problem do not get executed. To avoid being entirely in the dark in these situations, we added a coverage module to the system that records what lock-related instructions are instrumented and which of these that are actually executed. The difference is printed as part of the error report for the user to react on, for example by generating better test cases.

JPaX has been applied to two case studies at NASA Ames: a planetary rover controller (named K9), and a spacecraft altitude control system (ACS), both being translated to Java from C++ and C respectively as part of an attempt to evaluate Java for mission software. 2 resource deadlocks and 2 data races were seeded in the rover code by an independent team. JPaX found them all. In addition, an early version of the deadlock algorithm found a deadlock in the original C++ version of K9 that was unexpected by the programmer. This experiment was performed by creating a C++ specific instrumentation module, whereas the observer module could be unmodified. In ACS, JPaX found 2 unexpected data races and 2 seeded data races. We also applied the JPaX deadlock analysis algorithm to the dining philosopher example mentioned in Section 3.1. For the deadlocking version, for $N = 100$ JPaX found the deadlock in 8 seconds, including instrumentation. For $N = 300$ JPaX found the deadlock in 22 seconds. For the deadlock free version, for $N = 4$ JPaX concluded correctness in 7 seconds, for $N = 100$ in 30 seconds, and for $N = 300$ in 2 minutes, out of which 40 seconds were due to a slowdown in the running program due to instrumentation. This slowdown will be diminished considerably in future work.

6 Conclusions

An algorithm has been presented for detecting deadlock potentials in concurrent programs by analyzing execution traces. The algorithm extends a classical algorithm by reducing the amount of false positives reported, and has been implemented in the Java PathExplorer tool that in addition to deadlocks also analyzes for data races and for consistency with user provided temporal properties. Although JPaX analyzes Java programs, it can be applied to applications written in other languages by modifying the instrumentation module. The advantage of trace analysis is that it scales extremely well, in contrast to more formal methods, and in addition can detect errors that for example static analysis cannot properly detect. In future work, we expect to approach the problem of false negatives (missed errors) by developing a framework for symbolically inferring what test cases are needed to exercise all synchronization statements in a program. At an extreme, static analysis of deadlocks can be combined with dynamic analysis. Current work attempts to extend the capabilities of JPaX with new algorithms for detecting other kinds of concurrency errors, such as other forms of data races and communication deadlocks. An additional important issue that we will address is the performance impact on the instrumented program.

References

