An Embedded Reconfigurable Logic Module

Final Report
For
NASA Langley Research Center

NASA grant
NAG-1-01042
NLPN: 01-111

Principal Investigator:
Jerry H. Tucker
Associate Professor of Electrical Engineering
Virginia Commonwealth University

Co-Principal Investigator:
Robert H. Klenke
Associate Professor of Electrical Engineering
Virginia Commonwealth University

NASA Technical Monitor
Qamar A. Shams
Langley Research Center

i

Abstract

A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has
been developed and verified. MERCAL was designed to be a general-purpose, universal
module that that can provide significant hardware and software resources o meel the
requirements of many of today's complex embedded applications. T his is accomplished in
the MERCAL module by combining a sub credit card size PC in a DIMM form factor
with a XILINX Spartan Il FPGA. The PC has the ability to download program files to the
FPGA to configure it for different hardware functions and to transfer data to and from
the FPGA via the PC’s ISA bus during run time. T he MERCAL module combines, in a
compact package, the computational power of a 133 MHz PC with up to 150,000 gate
equivalents of digital logic that can be reconfigured by software. The general
architecture and functionality of the MERCAL hardware and system software are
described.

1. Introduction

Desktop applications are now dominated by the IBM compatible PC. This is due to
high performance coupled with a combination of low cost hardware and, a wide verity of
inexpensive software. Because of the pervasiveness of PC’s and their sophisticated
development tools, PC based software development is more cost effective than other
platforms. This makes the PC attractive for use in embedded systems. Particularly in few-
of-akind systems where development cost cannot be prorated over many systems.
Unfortunately the size and power requirements of PC’s precluded their use in most
embedded applications. The MERCAL module has been designed to address these and
other issues. It provides a single consistent platform capable of satisfying the
requirements of many embedded applications. The MERCAL module offers the power
and flexibility of an IBM compatible personal computer in a size ideally suited for many
embedded applications. It provides a single platform that is constant, flexible, and
reliable.. The MERCAL module contains configurable logic, in the form of an FPGA,
which either entirely eliminates or drastically reduces the need for the digital interface
cards required in embedded systems using conventional PC’s. Using MERCAL, the only
additional hardware required by an embedded system would typically be the converters
and drivers specifically required by the applications. All PC interface and application
control logic is contained in the FPGA internal to MERCAL and can be configured and
optimized to suit the application. A standard desktop PC can be used as a development

platform.
2. The MERCAL module

The block diagram of the MERCAL module is shown in Figure 1. There are two
primary components to the MERCAL module. They are the DIMM-PC and a Xilinx
FPGA. The only other active components are a power converter and a 32 MHz oscillator
used to clock the FPGA. The passive components consist primarily of capacitors, with a

few resistors and diodes. Three connectors are used to interface to the MERCAL module.
The interface to the MERCAL module provides 81 general-purpose input output (IO)
pins from the FPGA. The functions of these 10 pins can be determined by the needs of
the application and controlled by the configuration of the FPGA. In addition to the
general-purpose FPGA [0 pins, signals are also available form the DIMM-PC. The
DIMM-PC signals include two RS232 serial communication ports, and certain other
selected signals. These signals were selected to provide sufficient flexibility and
capability to support advanced applications. For example, these selected signals have
been used to provide the capability of using a compact flash memory as an IDE disk
drive.

Top and bottom views of the actual MERCAL module are shown in Figures 2 and 3.
The schematic diagram of the MERCAL module is shown in Appendix A. The pin outs
of the MERCAL module are shown in appendix B.

A standard desktop PC can be use as a development platform, and software has been
developed so that the DIMM-PC can serially download a bit file to configure the FPGA.
The configuration file is downloaded using the printer port interface built into the
DIMM-PC. This made it possible to configure the FPGA without requiring the addition
of separate logic.

T Printer Port Interface

0w [; XILINX :1 C
DIL“Q:M " " PC Bus FPGA (081pins
\\ XC25150-PQ208

Selected Signals

32 MHz

clock :

Figure 1. Block diagram of the MERCAL module.

RS 232 Interface >

sparrne

Top view of the MERCAL module shbWing the ADIMM-PC, 32 MHz oscillator

Flgure 2.

ing the Spartan II FPGA and the

4
o

I3 vo T wud PBUER
”:.u_::::..::::::::

.,LLLL_LJ

:::::::::::E.z,w.,,::. e
Q & 00®

v

1

ot

aonty HORBON
RG]

IR
Lkt

LRI
)

o2 @ NS
::::::::t::_:.:::,m::::

.:::::w.:::::_::::ww::._.

PX-LE DL 2

B nAGA0A

IC, and power converter IC.

Figure 3. Bottom view of the MERCAL module show

three connectors..

2.1 The DIMM-PC

The DIMM-PC is shown in Figure 2. It is a commercially available, functionally
complete, extremely compact (40 X 67 X 6 mm) PC motherboard. Several versions of the
DIMM-PC are available that can be used in the MERCAL module. The DIMM-PC
processor can either be a 66 MHz 486SX for low-end applications or a 133 MHz AMD
Elan SC586 for more demanding applications. Typically the onboard memory consists of
16 to 32 Mbytes of RAM and a 16 to 32 Mbyte Flash Disk. The DIMM-PC peripheral
interface consists of two serial ports, one parallel printer port, keyboard, floppy, and IDE
Hard disk controller port. In MERCAL, the peripheral interface is used primarily for
development and diagnostic purposes. However, the printer port is dedicated to the task
of programming the Xilinx FPGA. Since this device is a SRAM based FPGA, it is
possible, with software that has been developed, for the DIMM-PC to reconfigure the
FPGA to satisfy the digital logic requirements for various applications.

Detailed information including specifications and user manual of the DIMM-PC can
be obtained from http://www.jumptecadastra.com/juad 014 dimm.html.

2.2 The XILINX FPGA

The FPGA used in MERCAL is the Xilinx XC2S150 Spartan-II in a PQ208 package.
About half of the available /O pins on the FPGA are used to interface to the DIMM-PC
and the others are available external to the MERCAL module through connectors. The
XC2S150 Spartan-1I FPGA contains the equivalent of 150,000 gates with 200 MHz
system performance. A complete description of the Spartan-II can be fount at
http://www.xilinx.com/. Various tools are available that can be used to implement the
FPGA portion of a design. Typically, either schematic capture or a hardware description
language such as VHDL will be used to specify the particular implementation. Several

examples using schematic capture are shown in Appendix E.

2.3 DIMM-PC to FPGA interface

The interface between the DIMM-PC and the FPGA consists of two parts. Both parts
of the interface are realized without the need for external logic.

The first part of the interface is required to download configuration files form the
DIMM-PC to the FPGA. The configuration is accomplished by placing the FPGA in
slave serial mode, and using selected pins of the DIMM-PC’s printer port to control the
DIN and CCLK pins of the FPGA. Software developed by electrical engineering students
at Virginia Commonwealth University is used to transfer “bit” files to the FPGA via the
DIN and CCLK pins of the FPGA.

The second interface between the PC and the FPGA is used to transfer data between
the two during system operation and is accomplished by connecting the necessary PC bus
signals directly to /O pins of the FPGA. The PC bus is used as the primary interface
between the PC and FPGA. Typically, this interface is implemented by configuring 16-bit
input and output ports within the FPGA.

2.4 The software

So far, only DOS and LINUX have been used as operating systems on MERCAL.
Other operating systems could be used as long as they can operate in an embedded
environment and do not require resources beyond those provided by the DIMM-PC. For
the discussion to follow we will restrict the description to the DOS environment;
however, the procedures for other operating systems will be similar.

Before the DIMM-PC is placed into the MERCAL module, a resident monitor
program is loaded onto the flash drive of the DIMM-PC. At the same time an
AUTOEXEC.BAT file that invokes the monitor program is loaded onto the flash drive of
the DIMM-PC. The DIMM-PC can now be placed in the MERCAL module. When the
MERCAL module is powered up or reset the AUTOEXEC.BAT file runs the monitor
program which checks to determine if a host PC is connected to the serial port of the
DIMM-PC. If there is not a connection to the serial port the monitor program exits. If
there is a connection to the serial port, the monitor program enters a mode to allow files
to be transfered to the DIMM-PC. Typically, several files will be uploaded to the DIMM-
PC. These include a bit file to configure the FPGA, a program to transfer the bit file to
the FPGA, the application program, and an AUTOEXEC.BAT file to invoke the various
programs. To use MERCAL for a different application it is typically only necessary to
upload a new bit file and application program. When the monitor program exits a
program to configure the FPGA from the bit file is executed. After configuration of the
FPGA the application program is executed.

The various files required by MERCAL have been written by electrical engineering
students at Virginia Commonwealth University. The programs that run on the DIMM-PC
have been written primarily in C++, and the bit files for the FPGA have been generated
by using both VHDL and schematic capture.

Appendix C describes in detail the procedure for using DOS with the MERCAL
module, and Appendix D describes the procedure for using Linux.

3 Example application

In order to test the concept and prototype implementation of the MERCAL system, an
example application was developed using it. This application consisted of a dynamic
spectrum analyzer display for audio frequencies. The functional block diagram is shown
in Figure 4. The application uses an FFT algorithm to produce the frequency spectrum
data of the sound information that has been amplified, filtered, digitized, and stored in a
FIFO buffer. The spectrum output data produced by the FFT algorithm is displayed as a
moving bar graph on a standard VGA display.

In this application, a prototype of the MERCAL was used that consisted of the
DIMM-PC in its development board, connected to a separate board containing the Xilinx
FPGA via ribbon cables. However, it should be noted that none of the interface
capabilities of the DIMM-PC development board, including the VGA display adapter,
was utilized in the performance of the application. All of the system functionality was
contained in the DIMM-PC, the Xilinx FPGA, and a small signal pre-processing board,
which contained the amplifier, filter, and Analog-to-Digital converter. Figure 5 shows the
hardware block diagram of the MERCAL system in this application.

Once processed by the A-to-D converter, the sound samples are held in a digital FIFO
module implemented in the FPGA. The FFT algorithm is executed on the DIMM-PC.
When ready to process a new packet of samples, the DIMM-PC downloads the samples
from the FIFO module on the FPGA. It then performs the FFT algorithm and transfers the
spectrum data back to another hardware module on the FPGA. This module uses the
spectrum data to generate the VGA display. All of the signals required by the VGA
display are generated in this hardware module in the FPGA. Figure 6 is a photograph of
this initial prototype, which was used to prove the MERCAL concept, in operation.

Sand—Y Condioring) Digkizing = Storage Ly FFT Ly Visusl Dutput

Figure 4. Prototype MERCAL application system functional block diagram.

1 T - 1
Reset | IMM-PC : DIMM-PC
—f D pC 1 Developer’s
Board
: Para‘ {cl Port ISA Bus }
P — I & . i MERCAL
ower JSA Interface (Memory & 1/0) J - Clock Cireuit: | Gystem
Input - R % Board
S t || Sample | Xilinx Spartan 1l VGA Display I
Power System _LBuﬁ‘er _l FPGA - [
‘ w“j e es e i T ;:;,,,.A.__j
T T Application LA L
Power : | 16-bitAD Board
Input Couverter
- ,_____ﬂowpass
l Filler

e~ Linear
Amplifier

@ |

Figure 5. Prototype MERCAL application system hardware.

—

Figure 6. Prototype MERCAL application.
4. Conclusion

The MERCAL module combines, in a very compact platform, the processing power,
flexibility, and ease of programming of a PC platform, with a significant amount of high-
speed digital logic for implementing interface functions to custom hardware or
accelerating critical portions of an application. The hardware and software in a MERCAL
module can be reprogrammed for a number of applications, even in-situ and during
system operation. The MERCAL module provides researchers at NASA Langley
Research Center and industry with a powerful new tool for implementing embedded
systems that require processing power, flexibility, and reduced form factor coupled with
ease of development.

5. Acknowledgements

The work reported here was supported by grant NAG-1-01042 from NASA Langley
Research Center. Significant contributions were made to this work by several Virginia
Commonwealth University electrical engineering students. They are: Austin Kim, Larry
McDaniel, Matthew Sprinkle, David Staples, Andrew Gamble, Joshua Bell, Jason
Blevins, Jonathan Andrews, Sean Laughter, Timothy Niemczyk, and Erick Donald.

Appendix A

MERCAL Module Schematic Diagrams

1% 45)

v

o

123 2oLz
e > PP 1-26 PPX([1-3] <>
Kl o w ' -l < Ei
S1X31 o 79 [[TT | 80 D4 i 8 J1x]1-45] gk
k) DI 771 _;
=~ [l 75 Alo3d o I=] 2] - o (2] »::7 | o
JTRAT RACLE I AN FURKE] 2OREL % 2 % B SERREI X
TTXAT ATYE 71 T2 AQ30 5 SR 35 = SRP 5 Rl 5
N1 A1 %5 69 7 XI1C37 B Sheet D
67 €8 X041 T1X
55 66 xioaz T, Pel71 T W4 75
63 €4 043 Y J2X38 SRAR B g e
SIKT 1533 61| 62 _KIDZ4 o1y WX &¥] JATel S g:191) E ¢ - n. al B
N e 3 7 <
—27 jﬁ e T ;’: b R2 o 0,2 Z <0 = 0
2 o > 1 Ul § — U
T 56 X047 XA x Q wa L1l o' BEER
ot coalt—5] Er R TREAS St LEERLEE! | 55 ELE S S8 | kpELEEl .
5O TIXT =l Bl ol bl b <]
S0 XIOF: X 2| EE BEpR SRR T BE ke B E(E
YO 11X os xloteut=lol ol v algin
XI047 TIX. BUSY DOUT (Ami Ploim[a| R || iR |y i -999.8;1.3.
Y1058 T y i\ 177 i M O S A A A e
XIQ53 STX % T an - o o A-00zw00Q Iz O
ka3 o Y7 X 7889598y 5 5;Qoéggg‘i%;gésgss{é%ga;@ T
I XIOR! JTX 37 z o =€ Zu 2 2z
TR ViOR2 By 2 e 2z g g¥ Ty 8¢ €67 Qg g 9507 [uel104 DONECPE
3 Z & = = Q = = = 2 3
RAK; X163 Y. WYLEY! IE > g GND m
G Ale¥y TIX2; e 1.0y [3] o |18 9]
[RIO68 »11;:,; z . 1 W’;‘! a e :g; = 2
V1059 ALY e XIoTIn
S X105 4 T3] coNy({fell:d :fg 96 DACRT N I
o TSN TON2 2 1y T v REH =
B 5 POER e s 2 o o7
ot 20 i ;
b 3 VO |-t — T . OONE (GRN)
¥ Fia TYST N FRT] oL vine .
RTSZN T 0. VRER S X JIXA N
DSRZN TPTY anG o3 {1
I TX% 2. TAE veco[-2——ovee 0 1
ALEL — vc%r O.n-iﬂ/ VCSINT SKGVECINT pigs
vccjrﬁ 5] | 6 OVCCIINT ALI PTEA
vee i Ovcc ; T C %/
vee &3 ovee BT 000
o PTTd TOSCIE_N Ak]
GishES WS N [e
SFM-80-02-5-D-L.C B 84 gFLﬂ
® »ciz lsomY 3 PreL/
J2 MBUS{1-3] i 1S 2 ¥ Jix18 A
v 79 ["T) 80 _wcC & isAl] 3007 2 = s (s
3 wETT zﬁc & RN XC25150PQ280 i E— o Y0, IR
5 N7 ; a 200 :3323 z Jax20 ~ XGCRIT Ut — 'dTh 1 CxGeRe
Jﬂﬂ—g 73 v} g — oved'o
§i) 72 WASTER R ooyasren o1+ — P63/ §
I 7 ﬁ'?sr(s STR PASTER ppgs, i N s x
: 39 sierL] — J1¥30 A&
K poriA
7 o
(]
[XWTET—__ 12X37 Ry J1%28
) ALy o1 I 1Y, - DA,
1 57 KT] L1 557 A
5 50 pilsrd prig) VCC_INT
TR X0, 7 [48 Hes——o Vg0
S 11T X075 6 .
ToXTT XIS [aa” 63 XoE J1X26
2T S0 %zﬂfm"r—“—_ﬂ S L —
TZXA XICT XICT4 J42x17 hateal PiReL 4;
s 55~ X059 XL
\‘J]ZYF XIO8 gg 3€ s EAL2:
B Nerzcmm e v g X2
INITT XS] X231 J2R17
SINEXZATK 7 . H—
[NerL St 26 5 s
TR XI0TE 23] 24 ! 2 g, " [~ owveco
N opisi 22 H Ez ¥
27 X0 20 kS =5 A
JIRTE e 252¢ RQEQEREQ2L?
pfeyis
Nerzrrmsexikd XI0S 0 o
XTT X020 YI0! k4 o
T2X72 RS9 XI0) y il i LR 7
JIXCT XGCRIT pdle] e} = Z 0 K
NI XGURET hi! 4 & =% <
X33 700 3 TR N LEE 3 o
3T T] ¥ b X P >x =3
5 e 5 7 MERCAL VERSION 3.0
SFM-80-02-6-0-LC ann ?%:”;‘m Nurmber .;
Ayausi 142007 Bheet 3 of

Zhast

AC[271] < —

1 2 i
pcr RSTORVE™T] i ool)
ae) 007 3 [
s 7 TECSTQVCC PP2
S PFY
1 PrPE
- PPy 3
7 s AL
i
prE A3
PFY
PETY,
& PET%
[e3
N PP
o = u
29 i
"lk—'—* — = ;
non s ol Ha—x
CONN SOCKET 15x2/SM PG Iﬁg:;vﬂh ‘3 {s]
N\ RaTE 53 %
2 D4 55 58
Na 4 14 [N |"
§ F 59 '60 _SATE__ | PCa%
61 62 M
Necsz sa1s %@ 64 I
[} &6
55 | (6~ o
PC34 SA14 67 @ vee
69 70 %
pCI6_ SA13 YT e
C ot 1 A
fheer st h\FPcas saiz X7 e %
vee NPCH__REF T ; 78 D
FC40__Soos
KT TATT [
Al SYSCLA N 83
R3 NGRS A
8 S)
PCA6 7 EX
pL 05
" =2 = H sheet 1 cf 3
oe Nocas soir X7 58 “AFDN T
Pho . et SADS 55 100 T S iE PPX3 X(1-3)
] 101 102 ERR [
TN PCE sp+2 X353 364 POy vont apx
PDO DN (Amber) PCTT BAT/ g? __1% I
hpPcss pack?_R705 | L)
] TRG 3
pCcsa sA08 X775 | 3
FCoT Lieki] 1
PCGY saus X2 ¢ [
PTET AECS =
st TC s O 2Px
PEET SX5T 8 M
FTES SO P
FTEL BALE 3 [
a4 TADY
— — MBUS(1-
WASTER_N 7 S(1-3]
masTERC: =
sAQY
44 “ L2
fonr ¥ 1

e

MERCAL VERSION 3.0

3 ev
[

Bate Wednesday, August 14, 2002 Ehcﬂ 1 of 1

uz

Sheet 1 of 3

——1 28
— NC IR"T—T—K
—3 NG Ne “%x
2%
vee o * T N 10uT 4 VCC INT
‘ c1z"L ce ANN lour = 8 ’L| %cz —Lcs ‘Lcm
X——g NC 2RsTH5T—X —I—c T‘C T
T 100u 1 g o b D2 33u u u_ L 470u 100u
{ e ne NC o5 X INS817 1N414B
2GND ne HEE—x
L 301 %en NE X
2N 2007
1 c1t == cio T—~‘§—- 21N 20uT i
oo 1t L XTahe Ne s 03
1Na148 (3.30V)
TPS7870325 1T vee g
—=c7 :IT:u cs ce
BRIMBEMS RIS WTN
R
2K
D4
Red PWR u3
Y
N —: 15 = 16 = 17 18 c19 4 20 # 22 23 :IL:I:u 25 1 4 ve
Ty Tu Ju u w1 i Kl [Tu u u 77| Standby VGO c.0
GND Ouput-
£C3953
-ETcza TC—I— 27 — 28 #zn %mo 31 = 32 = -4 34 =4 35 36 = 37 £ 18 19 0 = 41 :i:l:az —I‘Tcu ‘L_l._cu 45
1u 47u v 4y 1u 47u A% 1u 1u Ju u 1u 47u 1u 1u 47u 1u Y A

.,“.

> XGCKO |

MERCAL VERSION 3.0

ize Document Number
B 3OF3

Pate Wednesday, August 14 2002 Eheet

Appendix B

MERCAL module pin outs

MERCAL pin outs

[Extern I)(ilinx Dimm PC [Schematic

Description [Conn [Pin# |Pin# |(J3) pin # [name Comments
TMS J2 4 2 TMS

IO J2 25 3 X103 PRTA<0>
10 J2 27 4 X104 PRTA<1>
10 2 29 5 X105 PRTA<2>
IO, VREF 2 31 6 X106 PRTA<3>
10 J2 33 7 X107 PRTA<4>
10 J2 35 8 X108 PRTA<5>
10 J2 37 9 Xi09 PRTA<6>
I0,VREF J2 39 10 X1010 PRTA<7>
10 J2 41 14 X1014 PRTC<0>
10 J2 43 15 X015 PRTC<1>
10)2 45 16 X1016 PRTC<2>
10 J2 47 17 X017 PRTC<3>
10 J2 49 18 X1018 PRTC<4>
I0,VREF)2 51 20 X1020 PRTC<5>
10 J2 53 21 X1021 PRTC<6>
10)2 55 22 X1022 PRTC<7>
10 2 304 23 X1023 PRTD<0>
I10,IRDY J2 40 24 X1024 PRTD<1>
I0, TRDY J2 50 27 X027 PRTD<2>
10 J1 69 29 X1029 PRTD<3>
10 ! 61 30 X030 PRTD<4>
{O,REF)1 53 31 X1031 PRTD<5>
10 1 33 33 X1033 PRTD<6>
10 1 76| 34 X1034 PRTD<7>
10)1 74 35 X1035 PRTE<0>
10 J1 724 36 X1036 PRTE<1>
10 J1 700 37 X037 PRTE<2>
10 J1 68 41 X1041 PRTE<3>
IO,REF J1 66 42 X1042 PRTE<4>
10 1 64 43 X1043 PRTE<5>
10 1 62| 44 X1044 PRTE<6>
iO,REF J1 60 45 X1045 PRTE<7>
10 J1 58 46 X1046 PRTF<0>
10 1 56f 47 X1047 PRTF<1>
je] 1 5 48 X1048 PRTF<2>
10 1 5 49 X1049 PRTF<3>
Ml 50 XM1

MO 52 XMO

(@] J1 46 57 XI057 PRTF<4>
10 J1 44 58 XI058 PRTF<5>
IO,REF 1 421 59 X1059 PRTF<6>
10 1 40 60 X1060 PRTF<7>

Extern IXilinx Dimm PC |Schematic
Description |Conn Pin# |Pin# (J3) pin # |name Comments
10 J1 38 61 X1061 PRTG<0>
10,REF 1 36 62 X1062 PRTG<1>
10 J1 34 63 X1063 PRTG<2>
0 J1 34 67 X1067 PRTG<3>
10 J1 300 68 XI068 PRTG<4>
10 J1 28 69 X1069 PRTG<5>
10 70 77|REF_N
I0 71 75/SA12
I0,REF J4 171 73 143)SAQ0
10 1 260 74 X1074 PRTG<6>
10 4 18 75 139;SA01
GCK1,l 77 141|0SC 14.3 MHz.
CLK32MHZ | - 80 XGCKO,1
[e])4 19 81 137[SA02
10 J1 500 82 X1082 PRTG<7>
IO 83 133i1SA03

10 1J2 12 97 X097 PRTH<1>
I0,REF 98 111DRQ7

10 99 109IDACKY7 N

@])2 104 100 X10100 PRTH<2>
10 101 105|SA07

ETTT ik TR

DONE 104 126]DONE<>PE

PRGM 106 108PD2

IO(/INIT) 107 102ERR N

10,D7 1 104 108 D7 PRTH<3>
10 1)1 35 109 IXI0109 PRTH<4>
10

IOREF . -l4 .. 12

10 J1 3 PRTH<5>
I0,REF Ta |l 11 ;

10,D6 1 PRTH<6>
10,D5 1 PRTH<7>

Extern l)(ilinx Dimm PC |Schematic
Description |Conn [Pin# [Pin# {(J3) pin# name Comments
10 120 60/SA16
10 87|SA10
6 BEE50
10 83ISYSCLK
IO, REF 81|SA11
10,04 80 PRTJ<0>

) 14 ik Sreis008

I0,TRDY 1 9 129 TRDY PRTJ<1>
10,IRDY 1 11 132 IRDY PRTJ<2>
10 1 39 133 X10133 PRTJ<3>
10 134 71|SA13
10,03 J1 31 135 D3 PRTJ<4>
IO,REF 1 71 136 X10136 PRTJ<56>
10 138 67|SA14
10 1 73 139 X10139 PRTJ<6>
10 140 63|SA15
10 J1 75 141 X10141 PRTJ<7>
10,02 J1 771 142 D2 PRTK<0>
10,D1 q 79 146 D1 PRTK<1>
I0,REF 2 8 147 X10147 PRTK<2>
i0 J4 221 148 57IIOR_N
10 149 55/|SA17
IO,REF 150 53IIRQ15
[®] J4 21 151 51IOW_N
10 152 49;SA18
IO(DIN,DO) M2 60f 153 PDO Programming
DOUT,BUSY Q2 1] 154 DOUT BUSY [Programming
CCLK 155 104|PD1
TDO J2 3 157 TDO Boundry Scan
TDI J2 71 159 TD1 Boundry Scan
IQ(/CS) J2 73 160 CS_N PRTK<3>
IO(/WR) 2 75 161 WR_N PRTK<4>
10 J2 561 162 X10162 PRTK<5>
10 163 45SMEMR_N
IO,REF 164 43|SA19
10 165 41RQ11
10 166 39/SMEMW_N
IO,REF 167 37|AEN
10 168 35IRQ10

Extern |Xilinx Dimm PC [Schematic
Description |JConn [Pin# |Pin# [(J3) pin# [name
10 4 271 172 33||OCHRDY
0 | 3SBHE N

2710SC16_N

)2

162

XGCK2.I

J2

185

XGCK3,|

Comments

4

187

X10187

e (89
ﬂllllll!]lﬂﬂlllllllﬂ01m

PRTK<6>

PRTK<7>

TEST

PRTB<0>

PRTB<1>
PRTB<2>
PRTB<3>
PRTB<4>
PRTB<5>
PRTB<6>
PRTB<7>

” gg!&’;&
10 L4 23] 194 3 RSTDRV
10 J1 48 195 X10195
10 L2 9 199 X10199
I0,REF 2 11 200 X10200
[e] J2 1 201 X10201
[e] 2 19 202 X10202
I0,REF J2 17] 203 X10203
i0)2 190 204 X10204
10 2 21 205 X10205
10 L2 23] 206 X10206
TCK 2 2| 207 TCK
IRQ14 4 20 59IRQ14
1[IOCHCK_N
2 72 135MASTER N

Appendix C

How to use MERCAL with DOS

MERCAL Development Handbook
for DIMM-PCs running DOS 6.22

Written by: Erik Donald

Items Needed

Installing Microsoft DOS 6.22 on DIMM-PC

Source code for app.bat on MERCAL Install Floppy
Setting up DOS on DIMM-PC

Launching the Command Prompt from the MERCAL
Sending BIT Files

Running application programs

The DOS Mercal Configuration Files

. FPGA Configure

10. Source code for autoexec.bat MERCAL Install Floppy
11. Source code for Mercal.bat MERCAL Install Floppy
12. Source code for app.bat on MERCAL Install Floppy

D00 N L

Preliminary: October 16, 2002

Hardware Items Needed.:
DIMM-PC
Floppy Drive
JUMPtec Development Board
Serial Cable
MERCAL Board
MERCAL Development Board
Serial Cable (Straight through not crossover)

Software Items Needed.:
MERCAL Install Floppy
Microsoft DOS 6.22 Floppy Disk Installation
MERCAL Link Program

How to create media needed for installation:

1. Format one blank floppy diskette.
2. Copy all the files from the MERCAL instail floppy directory to the floppy

diskette.

00 NN W N

10.
11.
12.
13.
14.
15.
16.
17.

18.

1.
2.
3.

Part 2 — Installing Microsoft DOS 6.22 on DIMM-

Part 3 - Setting up DOS on DIMM-

rc

Insert the DIMM-PC into the JUMPtec development board and connect the floppy
drive.

Set up the BIOS to boot from the floppy drive.

Insert disk one of Microsoft DOS 6.22 and boot up the computer.

Press F3 twice to exit out of the boot menu.

Type fdisk.

Select option 4 to display partition status.

Delete any partitions that may be one the DIMM-PC using option 3.

Next create a primary partition by going into option 1, Create new partition.
Select one again for Primary DOS partition.

Enter Y to confirm.

Allow computer to reboot back into the DOS setup.

Press enter to continue installation.

Select format drive and allow drive to format.

Press enter to confirm settings.

Press enter to confirm install path, it should be C:\DOS.

Follow the rest of the directions of the DOS installation.

When the computer restarts change the boot device from floppy disk to hard drive
and reboot into DOS installation.

The DIMM-PC should boot up to a DOS prompt

PC

Insert the Mercal install floppy
Type copy al*.* c:\
Press Yes to overwrite any files

Part 4 — Launching the Command Prompt from the MERCAL

l.

2.

3.

4,
5.

6.

Now take the DIMM-PC and put it into the MERCAL and the MERCAL into the
MERCAL development board.

Connect a serial cable between the MERCAL development board and your
computer.

On your computer run the MERCAL.EXE file that allows PC access into the
MERCAL.

Power up the MERCAL and click on CONNECT on the MERCAL program.

You may have you press CONNECT several times if it times out before the link is
established.

Press LINK to bring up the DOS prompt on the MERCAL.

Part 5 — Sending BIT Files

l.
2.

Follow steps 1 to S from part 4.
Press SEND FILE and send your file named XI.BIT.

Part 6 — Running application programs
1. Follow steps 1 to 5 from part 4.
2. Press SEND FILE and send over your executable file as app.exe.
1. Reboot the MERCAL without the serial cable connected to allow the program to

run.

Part 8 — The DOS Mercal Configuration Files

This is the files needed to use the MERCAL in DOS.
config~1.exe Configures the FPGA

merc.exe
x1.bit
app.bat
autoexec.bat
mercal.bat

Check link status to run program or wait for link

Auto configuration bit file

Application that will be run

DOS auto start script

Batch file to check link status to run program or wait for link

Part 9 — FPGA Configure

This is the program that will download the bit file for the FPGA using the parallel port.

/*
Author:
FileName:
Date:
Desc:

*/

#include<iostream.h>
#include<ctype.h>
#include<stdlib.h>
#include<fstream.h>
#include<stdio.h>
#include<conio.h>

Jason M. Blevins
config~1l.cpp
August 10, 2001 (most recent revision)

Downloads binary file to an FPGA.

void ProcessArgs(int argc, char *argvl, ifstream& DatalIn);

// Processes command line arguments & attempts to open bit file
void ClearFPGA(); // Clears the FPGA

void TransferBits(ifstream& Dataln);
// reads bits from bit file and transfers them, bit by bit, to FPGA

int ExtractBit(int WhichBit, int PortAddress):;

//Extracts the bit number 'WhichBit' from the 'PortAddress'

/* pin2 a0 DIN pinl5 b3 INIT
pin3 al CCLK pinl3 b4 -
pind az ! PROG pinl2 bb DONE
pin5 al -—= pinl0 bé ---
piné a4 -—= pinll b7 --=
(inverted)
pin7 ad -—-
pin8 ab --- pinl c0 -——-
(inverted)
ping a7 --- pinl4 cl ---
(inverted)

pinlée c2 ---

pinl? c3 -—-
{inverted)

*/

#define PortA 0x378; // address of PortA

#define PortB 0x379; // address of PortB

f#define TRUE 0x01 // Boolean flag

#define FALSE 0x00 // Boolean falg

#define MSB 0x07 // MSB of a byte

#define LSB 0x00 // LSB of a byte

#define PROG_LOW 0x00 // Value of PortA that pulls PROG low

#define PROG_HIGH 0x04 // Value of PortA that pulls PROG high

#define CCLK_LOW 0x00 // Value of PortA that pulls CCLK low

#define CCLK_HIGH 0x02 // Value of PortA that pulls CCLK high

#define INIT_ BIT 0x03 // Bit number of INIT in PortB

#define DONE_BIT 0X05 // Bit Number of DONE in PortB

#define BYTE SIZE 0x08 // # of array slots needed to hold a byte

#define ONE_ARG 0x01 // Specifies that one argument was supplied
#define TWO_ARG 0x02 // Specifies that two arguments were supplied

void main{int argc, char *argv(])

{
{fstream DatalIn; // declares file stream variable

ProcessArgs{argc, argvil], Dataln); //processes users command line args
ClearFPGA(); //clears FPGA
TransferBits (DataIn); //transfers bit file to FPGA

}

void TransferBits(ifstream& Dataln)
{
int bits[BYTE_SIZE];
int Init = TRUE;
unsigned char CharByte:
unsigned int IntByte;
int Done;

while ({(Init == TRUE} && (!Datalm.ecf(]))

{

DataIn.get (CharByte); // gets a byte from bit file as type char

IntByte = CharByte; // converts byte from type char to int
for {int a=LSB; a<=MSB; at++#)
// extracts the 8 bits from IntByte and stores them in array bits(])
{

bits[a} = IntByte % 2;
IntByte = IntByte / 2;
}
for (int b=MSB; b>=LSB; b--) // puts bit on DIN and then clocks it into
FPGA
{
outp(Porth, {(PROG_HIGH + CCLK_LOW + bits[b]));
// equivalent to '0000010X' where X represents bits(a] -- clock low
outp (PortA, (PROG_HIGH + CCLK_HIGH +bits{b}));
// equivalent to '0000011X' where X represents bits{a] -- clock
high

}
Init = ExtractBit (INIT_BIT, PortB); // extracts !INIT

)

DatalIn.close(); // detaches file stream variable from external file
Done = ExtractBit (DONE_BIT, PortB); // extracts DONE
if (Done == TRUE)

{
cout << "Programming successful!\n";

cout << "Error. Program was not successful.\n";

void ClearFPGA()
{
int Init;

outp (PortA, PROG_LOW); // pulls !'PROGL low

outp (PortA, PROG_HIGH); // '12' is equivalent to '00000100' -- pulls !'PROG high
Init = ExtractBit (INIT_BIT, PortB); // extracts !INIT
while (Init == FALSE) // waits for !INIT to signal that the FPGA is clear
{
Init = ExtractBit (INIT BIT, PortB); // extracts !INIT

}
}

void ProcessArgs({int argc, char *argvl, ifstreams& Dataln)
(
if (argc == ONE_ARG) // if user doesn’'t specify which bit file to read from
{
cout << "\nError. No file name specified.\n";
abort ()’
)
else if (argc == TWO_ARG)
// is user specifies the bit file
{
pataln.open(argvl, ios::nocreate | ios:: binary);
// opens bit file as specified by user -- if non-existant, no new file is
created
if (DataIn.fail())
{
cout << "\nError. Invalid path or file name.\n";
abort ()i
}
cout << "\nProgramming Spartan II FPGA #1...\n";
}
else // if user specifies too many arguments...
{
cout << "\n\nError. Invalid arguments.\n";
abort ();

}
int ExtractBit{int WhichBit, int PortAddress)
{

unsigned int DataByte’

pDataByte = inp(PortAddress);

return ((DataByte / int(pow(2,WhichBit})) % 2);

Part 10 - Source code for autoexec.

bat MERCAL Install Floppy
This file is the startup file for DOS.

1: @ECHO OFF

2: PROMPT pSg

3: PATH C:\DOS;C:\MERCAL
4: SET TEMP=C:\DOS

5 mercal.BAT

Part 11 - Source code for Mercal.bat MERCAL Install Floppy

1: @ECHO OFF

@~ oYU W

11:
12:
13:
14:
15:
16:

CTTY CON:

: START

MERC.EXE

IF ERRORLEVEL 3 GOTO ERROR
IF ERRORLEVEL 2 GOTO LINK
IF ERRORLEVEL 1 GOTO RUN
:LINK

CTTY COM1:

GOTO END

: RUN

APP.BAT

GOTO END

: ERROR

GOTO END

:END

Part 12 - Source code for app.bat on MERCAL Install Floj

config~1.EXE C:\XI.bit
rem "EXE file goes here"
app.exe

wy

Appendix D

How to use MERCAL with Linux

MERCAL Development Handbook
for DIMM-PCs running Whitedwarf Linux

Written by: Erik Donald

Items Needed

Installing Whitedwarf Linux on the DIMM-PC

Setting up Whitedwarf Linux on the DIMM-PC

Setting up Vmware

Installing RedHat Linux 7.3 on Vmware

Logging into Linux in VMware

Logging into the MERCAL via a serial connection

Sending files to the MERCAL

. Receiving files from the MERCAL

10. Shutting down the MERCAL

11. Development using gcc

12. What does the MERCAL Install Floppy Do?

13. Source code for install.sh on MERCAL Install Floppy

14. Source code for FPGAConfigure on MERCAL Install Floppy
15. Source code for /etc/inittab on MERCAL Install Floppy

16. Source code for /etc/rc.d/rc.local on MERCAL Install Floppy
17. Source code for /etc/rc.d/rc.serial on MERCAL Install Floppy
18. Source code for /etc/lilo.conf on MERCAL Install Floppy

© 0N AW~

Preliminary: August 1%, 2002
Revised: October 3%, 2002

Part |- Irems Needed

Hardware Items Needed:
DIMM-PC
Floppy Drive
CD-ROM (Not all CD-ROMs work)
JUMPtec Development Board
Serial Cable
MERCAL Board
MERCAL Development Board
Serial Cable (Straight through not crossover)

Software Items Needed:
RedHat Linux 7.3 (www.redhat.com)
Whitedwarf Linux CD-ROM (www.whitedwarflinux.org)
Whitedwarf Linux Boot Disk (www.whitedwarflinux.org)
MERCAL Install Floppy
RawWrite to create Installation Floppies

Optional Software Items:
VMWare (www.vmware.com)

VMWare allows you to run Linux inside a Windows computer. It makes
development easier if you need to use both Linux and Windows applications at the same
time. When you run VMWare it simulates a full Linux computer inside a window in
Windows. So you can either install Linux on your PC inside Windows, or dedicate your
PC entirely to Linux. If you choose to dedicate your computer to Linux, you can skip
steps 5 and 6 and just install Linux the normal way by putting the install Red Hat Linux
CDROM in your computer and booting from the CDROM.

How to create media needed for installation:

1. To create the Whitedwarf CD-ROM, use the ISO image and burn it to a CD using
the CD Burning software of your choice.

2. Launch rawwritewin.exe and select your floppy drive

Insert a blank floppy diskette

4. Select wdboot . img and click write. This will create the WhiteDwarf Linux
Boot Disk.

5 Select Mercal Linux Install.img and click write. This will create the
MERCAL install floppy to allow the DIMM-PC to run Linux while in the
MERCAL module.

(OS]

Part 2 — Installing Whitedwarf Linux on DIMM-PC

1. Connect a DIMM-PC into the JUMPtec development board. Connect a keyboard,

monitor, floppy and a CD-ROM.

2. Go into the DIMM-PC Bios and set it to boot from the floppy drive and tell it

there is a CD-ROM present by selecting auto as the slave drive.
Insert Whitedwarf Boot Disk Floppy and CD-ROM.
Boot the machine using this boot disk.

Select OK when the installer comes up.

Select OK to the install device as /dev/hdal

Select CREATE

. Select NEW

10. Select PRIMARY

11. Enter drive size (30MB)

12. Select BOOTABLE

13. Select WRITE

14. Type YES and press enter

15. Select QUIT

16. Select CLEAN

17. Select YES when it tells you formatting will erase all data
18. Select CD-ROM and wait for the base installation to occur
19. Follow the table below and only install the packages listed

© 00 N OV B W

Press <enter> when it says, “Please insert wd 1.11 CD-ROM or root disk”.

bin Yes diff Yes Ppp No
Elvis Yes gee_dev No sysklogd Yes
find Yes getty Yes tcpip No
gzip Yes gpm No vim No
sh_utils Yes Grep Yes wget No
tar Yes kbd No bind Yes
txtutils Yes less Yes glibc2.1.3 No
util Yes lynx No glibc2.2.2 No
apache No minicom Yes kernel source | No
ash_sh No perl No ncurses No
bzip yes pkgtool No perl _libs No

20. Select OK when it asks for network configuration
71. Select CANCEL when it asks for the hostname
22. Type in the root password and do not forget it!
23. Select OK

24. Remove the disk from the disk drive

25 The DIMM-PC should now restart and you should have Whitedwarf on the

DIMM-PC

Part 3

-Se

tting up Whitedwarf Linux on DIMM-PC

Reboot the DIMM-PC

. Login using the username root and your password
. Type the following to install the MERCAL files (yes that is: period space

install.sh)

mount /dev/fd0 /mnt

cd /mnt

install.sh

umount /dev/£d0
Now take the DIMM-PC and place it in the MERCAL board and the MERCAL in
the development board.
Connect the serial cable between the two. The communications protocol is
115200,8,N,1 on the MERCAL.

Part 4 - Setting up Vimware

e R e

10.
1.
12.
13.
14.

Install VMware to your computer

Launch Vmware

Click on File > New - New Virtual Machine
Select Typical and click on next

Select Linux and click on next

Review the directories and click on next

Select Use Host Only Networking and click on next
Click on your virtual machine in the left hand box
Right click on it and select settings

Click add

Click Serial Port

Make sure to select connect at power on

Select which serial port you wish to use

Click Finish

v

o0 N

bl i dl e

Part 5

Part 6 — Running RedHat Linux 7.3 in VMware

- Installing RedHat Linux 7.3 in VMware

Launch Vmware

Insert the RedHat 7.3 Disc 1 into the CD-ROM

Select Linux in the left hand box and press Power On

After the CD gets booted up and there is a text screen in Linux to install, type

text and press enter.
During the install select autopartition and install everything.
Reboot the machine and start up linux
Type in your username and password
Then type in these commands
mount -t iso09660 /dev/cdrom /mnt
cp /unt /vmware-linux-tools.tar.gz /tmp
umount /dev/cdrom
cd /tmp
tar zxf vmware-linux-tools.tar.gz
cd vmware-linux-tools
./install.pl

Launch VMware
Press Power On
At the login prompt enter root and your password
At the command prompt type:
startx
Press OK on the box warning you about logging in as root

Part 7 - Logging into the ME RCAL
1. In RedHat Linux launch a terminal window in X (the black monitor icon on the
bar at the bottom) and type:
xminicom &

Press <alt>+<o> for options
Select Serial Port Setup
Press <a>
Change device to /dev/ttyS0
Press <enter>
Press <e>
Press <e> then <q>
The terminal should now be setup for 115200 8N1
10. Press <enter> twice
11. Select Save setup as dfl
12. Press Enter
13. You should now see a terminal window of the MERCAL
14. Press enter to bring up a login prompt
15. At the login type

mercal

su

password (or the password you have used for root)
16. You are now logged in as a super user and can use the MERCAL for development

N N Ul

Part 8 - Sending files to MERCAL
Launch xminicom and log into the MERCAL
Press <alt><s>

Select zmodem

Select the file to send and select Okay

Calibadi s dhe

Part 9 — Receiving files from MERCAL
1. Launch xminicom and log into the MERCAL
7. At the MERCAL command line type:

1sz filename
3. This file will be saved to /root

Part 10 — Shutting Down the ME RCAL

1. Launch xminicom and log into the MERCAL

2 At the MERCAL command line type (to reboot replace -h with -1):
shutdown —-h now

3 Wait until the device has shutdown (approximately 30 seconds).

Part 11 — Development using gcc
1. To compile your C or C++ source co
2. Type:
gce source.cpp —0 outputfile —static
3. The static option links the libraries with the file so that it will run correctly on the
Linux installation on the DIMM-PC
4. Send your file to the MERCAL
5. To launch at run time edit your Jetc/re.d/re.local file accordingly
6. You can use Kdevelop to develop your source code with a debugger. It resembles
Visual Studio and is available at www.kdevelop.org.

de, first start a terminal window

Part 12 — What does the MERCAL Install Floppy Do?

The MERCAL Install Floppy simplifies the installation of Whitedwarf Linux on
the DIMM-PC. You can look at the file install.sh to see exactly the commands it

gxecutes.
The first thing it does is create the MERCAL directory structure on the DIMM-

PC. This structure looks like this:

/mercal/bin
/mercal/bit
/mercal/etc
/mercal/ftp
/mercal/http

There are currently only two files that are in this structure:

/mercal/bin/fpgaconfig configures the FPGA
/mercal/bit/autoprogram.bit the automatically programmed bit file

After this is created it copies over the initiation files to start up the serial port for a
terminal session. After this it does the one thing that is necessary for the DIMM-PC to
boot on the MERCAL board. You see, the MERCAL board is not ISA-PNP so the
commands must be issued to disable the PNP ISA bus (as well as other things that could
cause a problem like PCI routines). To do this /etc/lilo. conf is edited to include
these statements then 1ilo isrunto update the master boot record. Doing this allows
the DIMM-PC not hang on boot up in the MERCAL board.

Part 13 — Source code for install.sh on

MERCAL Install Floppy

This is the file install.sh script file that runs the MERCAL installation on the DIMM-PC.

O 0 1 O U W N

10:
11:
12:
13:
14:
15:
16:
17:
18:

Part 14 —

cp mercal.tar.gz /

cd

/

gzip -d mercal.tar.gz
tar -xf mercal.tar
rm mercal.tar

cd
cp
cp
cp
cp
cp
cd

/mnt

files/rc.local /etc/rc.d/rc.local
files/rc.0 /etc/rc.d/rc.0
files/rc.serial /etc/rc.d/rc.serial
files/inittab /etc/inittab
files/lilo.conf /etc/lilo.cont

/

umount /dev/fd0
mkdir /mnt/floppy
mkdir /mnt/cdrom
mkdir /mnt/flashdisk
/sbin/lilo

useradd mercal -p

FPGA Configure

Part 14— FPGA Configure

This is the modified source code for the FPGA configuration using Linux. The only few

changes

made. First, a few lines are added to the header file. outb is changed to outb and

inp is changed to inb. Also the order of the parameters between outb and outp are
rwmmﬁMmmMWﬂmwmmmgwmqmgmmmmmmmwﬁamnmd
write to a port.

/*

*/

Author: Jason M. Blevins

Modifed for Linux: Erik Donald

FileName: FPGAconfigure.cpp

Desc: Downloads binary file to an FPGA.

#include<iostream.h>
#include<ctype.h>
#include<stdlib.h>
#include <sys/ic.h>
#include <unistd.h>
#include<fstream.h>
kinclude<stdio.h>
#include<conio.h>

void ProcessArgs{int argc, char *argvl, ifstreams Dataln);
// Processes command line arguments & attempts to open bit file

void ClearFPGA(); // Clears the FPGA

void TransferBits(ifstreamé Dataln):

// reads bits from pit file and transfers them,

bit by bit, to FPGA

int ExtractBit (int WhichBit, int PortAddress);

/*

*/

#define
f#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define
#define

//Extracts the bit number 'WhichBit' from the 'portAddress’

pin2 a0 DIN pinlSs b3 PINIT

pin3 al CCLK pinl3 b4 -—-

pind a2 | PROG pinl2 b5 DONE

pin5 a3 --- pinl0 bé ---

piné a4 --- pinll b7 ---

* (inverted)*

pin7 ad --=

pin8 a6 - pinl c0 -—

* (inverted)*

pin9 a7 - pinl4 cl -—-

* (inverted)*
pinlé c2 -——-
pinl7 <3 -—-

* (inverted)*

PorthA 0x378; // address of PortA

PortB 0x379; // address of PortB

TRUE 0x01 // Boolean flag

FALSE 0x00 // Boolean falg

MSB 0x07 // MSB of a byte

LSB 0x00 // LSB of a byte

PROG_LOW 0x00 // vValue of PortA that pulls PROG low

PROG_HIGH 0x04 // Value of PortA that pulls PROG high

CCLK_LOW 0x00 // value of PortA that pulls CCLK low

CCLK_HIGH 0x02 // Value of PortA that pulls CCLK high

INIT_BIT 0x03 // Bit number of INIT in PortB

DONE_BIT 0X05 // Bit Number of DONE in PortB

BYTE_SIZE 0x08 // # of array slots needed to hold a byte

ONE_ARG 0x01 // Specifies that one argument was supplied

TWO_ARG 0x02 // Specifies that two arguments were supplied

void main({int argc,

{

)

char *argvl(])

if (ioperm(0x378,3)== -1);

{

perror ("ioperm");

exit(l);
}

ifstream DatalIn;

ProcessArgs (argc,

ClearFPGA()

argv(l),

// declares file stream variable

Dataln): //processes users command line args

; //clears FPGA
TransferBits(DataIn); //transfers bit file to FPGA

void TransferBits(ifstreamé& Dataln)

{

int bits([BYTE_SIZE];

int Init

TRUE;

unsigned char CharByte;
unsigned int IntByte;

int Done;

while ({Init == TRUE)
{

pataln.get (CharByte);

IntByte = CharByte;

for

{

(int a=LS8B;

bits([al

&&

('DataIn.eof{)))

// gets a byte from bit file as type char

// converts byte from type char to int
a<=MSB;
// extracts the 8 bits from

at++t)
IntByte and stores them in array bitsl[]

IntByte % 2;

IntByte = IntByte / 2

}

for (int b=MSB; b>=LSB; b--) // puts bit on DIN and then clocks it 1into

FPGA

high
}

outb ((PROG_HIGH + CCLK_LOW + bits(bl), PorthA);
// equivalent to '0000010X' where X represents
outb ((PROG_HIGH + CCLK_HIGH +bits{b}), PorthAj;
// equivalent to '0000011X' where X represents

Init = ExtractBit (INIT_BIT, PortB); // extracts !INIT

)

DatalIn.close();

{
cout <<

cout <<
)
void ClearFPGA{()
{

int Init;

outp {PROG_LOW,
outp (PROG_HIGH,

bits[a]

bits(a]

// detaches file stream variable from external file
Done = ExtractBit (DONE BIT, PortB); // extracts DONE
if (Done == TRUE)

nprogramming successful!\n";

"Error. Program was not successful.\n";

portA); // pulls !PROGL low

-- clock low

-- clock

PortA}; // '12' is equivalent to '00000100' -- pulls IPROG high
Init = ExtractBit (INIT BIT, PortB); // extracts VINIT

while (Init == FALSE) // waits for !INIT to signal that the FPGA is clear

{

Init = ExtractBit (INIT BIT, PortB): // extracts !INIT

}
t

void ProcessArgs (int argc, char *argvl, ifstreamé Dataln)

{

if (argc == ONE_ARG) // if user doesn't specify which bit file to read from

{
cout <<
abort ();
}

"\nError. No file name specified.\n";

else if (argc == TWO_ARG)
// is user specifies the bit file

(

Dataln.open{argvl, ios::nocreate | ios:: binary):

// opens bit file as specified by user -- if non-existant,

created

if (DatalIn.fail())

{

cout << "\nError. Invalid path or file name.\n";
abort {);

}

cout <<

}

"\nProgramming Spartan II FPGA #1...\n";

else // if user specifies too many arguments...

{
cout <<
abort ();

}

"\n\nError. Invalid arguments.\n";

int ExtractBit{int WhichBit, int PortAddress}

{

unsigned int DataByte;
DataByte = inb(PortAddress);

return ((DataByte / int(pow(2,WhichBit)}) ¥ 2):

no new file 1is

Part 15 - Source code for /etc/inittab on MERCAL Install Floppy

Only the changed lines are shown from the original installation to the new installation for
the MERCAL. This sets up the serial transfers between the DIMM-PC and the computer.

68: # Serial lines
69: sl1:12345:respawn:/sbin/agetty 115200 ttySO vtl00
70: s2:12345:respawn:/sbin/agetty 115200 ttySl vt100

Part 16 - Source code for /etc/re.d/re.local on MERCAL Install Floppy
This file is like the autoexec.bat in DOS. This runs the programs at startup. The only
difference is that the ampersand lets the program run in the background.

#!/bin/sh
#
4 Jetc/rc.d/rc.local: Local system init. script.
#

Put any local setup commands in here:

Start up Serial Communications
agetty std.115200 ttys0 vt1l00 &

Automatically Program FPGA
/mercal/bin/fpgaconfig /mercal/bit/autoprogram.bit

O 0 oYW N

Puart 17 - Source code for /fetc/re.d/re.serial on MERCAL Install Floppy
Only the changes from the original file are shown. Basically the serial ports are set from
auto-configured to manually configured by commenting out lines 45 and 46 and
uncomment lines 152 and 153.

45: #S{SETSERIAL} /dev/ttySO ${AUTO_IRQ} skip_test
autoconfig ${STD _ FLAGS}

46: #S${SETSERIAL} /dev/ttySl ${AUTO IRQ} skip_test
autoconfig ${STD_FLAGS)

152: S${SETSERIAL} /dev/ttyS0O uart 16450 port 0x3F8 irqg 4
${STD_FLAGS)

153: ${SETSERIAL} /dev/ttySl uart 16450 port 0x2F8 irg 3
${STD FLAGS}

Part 18 - Source code for setc/lilo.conf on MER CAL

Install Floppy

Thelﬂoconffﬂeneedsu)bechangedthentheconunandlﬂotnustbeexemnedtorewwne
the boot sector of the hard drive. This is done because the MERCAL is not ISA
compilient at boot time and therefore hangs the system. In order to correct this the ISA
PnP bus is turned off. The PCI bus is turned off for safety since there is not PCI bus on

the DIMM-PC.

1: 4% LILO configuration file

2: # generated by 'liloconfig'

3: #

4: 4 Start LILO global section

5: boot = /dev/hda

6: #compact # faster, but won't work on all systems.
7: delay = 5

g: vga = normal # force sane state

9: # ramdisk = 0 # paranoia setting

10: # End LILO global section

11: # Linux bootable partition config begins

12: image = /vmlinuz

13: root = /dev/hdal

14: label = linux

15: append = "noisapnp floppy=none pci=off hdb=none"
16: read-only

17: # Linux bootable partition config ends

Appendix E

Examples using schematic capture

Schematic Design Xilinx Foundation Series 3.11

Written by: Timothy P. Niemczyk

Creating new designs can be entered eit
VHDL or Verilog. Figure 1 is an examp
implements input & output ports, input &
Flip Flops, and combinational logic.

Implementation of
Input Port A - 8 Bi
Input Port B — 4 Bi
Output LED’s —
Output Port E — 4 Bit ena

Ports is as follows:

t enable IOR/Address 300
t enable IOR/Address 302
8 Bit enable [OW/Address 302

ble [OW/Address 303

AIRESS SEELT

0 [

Jﬁ_\———-{;;]? ADDRESSIO

m ADCRESSIN

-~ 2
n E" — MORESTR
,.; JBT—L_—@

¥
ADORESSTH
TR %

IOWE;%I—F N

i

0

~

Mt

PORTA ot

PORTH wr

her as a schematic or as a text based entry using
le of a top-level schematic design. This design
output pads, multiplexer, clock signal, D-Latch

Wik
EABLED T » "
s LY, - .)
BRETRL WP A b n
[. 'm L&
o e 0D . __: {8
ladd}

TR PP

W

3

Figure 1. Xilinx Foundati

ports.

W
wr

ENABLE TR BUFF

—]

THLBLST

[vady

Mt

"

A2y

on Schematic Editor — implementation of 8 bit input and output

This design also implemented hierarchical macros. Hierarchical macros are previously
designed circuit that is isolated from the rest of the design and is stored in the library as
its own symbol. Macro symbols are placed within the design and can be used in multiple
instances. The actual macro schematic is connected to the top-level or upper hierarchy
design via the terminals. These terminals correspond to a pin within the macro symbol.
Figure 2 demonstrates an example of an implemented hierarchical macro. This macro
selects the address in which data will flow in or out.

28 [T

LOC=F113 our

0 [t R

A¢ ™
—— M0
SAT 1 Al ot) %t
OC=F1U
\ L] SHE Y 15
]) IR o3 %W

AWDe

LOC=F83 Bus

[o>
Feo=]

LOC=P167 AND2E2

Figure 2. Address Multiplexer

Figure 3 demonstrates a hierarchical macro that controls the data flow. By using the tri-
state buffers data can be controlled reliably.

vout? |
o7 >
LOC=P183
Jﬂ FA
D6 ome | T
LOC=P192 [BEQQE F8 cours
D5 <—_-an_\ DE___
LOC=P189 allE_E_8 pouts |
D4 S R L
LOC=P188 £.A
D3 =< Ly)
. LOC=P181 gl ¢ a sourz |
D2 o >— ey
LOC=P180 LF_£_9 | neur
D1 - w1
LOC=P178 108UF_F_8 o]
DO S
LOC=P174 10elF_F_8
__—————.D;NU)}

wan D____J———— D —PDOLT(7 0]
e T Ly
— _‘{ > ENABLE OUT
1NV N

on D—
AND2B1

Figure 3. Data Port.

By the using hierarchical macros, designs can be broken up into parts. This will allow a
faster design turnaround and a simper approach to designing complex circuits.

