
An Embedded Reconfigurable Logic Module

Final Report
For

NASA Langley Research Center

NASA grant

NAG-I-01042

NLPN: 01-111

Principal Investigator:

Jerry H. Tucker

Associate Professor of Electrical Engineering

Virginia Commonwealth University

Co-Principal Investigator:

Robert H. Klenke

Associate Professor of Electrical Engineering

Virginia Commonwealth University

NASA Technical Monitor

Qamar A. Shams

Langley Research Center

Abstract

A Miniature Embedded Reconfigurable Computer and Logic (MERCAL) module has

been developed and verified. MERCAL was designed to be a general-purpose, universal

module that that can provide significant hardware and software resources to meet the

requirements of many of today's complex embedded applications. This is accomplished in
the MERCAL module by combining a sub credit card size PC in a DIMM form factor

with a XILINX Spartan II FPGA. The PC has the ability to download program files to the

FPGA to configure it for different hardware functions and to transfer data to and from

the FPGA via the PC's ISA bus during run time. The MERCAL module combines, in a

compact package, the computational power of a 133 MHz PC with up to 150,000 gate

equivalents of digital logic that can be reconfigured by software. The general

architecture and functionality of the MERCAL hardware and system software are

described.

1. Introduction

Desktop applications are now dominated by the IBM compatible PC. This is due to

high performance coupled with a combination of low cost hardware and, a wide verity of

inexpensive software. Because of the pervasiveness of PC's and their sophisticated

development tools, PC based software development is more cost effective than other

platforms. This makes the PC attractive for use in embedded systems. Particularly in few-

of-a-kind systems where development cost cannot be prorated over many systems.

Unfortunately the size and power requirements of PC's precluded their use in most

embedded applications. The MERCAL module has been designed to address these and

other issues. It provides a single consistent platform capable of satisfying the

requirements of many embedded applications. The MERCAL module offers the power

and flexibility of an IBM compatible personal computer in a size ideally suited for many

embedded applications. It provides a single platform that is constant, flexible, and

reliable.. The MERCAL module contains configurable logic, in the form of an FPGA,

which either entirely eliminates or drastically reduces the need for the digital interface

cards required in embedded systems using conventional PC's. Using MERCAL, the only
additional hardware required by an embedded system would typically be the converters

and drivers specifically required by the applications. All PC interface and application

control logic is contained in the FPGA internal to MERCAL and can be configured and

optimized to suit the application. A standard desktop PC can be used as a development

platform.

2. The MERCAL module

The block diagram of the MERCAL module is shown in Figure 1. There are two

primary components to the MERCAL module. They are the DIMM-PC and a Xilinx
FPGA. The only other active components are a power converter and a 32 MHz oscillator

used to clock the FPGA. The passive components consist primarily of capacitors, with a

fewresistorsanddiodes.Threeconnectorsareusedto interfaceto theMERCAL module.
The interfaceto the MERCAL moduleprovides81 general-purposeinput output (IO)
pins from the FPGA.The functionsof theseIO pinscanbe determinedby the needsof
the applicationand controlled by the configurationof the FPGA. In addition to the
general-purposeFPGA IO pins, signalsare also available form the DIMM-PC. The
DIMM-PC signals include two RS232serial communicationports, and certain other
selected signals. These signals were selectedto provide sufficient flexibility and
capability to supportadvancedapplications.For example,theseselectedsignalshave
beenusedto provide the capability of using a compactflash memoryas an IDE disk
drive.

Top andbottomviews of theactualMERCAL moduleareshownin Figures2 and3.
The schematicdiagramof theMERCAL moduleis shownin AppendixA. Thepin outs
of theMERCAL moduleareshownin appendixB.

A standarddesktopPC canbeuseasadevelopmentplatform,andsoftwarehasbeen
developedsothat theDIMM-PC canseriallydownloada bit file to configuretheFPGA.
The configuration file is downloadedusing the printer port interface built into the
DIMM-PC. This madeit possibleto configurethe FPGA without requiringthe addition
of separatelogic.

Printer Port Interface_[

XILINX

DIMM PC BUS ''_ FPGA

Figure 1. Block diagram of the MERCAL module.

I/O 81 pins

Figure 2. Top view of the MERCAL module showing the DIMM-PC, 32 MHz oscillator

IC, and power converter IC.

V

Figure 3. Bottom view of the MERCAL module showing the Spartan II FPGA and the

three connectors..

2.1 The DIMM-PC

The DIMM-PC is shown in Figure 2. It is a commercially available, functionally

complete, extremely compact (40 X 67 X 6 mm) PC motherboard. Several versions of the

DIMM-PC are available that can be used in the MERCAL module. The DIMM-PC

processor can either be a 66 MHz 486SX for low-end applications or a 133 MHz AMD
Elan SC586 for more demanding applications. Typically the onboard memory consists of

16 to 32 Mbytes of RAM and a 16 to 32 Mbyte Flash Disk. The DIMM-PC peripheral
interface consists of two serial ports, one parallel printer port, keyboard, floppy, and IDE

Hard disk controller port. In MERCAL, the peripheral interface is used primarily for

development and diagnostic purposes. However, the printer port is dedicated to the task

of programming the Xilinx FPGA. Since this device is a SRAM based FPGA, it is

possible, with software that has been developed, for the DIMM-PC to reconfigure the

FPGA to satisfy the digital logic requirements for various applications.
Detailed information including specifications and user manual of the DIMM-PC can

be obtained from http://www.iumptecadastra.com/iuad 014 dimm.html.

2.2 The XILINX FPGA

The FPGA used in MERCAL is the Xilinx XC2S150 Spartan-II in a PQ208 package.

About half of the available I/O pins on the FPGA are used to interface to the DIMM-PC

and the others are available external to the MERCAL module through connectors. The

XC2S150 Spartan-II FPGA contains the equivalent of 150,000 gates with 200 MHz

system performance. A complete description of the Spartan-II can be fount at

http://www.xilinx.com/. Various tools are available that can be used to implement the

FPGA portion of a design. Typically, either schematic capture or a hardware description

language such as VHDL will be used to specify the particular implementation. Several

examples using schematic capture are shown in Appendix E.

2.3 DIMM-PC to FPGA interface

The interface between the DIMM-PC and the FPGA consists of two parts. Both parts

of the interface are realized without the need for external logic.

The first part of the interface is required to download configuration files form the

DIMM-PC to the FPGA. The configuration is accomplished by placing the FPGA in

slave serial mode, and using selected pins of the DIMM-PC's printer port to control the

DIN and CCLK pins of the FPGA. Software developed by electrical engineering students

at Virginia Commonwealth University is used to transfer "bit" files to the FPGA via the

DIN and CCLK pins of the FPGA.
The second interface between the PC and the FPGA is used to transfer data between

the two during system operation and is accomplished by connecting the necessary PC bus

signals directly to I/O pins of the FPGA. The PC bus is used as the primary interface
between the PC and FPGA. Typically, this interface is implemented by configuring 16-bit

input and output ports within the FPGA.

2.4 The software

So far, only DOS and LINUX have been used as operating systems on MERCAL.

Other operating systems could be used as long as they can operate in an embedded

environment and do not require resources beyond those provided by the DIMM-PC. For

the discussion to follow we will restrict the description to the DOS environment;

however, the procedures for other operating systems will be similar.
Before the DIMM-PC is placed into the MERCAL module, a resident monitor

program is loaded onto the flash drive of the DIMM-PC. At the same time an
AUTOEXEC.BAT file that invokes the monitor program is loaded onto the flash drive of

the DIMM-PC. The DIMM-PC can now be placed in the MERCAL module. When the

MERCAL module is powered up or reset the AUTOEXEC.BAT file runs the monitor

program which checks to determine if a host PC is connected to the serial port of the
DIMM-PC. If there is not a connection to the serial port the monitor program exits. If

there is a connection to the serial port, the monitor program enters a mode to allow files

to be transfered to the DIMM-PC. Typically, several files will be uploaded to the DIMM-

PC. These include a bit file to configure the FPGA, a program to transfer the bit file to

the FPGA, the application program, and an AUTOEXEC.BAT file to invoke the various

programs. To use MERCAL for a different application it is typically only necessary to

upload a new bit file and application program. When the monitor program exits a

program to configure the FPGA from the bit file is executed. After configuration of the

FPGA the application program is executed.
The various files required by MERCAL have been written by electrical engineering

students at Virginia Commonwealth University. The programs that run on the DIMM-PC

have been written primarily in C++, and the bit files for the FPGA have been generated

by using both VHDL and schematic capture.

Appendix C describes in detail the procedure for using DOS with the MERCAL

module, and Appendix D describes the procedure for using Linux.

3 Example application

In order to test the concept and prototype implementation of the MERCAL system, an

example application was developed using it. This application consisted of a dynamic

spectrum analyzer display for audio frequencies. The functional block diagram is shown

in Figure 4. The application uses an FFT algorithm to produce the frequency spectrum
data of the sound information that has been amplified, filtered, digitized, and stored in a

FIFO buffer. The spectrum output data produced by the FFT algorithm is displayed as a

moving bar graph on a standard VGA display.
In this application, a prototype of the MERCAL was used that consisted of the

DIMM-PC in its development board, connected to a separate board containing the Xilinx

FPGA via ribbon cables. However, it should be noted that none of the interface

capabilities of the DIMM-PC development board, including the VGA display adapter,
was utilized in the performance of the application. All of the system functionality was

contained in the DIMM-PC, the Xilinx FPGA, and a small signal pre-processing board,

which contained the amplifier, filter, and Analog-to-Digital converter. Figure 5 shows the

hardware block diagram of the MERCAL system in this application.

Onceprocessedby theA-to-D converter,thesoundsamplesareheld in a digital FIFO
moduleimplementedin the FPGA. The FFT algorithm is executedon the DIMM-PC.
Whenreadyto processa new packetof samples,theDIMM-PC downloadsthe samples
from theFIFOmoduleon theFPGA.It thenperformstheFFT algorithmandtransfersthe
spectrumdata back to anotherhardwaremoduleon the FPGA. This moduleusesthe
spectrumdata to generatethe VGA display. All of the signalsrequired by the VGA
displayaregeneratedin this hardwaremodulein the FPGA.Figure6 is aphotographof
this initial prototype,whichwasusedto provetheMERCAL concept,in operation.

Figure4. PrototypeMERCAL applicationsystemfunctionalblock diagram.

i ..]

i i DIM'M-PC

Reset i_ DIMM-PC i Developer's

! ! i Board
; !

I ,

I ISA Bus
i ParaU el Port i

.................. - _ : MERCAL

Power i _____mL ISA Interface(Memory & 1/0) } Clock Circuit" System

PUt I li--: I _iB°ara
L tt s_pie XilinxSpartanll VGADisplay ,..=_ i

.............;.:._:::,.,::::......:.;...._:_:::..::__:::::...:::::::.:::_.!....z._ .., _- _

['F""":::'-":"_'""'::"-"'I ..'" Application II J l _"

rower ! , | 16-bit AfD Board

Input i |Converter

! iF.ter ,

Amplifier i
i

i ..0 I ._

Figure 5. Prototype MERCAL application system hardware.

Figure6. PrototypeMERCAL application.

4. Conclusion

The MERCAL module combines, in a very compact platform, the processing power,

flexibility, and ease of programming of a PC platform, with a significant amount of high-

speed digital logic for implementing interface functions to custom hardware or
accelerating critical portions of an application. The hardware and software in a MERCAL

module can be reprogrammed for a number of applications, even in-situ and during

system operation. The MERCAL module provides researchers at NASA Langley
Research Center and industry with a powerful new tool for implementing embedded

systems that require processing power, flexibility, and reduced form factor coupled with

ease of development.

5. Acknowledgements

The work reported here was supported by grant NAG-1-01042 from NASA Langley

Research Center. Significant contributions were made to this work by several Virginia

Commonwealth University electrical engineering students. They are: Austin Kim, Larry

McDaniel, Matthew Sprinkle, David Staples, Andrew Gamble, Joshua Bell, Jason

Blevins, Jonathan Andrews, Sean Laughter, Timothy Niemczyk, and Erick Donald.

Appendix A

MERCAL Module Schematic Diagrams

XC2S150PQ280

PI!_5 SD00 1

_10 S002 3C $DQ4

FC.4 SD06 7

-- FC40 SDOB g

F_C46 SD10 11

PC52 $D_2 13

PC62 5D14 15
PC7_ SA0C 17

P_e_ SA02 19

P(C_ ,OW N 21

6 $005 PC_
s-'b-ST

10 SD09 PC4_

12 SD11 wJ4'

14 Sui_ P(;u_ --_

16 So_b PC6

18 SA0-, PC[' ..=

2O _RQ14 _"

CONN SOCKET 15,2/SM

VCC

R3

2K

PD_ D_N (AmO_t)

M:'ST E_<<

_C46

_C_g

PC5C

P852

C5

PC55

\pcsa

\pc6t

\PC62

\PC63
_PC54

\FC_b
\F'J_5

\FC6z

\PC_ RSTDR'*_ -

\PC3 S007 $

\PC4 Soo_ 7

\PC6 5005

\PC7 SO04 13

15

PC_ SD03 X_

PC!O _D02 19

PC_ MEMC_I_BI
PC_2 _UO1 23

PCI_ 0W_ N 25
PC_4 IOS_'1_ N 27

PC15 SDOO " 29

PCI_ 5B_E N 31'

P_17 IO_H_Y 33

1 A_N 37

_C20 SM_MWN _@

'_C_ SA_9 43

PC25 SAIB

'_C26 _Ow N 51

PC2_ SA17 55

'PC2_ fOR N 57

IHC:_U _Q_4 59

_C32 SA15

\PC34 SAI4

='C3_ SA13

73
PC38 SA12

PC39 RhP N 77

78

PC41 SAIl 81'

PC42 _y _CLI__N 83

PC.:3 _UO_ 85

PC44 SA10 B7
MB_SI I_QZ @9'

SOlO 91

SAOe §_'

101

.$012

A'J 105

107

DACK7 _

113

5U_3 117
11g"

SAO5 X-_ "?,

_c6e
pcTc

VCfl

CC

10 OASP TM

12 Ft;IAG

14 DTR2 N
16 RI2 i4'

1B TXL_J

20 CT82 N

! Ze UCU2:N

--)<

---X

---4<

_1{'

,J----41,,
OVCC

--)(

PP2

PP3

pp4

PH_

PF7_.PP_

PFY

HP1,

PP1

_ DI N

COM4 O¢

98 AED N PPX[1-3]

100 P_o' P PPX

102 E_R N

104 PD_ _

106 IN{T .N PPI1

10_ PD2
110 SLIN N PPI@

11_ PO3 FPIg

116 PrJS.
116 PC_5 _22

120 PD7 F:P-2 _

1_ ACK _-_ PP_4

P_5 _1_su_4 _23 _ I '_t 4 auSY N

TC 125 _ I 1_ DONE<> PE
5A04 127 _ 128 SLCT N P_26

SL_ 129 _ 130

5A03 133 MBUS[1-3]
M_STER N 135 , GC©D M_L;S

1 7-! 138

sAo_.C_2 ,4',

-'%__ I,

I"-iI r
MERCAL VERSION 3,0
O_t_m_ Num_t

2OF3

I_t_ Wedn_sd=y Auau_t 4. 2002]She_l 1 of 1

,_cco--T

,

_L c,i_L c,0

U2

NC NC

IEN 1Fr_c

_IN '_OUT _'T"

NC NC _._ IN5817 IN414B
2GNO NC

NC _lg |

2_N 2OUT

NC NC i _ _3

NC NC 1N4148

[2 . 5V)

(3.30V)

R1

2K

D4

Rod PW_

t_
i
.--'W"

TP$7670325

U3

1 Stsndby VCC 4 VCCO

EC3953

• VCC O

Sheet I o_

-->> Y,GCK0rl

I_" MERCAL VERSION 3.0
• Do.merit Number

ib 3OF3

_D_te Wednesday. AuQu. 14,200_ ISheet

Appendix B

MERCAL module pin outs

MERCAL pin outs

TMS

IO

IO

IO

IO,VREF

IO
IO

IO

IO,VREF
IO

IO
IO

IO

IO

IO,VREF
IO

IO

IO

IO,IRDY

IO,TRDY
IO

IO

IO,REF
IO

IO

IO
IO

IO

IO

IO,REF

iJO

IO

IO,REF
IO

IO
IO

IO

MI

VI0

IO

IO

IO,REF
IO

J2

J2
J2

J2

32

J2

J2

J2
J2

J2

J2

J2
J2

J2

J2

J2
J2

J2

J2
J2

J1

JI

J1

J1

J1
J1

J1

J1

J1
J1

Jl

J1

Jl

Jl

J1

J1

J1

J1

J1
J1

J1

4

25

27

29 5

31 E
33 7

35 E

37 9

39 10
41 14

43 15

45 16
47 17

4c_ 18

51 20

5_ 21
55 22

30 23

40 24

50 27

69 29
61 30

53 31

33 33

76 34
74 35

72 3E

70 37,
68 41

6E 42

64 43

62 44

6C 45

5_ 46

5t_ 47

54, 48

52 49
5O

52

46 57

44 58

42 59

4O 6C

Dimm PC Schematic
:name

rMS

×103

×104

XIO5

XIO6

XIO7
XlO8

XlO9

XlO10
XLO14

XLO15

XLO16

XIO17

XIO18
XlO20

XLO21

>(IO22
;<1023

×1024

XIO27

×1029

XIO30
×1031

XIO33

XIO34

XIO35
XLO36

XIO37

XIO41
XLO42

XLO43
XIO44

XIO45

XIO46

XIO47

XLO48

:XIO49

×M1
XM0

XIO57

XIO58
XIO59

XIO60

Comments

PRTA<0>

PRTA<I >

PRTA<2>

PRTA<3>

PRTA<4>
PRTA<5>

PRTA<6>

PRTA<7>

PRTC<0>
PRTC<I>

PRTC<2>

PRTC<3>

PRTC<4>
PRTC<5>

PRTC<6>

PRTC<7>

PRTD<0>
PRTD<I>

_RTD<2>

_RTD<3>

_RTD<4>

_RTD<5>
PRTD<6>

PRTD<7>

PRTE<0>

PRTE<I>

PRTE<2>
PRTE<3>

PRTE<4>

toRTE<5>

PRTE<6>

PRTE<7>
PRTF<0>

PRTF<I>

PRTF<2>

PRTF<3>

PRTF<4>

PRTF<5>

PRTF<6>

PRTF<7>

IO
IO,REF
IO
IO
IO
IO
IO
IO
IO,REF
IO
IO
GCKI,I
CLK32MHZ
IO
IO
IO
IO,REF

IO
IO

IO
IO

IO
IO
IO,REF
IO
IO
IO

DONE
'PRGM
IO(/INIT)
IO,D7
IO
IO

IO
IO

IO,D6
IO,D5

PC Schematic
name

J1 38 61, ×1061

J1 36 62 ×1062

J1 34 63 ×1063

J1 32 67 XIO67

Jl 3(: 68 XIO68

J1 2_ 69 XIO69

70 77 REFN
71 75SA12

J4 17 73 143 SA00

J1 26 74 XLO74

J4 18 75 139SA01
77 141 OSC

80 XGCK0,1

J4 19 81 137 SA02

J1 50 82 XLO82
83 133SA03

J4 24 84 131BALE

87 127 SA04
88 125 TC

9£ 121 SA05

J2 14 94 ×1094

96 115 SA06

J2 1_ 97 XIO97
98 111 DRQ7
99 109DACK7 N

J2 lC 100 XIO100
101 105 SA07

104 126 DONE<>PE

106 108 PD2

107 102 ERR N

J1 10 108 D7

Jl 35 10_ XIO109

11C 9_ SA08

J1 37 112 ×10112
1131 93 SA09

J1 1_ 115 D6

J1 7_ 119 D5

Comments

PRTG<O>

<1>

;<2>

RTG<4>

PRTG<5>

;<6>

14.3 MHz.

PRTG<7>

<1>

;)RTH<2>

PRTH<3>

PRTH<4>

<5>

_RTH<6>

PRTH<7>

Dimm PC :hematic

name Comments

 o(/cs)
IO(mR)
IO

IO 120 6C SA16

IO 121 87 SA10

IO 123 83 }YSCLK

IO,REF 125 81 SA11

IO,D4 J1 8C 126 D4

IO,TRDY J1 9 129 TRDY

IO,IRDY J1 11 132 IRDY

IO J1 3 c 133 XIO133

IO 134 71 SA13

IO,D3 Jl 31 135 D3

IO,REF Jl 71 136 XIO136

IO 138 67 SA14

IO Jl 73 139 XLO139

IO 140 63SA15

IO Jl 75 141 XIO141

IO,D2 Jl 77 142 D2

IO,D1 J1 79 146 D1

IO,REF J2 8 147 XIO147

IO J4 22 148 57 IOR_N

IO 14g 55 SA17

IO,REF 150 53 IRQ 15

IO J4 21 151 511OW N

IO 152 49 SA18

IO(DIN,DO) J2 60 153 PD0

DOUT,BUSY J2 1 154 DOUT,BUSY

CCLK 15_ 104 PD1

TDO J2 3 157 TD0

TDI J2 71 15£ TD1

J2 73 16£ CSN

J2 75 161 WR N

J2 56 162: XIO162

45 SMEMR NIO

IO,REF

IO

IO

IO,REF

IO

163

164 43SA19

165 41 IRQ11

166 39 SM EMW_N

167 37 AEN

168 351RQ10

<0>

PRTJ<I>

>

PRTJ<4>

PRTJ<5>

PRTJ<6>

PRTJ<7>

PRTK<O>

PRTK<I>

PRTK<2>

Programming

Programming

Scan

Scan

PRTK<3>

_RTK<4>

I0

I0

I0

I0

IO

GCK2,1

GCK3,1

IO

IO

IO

IO

IO

IO,REF

IO

IO

IO,REF

IO

IO

IO

TCK

IRQ14

J4

J4

J2

J2

J2

N
J2

J4

J1

J2

J2

J2

J2

J2

J2

J2

J2

4

J2

27

25

?

5,1

5_

23

48

9

II

13

15

17

19

21

23

2

2(3

72

172

173

175

17E

17c

182

185

187

191

194

195

199
2OO

201

202

203

204

205
206

2O7

Dimm PC ;chematic

33 IOCHRDY

31 SBHE N

27 IOSC16 N

25i

21_

DWS N

MEMCS16 N

XGCK2,1

3

XGCK3,1
XLO187

XLO191

RSTDRV

XIO195
XLO199

XlO200

XIO201

XIO202
XIO203

XLO204

iXIO205

XIO206
TCK

5_ IRQ14

1 IOCHCK_N

135 MASTER_N

;omments

PRTK<6>

PRTK<7>

PRTB<0>

I<I>

FB<2>

PRTB<3>

PRTB<4>

PRTB<5>

PRTB<6>

PRTB<7>

Appendix C

How to use MERCAL with DOS

MERCAL Development Handbook

for DIMM-PCs running DOS 6.22

Written by: Erik Donald

1. Items Needed

2. Installing Microsoft DOS 6.22 on DIMM-PC

3. Source code for app.bat on MERCAL Install Floppy

4. Setting up DOS on DIMM-PC

5. Launching the Command Prompt from the MERCAL

6. Sending BIT Files

7. Running application programs

8. The DOS Mercal Configuration Files

9. FPGA Configure
10. Source code for autoexec.bat MERCAL Install Floppy

11. Source code for Mercal.bat MERCAL Install Floppy

12. Source code for app.bat on MERCAL Install Floppy

Preliminary: October 16 St, 2002

Part 1 - Items Needed

Hardware Items Needed:

DIMM-PC

Floppy Drive

JUMPtec Development Board

Serial Cable

MERCAL Board

MERCAL Development Board

Serial Cable (Straight through not crossover)

Software Items Needed."

MERCAL Install Floppy

Microsoft DOS 6.22 Floppy Disk Installation

MERCAL Link Program

How to create media needed for installation:

1. Format one blank floppy diskette.

2. Copy all the files from the MERCAL
diskette.

install floppy directory to the floppy

Part 2 - htstalling Microsqft DOS 6.22 on DL$IM-PC

1. Insert the DIMM-PC into the JUMPtec development board and connect the floppy

drive.

2. Set up the BIOS to boot from the floppy drive.

3. Insert disk one of Microsoft DOS 6.22 and boot up the computer.

4. Press F3 twice to exit out of the boot menu.

5. Type fdisk.

6. Select option 4 to display partition status.

7. Delete any partitions that may be one the DIMM-PC using option 3.

8. Next create a primary partition by going into option 1, Create new partition.

9. Select one again for Primary DOS partition.

10. Enter Y to confirm.

11. Allow computer to reboot back into the DOS setup.

12. Press enter to continue installation.

13. Select format drive and allow drive to format.

14. Press enter to confirm settings.

15. Press enter to confirm install path, it should be C:kDOS.

16. Follow the rest of the directions of the DOS installation.

17. When the computer restarts change the boot device from floppy disk to hard drive
and reboot into DOS installation.

18. The DIMM-PC should boot up to a DOS prompt

Part 3 - Setting up DOS on DI3LII-PC

I. Insert the Mercal install floppy

2. Type copy a:*.* c:\
3. Press Yes to overwrite any files

Part 4- Launching the Conunand Prompt.#'mn the MERCAL

1. Now take the DIMM-PC and put it into the M_AL a--ff-dTfi--6iqfE'WC_'-ff m'Wt'6"ffi'_

MERCAL development board.
2. Connect a serial cable between the MERCAL development board and your

computer.

3. On your computer run the MERCAL.EXE file that allows PC access into the

MERCAL.

4. Power up the MERCAL and click on CONNECT on the MERCAL program.

5. You may have you press CONNECT several times if it times out before the link is

established.

6. Press LINK to bring up the DOS prompt on the MERCAL.

Part 5 - Sending BIT Files

1. Follow steps 1 to 5 from part 4.

2. Press SEND FILE and send your file named XI.BIT.

Part 6 - Run.log application programs

1. Follow steps 1 to 5 from part 4.

2. Press SEND FILE and send over your executable file as app.exe.

3. Reboot the MERCAL without the serial cable connected to allow the program to

run.

Part 8 - The DOS Mercal Con.figuration l_71es

This is the files needed to use the MERCAL in DOS.

config-l.exe

merc.exe

xi.bit

app.bat
autoexec.bat

mercal.bat

Configures the FPGA
Check link status to run program or wait for link

Auto configuration bit file

Application that will be run

DOS auto start script

Batch file to check link status to run program or wait for link

Part 9 - FPGA Configure

This is the program that will download the bit file for the FPGA using the parallel port.

/*

*/

Author: Jason M. Blevins

FileName: config-l.cpp

Date: August 10, 2001

Desc:

(most recent revision)

Downloads binary file to an FPGA.

#include<iostream.h>

#include<ctype.h>

#include<stdlib.h>

#include<fstream.h>

#include<stdio.h>

#include<conio.h>

void ProcessArgs(int argc, char *argvl ifstream& DataIn);

// Processes command line arguments & attempts to open bit file

void ClearFPGA(); // Clears the FPGA

void TransferBits(ifstream& DataIn);

// reads bits from bit file and transfers them, bit by bit, to FPGA

int ExtractBit(int WhichBit, int PortAddress);

//Extracts the bit number 'WhichBit' from the 'PortAddress'

/* pin2 a0 DIN

pin3 al CCLK

pin4 a2 !PROG

pin5 a3

pin6 a4 ---

(inverted)

pin7 a5 ---

pin8 a6

(inverted)

pin9 a7 ---

(inverted)

pinl5 b3

pinl3 b4 ---

pinl2 b5 DONE

pinl0 b6

pinll b7

pinl

pinl4

cO

cl

pinl6

!INIT

c2

(inverted)

#define PortA 0x378;

#define PortB 0x379;

#define TKUE 0x01

#define FALSE 0x00

#define MSB

#define LSB

#define PROG LOW 0x00

#define PROG HIGH 0x04

#define CCLK LOW 0x00

#define CCLK HIGH 0x02

#define INIT BIT 0x03

#define DONE BIT 0X05

#define BYTE SIZE 0x08

#define ONE ARG

#define TWO ARG

pinl7 c3 ---

// address of PortA

// address of PortB

// Boolean flag

// Boolean falg

0x07 // MSB of a byte

0x00 // LSB of a byte

// Value of PortA that pulls PROG low

// Value of PortA that pulls PROG high

// Value of PortA that pulls CCLK low

// Value of PortA that pulls CCLK high

// Bit number of INIT in PortB

// Bit Number of DONE in PortB

// # of array slots needed to hold a byte

0x01 // Specifies that one argument was supplied

0x02 // Specifies that two arguments were supplied

void main(int argc, char *argv[])

(
ifstream DataIn; // declares file stream variable

ProcessArgs(argc, argv[l], DataIn); //processes users command line args

ClearFPGA(); //clears FPGA

TransferBits(DataIn); //transfers bit file to FPGA

}

void TransferBits(ifstream& Dataln)

(
int bits[BYTE_SIZE];

int Init = TRUE;

unsigned char CharByte;

unsigned int IntByte;

int Done;

FPGA

high

while ((Init == TRUE) && (!DataIn.eof()))

(
DataIn.get(CharByte); // gets a byte from bit file as type char

IntByte = CharByte; // converts byte from type char to int

for (int a=LSB; a <=MSB; a++)

// extracts the 8 bits from IntByte and stores them in array bits[]

{
bits[a] = IntByte % 2;

IntByte = IntByte / 2;

}
for tint b=MSB; b>=LSB; b--) // puts bit on DIN and then clocks it into

outp(PortA, (PROG HIGH + CCLK LOW + bits[b]));

// equivalent to ¥0000010X' where X represents bits[a] -- clock low

outp(PortA, (PROG HIGH + CCLK_H[GH +bits[b[));

// equivalent to 70000011X' where X represents bits[a] -- clock

)
Init = ExtractBit(INIT_BIT, PortB); // extracts !INIT

)
DataIn.close(); // detaches file stream variable from external file

Done = ExtractBit(DONE_BIT, PortB); // extracts DONE

if (Done == TRUE)

(
cout << "Programming successful!In";

)
else

[
cout << "Error. Program was not successful.\n";

}

void ClearFPGA()

{
int Init;

outp(PortA, PROG LOW); // pulls !PROGI low

outp(PortA, PROG--HIGH); // '12' is equivalent to '00000100' -- pulls !PROG high

Init = ExtractBit(INIT_BIT, PortB); // extracts !INIT

while (Init == FALSE) // waits for !INIT to signal that the FPGA is clear

(
Init = ExtractBit(INIT BIT, PortB); // extracts !INIT

}

}

void ProcessArgs(int argc, char *argvl, ifstream& DataIn)

(
if (argc == ONE_ARG) // if user doesn't specify which bit file to read from

{
cout << "inError. No file name specified.in";

abort();

)
else if (argc == TWO ARG)

// is user specifies the bit file

{
DataIn.open(argvl, ios::nocreate I ios:: binary);

// opens bit file as specified by user -- if non-existant, no new file is

created

if (Dataln.fail())

(
cout << "inError. Invalid path or file name.in";

abort();

)
cout << "\nProgramming Spartan II FPGA #1...\n";

}
else // if user specifies too many arguments...

{
cout << "ininError. Invalid arguments.\n";

abort () ;

}
)

int ExtractBit(int WhichBit, int PortAddress)

{
unsigned int DataByte;

DataByte = inp(PortAddress);

return ((DataByte / int(pow(2,WhichBit)l) % 27;

}

This file is the startup file for DOS.

i: @ECHO OFF

2: PROMPT pg

3: PATH C:\DOS;C:\MERCAL

4: SET TEMP:C:\DOS

5: mercal.BAT

Part 11 - Source code for Mercal.bat MERCAL htstall FIopi_y

I: @ECHO OFF

2"

3:

4:

5:

6:

7:

8:

9:

I0:

Ii:

12:

13:

14:

15:

16:

CTTY CON :

:START

MERC. EXE

IF ERRORLEVEL 3 GOTO ERROR

IF ERRORLEVEL 2 GOTO LINK

IF ERRORLEVEL 1 GOTO RUN

:LINK

CTTY COMI :

GOTO END

:RUN

APP. BAT

GOTO END

:ERROR

GOTO END

:END

Part 12 - Soltrce code for app.bat on MERCAL Install Floplo'

1"

2:

3:

config~l.EXE C:\XI.bit

rem "EXE file goes here"

app.exe

Appendix D

How to use MERCAL with Linux

MERCAL Development Handbook

for DIMM-PCs running Whitedwarf Linux

Written by: Erik Donald

1. Items Needed

2. Installing Whitedwarf Linux on the DIMM-PC

3. Setting up Whitedwarf Linux on the DIMM-PC

4. Setting up Vmware

5. Installing RedHat Linux 7.3 on Vmware

6. Logging into Linux in VMware

7. Logging into the MERCAL via a serial connection

8. Sending files to the MERCAL

9. Receiving files from the MERCAL

10. Shutting down the MERCAL

11. Development using gcc
12. What does the MERCAL Install Floppy Do?

13. Source code for install.sh on MERCAL Install Floppy

14. Source code for FPGAConfigure on MERCAL Install Floppy

15. Source code for/etc/inittab on MERCAL Install Floppy

16. Source code for/etc/rc.d/rc.local on MERCAL Install Floppy

17. Source code for/etc/rc.d/rc.serial on MERCAL Install Floppy

18. Source code for/etc/lilo.conf on MERCAL Install Floppy

Preliminary: August 1st, 2002
Revised: October 3rd,2002

Part 1 - Items Needed

Hardware Items Needed:

DIMM-PC

Floppy Drive

CD-ROM (Not all CD-ROMs work)

JUMPtec Development Board

Serial Cable

MERCAL Board

MERCAL Development Board

Serial Cable (Straight through not crossover)

Software Items Needed:

RedHat Linux 7.3 (www.redhat.com)
Whitedwarf Linux CD-ROM (www.whitedwarflinux.org)

Whitedwarf Linux Boot Disk (www.whitedwarflinux.org)

MERCAL Install Floppy

RawWrite to create Installation Floppies

Optional Software Items:
VMWare (www.vmware.com)

VMWare allows you to run Linux inside a Windows computer. It makes

development easier if you need to use both Linux and Windows applications at the same

time. When you run VMWare it simulates a full Linux computer inside a window in

Windows. So you can either install Linux on your PC inside Windows, or dedicate your

PC entirely to Linux. If you choose to dedicate your computer to Linux, you can skip

steps 5 and 6 and just install Linux the normal way by putting the install Red Hat Linux

CDROM in your computer and booting from the CDROM.

How to create media needed for installation:

1. To create the Whitedwarf CD-ROM, use the ISO image and burn it to a CD using

the CD Burning software of your choice.

2. Launch rawwritewin.exe and select your floppy drive

3. Insert a blank floppy diskette

4. Select wdboot, im9 and click write. This will create the WhiteDwarf Linux

Boot Disk.

5. Select Mercal Linux Install. img and click write. This will create the

MERCAL install floppy to allow the DIMM-PC to run Linux while in the

MERCAL module.

1. ConnectaDIMM-PC into theJUMPtecdevelopmentboard. Connecta keyboard,
monitor, floppyanda CD-ROM.

2. Go into theDIMM-PC Biosandsetit to boot fromthefloppy drive andtell it
thereis aCD-ROM presentby selectingautoastheslavedrive.

3. InsertWhitedwarfBoot Disk FloppyandCD-ROM.
4. Boot themachineusingthis bootdisk.
5. Press<enter>whenit says,"Pleaseinsertwd 1.11CD-ROM or rootdisk".
6. SelectOK whentheinstallercomesup.
7. SelectOK to theinstalldeviceas/dev/hdal
8. SelectCREATE
9. SelectNEW
10.SelectPRIMARY
11.Enterdrive size(30MB)
12.SelectBOOTABLE
13.SelectWRITE
14.TypeYES andpressenter
15.SelectQUIT
16.SelectCLEAN
17.SelectYESwhenit tells you formattingwill eraseall data
18.SelectCD-ROM andwait for thebaseinstallationto occur
19.Follow thetablebelowandonly install thepackageslisted

bin Yes diff
Elvis Yes gcc dev

find

gzip
sh utils

tar

txtutils

Yes

Yes

Yes

Yes

Yes

util Yes

apache No

ash sh No

hzip ves

Yes

less

No

getty Yes

gpm No

Grep Yes
kbd No

Yes

lynx
minicom

perl

okgtool

No

Yes

No

No

ppp No

sysklogd Yes

tcpip No
vim No

wget
bind

No

Yes

glibc2.1.3 No

glibc2.2.2 No
kernel source No

ncurses No

perl libs No

20. Select OK when it asks for network configuration

21. Select CANCEL when it asks for the hostname

22. Type in the root password and do not forget it!

23. Select OK

24. Remove the disk from the disk drive
25. The DIMM-PC should now restart and you should have Whitedwarf on the

D1MM-PC

1. Reboot the DIMM-PC

2. Login using the username root and your password

3. Type the following to install the MERCAL files (yes that is: period space

install.sh)
mount /dev/fdO /mnt

cd /mnt

install, sh

umount /dev/fdO

4. Now take the DIMM-PC and place it in the MERCAL board and the MERCAL in

the development board.
5. Connect the serial cable between the two. The communications protocol is

115200,8,N, 1 on the MERCAL.

1. Install VMware to your computer

2. Launch Vmware

3. Click on File --) New "-) New Virtual Machine

4. Select Typical and click on next

5. Select Linux and click on next

6. Review the directories and click on next

7. Select Use Host Only Networking and click on next

8. Click on your virtual machine in the left hand box

9. Right click on it and select settings

10. Click add

11. Click Serial Port
12. Make sure to select Connect at power on

13. Select which serial port you wish to use

14. Click Finish

1. Launch Vmware

2. Insert the RedHat 7.3 Disc 1 into the CD-ROM

3. Select Linux in the left hand box and press Power On

4. After the CD gets booted up and there is a text screen in Linux to install, type

text and press enter•

5. During the install select autopartition and install everything.

6. Reboot the machine and start up linux

7. Type in your username and password

8. Then type in these commands
mount -t iso9660 /dev/cdrom /mnt

cp /mnt/vmware-linux-t°°is'tar'gz /trap

umount /dev/cdrom

cd /tmp

tar zxf vmware-linux-tools.tar.gz

cd vmwa re- linux- t ooi s

•/install .pl

1. Launch VMware

2. Press Power On

3. At the login prompt enter root and your password

4. At the command prompt type:

startx

5. Press OK on the box warning you about logging in as root

1. In RedHatLinux launchaterminalwindow in X (theblackmonitoricon on the
barat thebottom) andtype:

xminicom &

2. Press <alt>+<o> for options

3. Select Serial Port Setup

4. Press <a>

5. Change device to/dev/ttyS0

6. Press <enter>

7. Press <e>

8. Press <e> then <q>

9. The terminal should now be setup for 115 2 0 0 8 N 1

10. Press <enter> twice

11. Select Save setup as dfl

12. Press Enter
13. You should now see a terminal window of the MERCAL

14. Press enter to bring up a login prompt

15. At the login type
mercal

su

password (or the password you have used for root)

16. You are now logged in as a super user and can use the MERCAL for development

1. Launch xminicom and log into the MERCAL

2. Press <alt><s>

3. Select zmodem
4. Select the file to send and select Okay

I. Launch xminicom and log into the MERCAL

2. At the MERCAL command line type:

isz filename

3. This file will be saved to/root

1. Launch xminicom and log into the MERCAL

2. At the MERCAL command line type (to reboot replace -h with -r):

shutdown -h now

3. Wait until the device has shutdown (approximately 30 seconds).

1. To compileyourC orC++ sourcecode,first starta terminalwindow
2. Type:

gccsource.cpp-o outputfile-static
3. Thestaticoptionlinks thelibrarieswith thefile sothatit will run correctlyon the

Linux installationon theDIMM-PC
4. Sendyour file to theMERCAL
5. To launchatrun timeedit your/etc/rc.d/rc.localfile accordingly
6. You canuseKdevelopto developyour sourcecodewith adebugger.It resembles

Visual Studioandis availableatwww.kdevelop.org.

TheMERCAL Install Floppysimplifiestheinstallationof Whitedwarf Linux on
theDIMM-PC. You canlook atthefile install, sh to seeexactlythecommandsit
executes.

Thefirst thing it doesiscreatetheMERCAL directorystructureon the DIMM-
PC. Thisstructurelookslike this:

/mercal/bin

/mercal/bit

/mercal/etc

/mercal/ftp

/mercal/http

There are currently only two files that are in this structure:

/mercal/bin/fpgaconfig configures the FPGA
/mercalPoit/autoprogram.bit the automatically programmed bit file

After this is created it copies over the initiation files to start up the serial port for a

terminal session. After this it does the one thing that is necessary for the DIMM-PC to

boot on the MERCAL board. You see, the MERCAL board is not ISA-PNP so the

commands must be issued to disable the PNP ISA bus (as well as other things that could

cause a problem like PCI routines). To do this/etc/121o, conf is edited to include

these statements then 1 i lo is run to update the master boot record. Doing this allows

the DIMM-PC not hang on boot up in the MERCAL board.

This is thefile install.shscript file thatrunstheMERCAL installationontheDIMM-PC.

I: cp mercal.tar.gz /

2: cd /

3: gzip -d mercal.tar.gz

4: tar -xf mercal.tar

5: rm mercal.tar

6: cd /mnt

7: cp files/rc.local /etc/rc.d/rc.local

8: cp files/rc.O /etc/rc.d/rc.O

9: cp files/rc.serial /etc/rc.d/rc.serial

I0: cp files/inittab /etc/inittab

Ii: cp files/lilo.conf /etc/lilo.conf

12: cd /

13: umount /dev/fdO

14: mkdir /mnt/floppy

15: mkdir /mnt/cdrom

16: mkdir /mnt/flashdisk

17: /sbin/lilo

18: useradd mercal -p ''

Part 14- FPGA Con.lqgure

This is the modified source code for the FPGA configuration using Linux. The only few

changes made. First, a few lines are added to the header file. outb is changed to outb and

inp is changed to inb. Also the order of the parameters between outb and outp are
reversed. Also the ioperm command give the program permission to read a port and

write to a port.

/*

Jason M. Blevins

Linux: Erik Donald

FileName: FPGAconfigure.cpp

Desc: Downloads binary file to an FPGA.

,/

#include<iostream.h>

#include<ctype.h>

#include<stdlib.h>

#include <sys/io.h>

#include <unistd.h>

#include<fstream.h>

#include<stdio.h>

#include<conio.h>

void ProcessArgs(int argc, char *argvl, ifstream& Dataln);

// Processes command line arguments & attempts to open bit file

void ClearFPGA(); // Clears the FPGA

void TransferBits(ifstream& DataIn);

Author:

Modifed for

// reads bits from bit file and transfers them, bit by bit, to FPGA

int ExtractBit(int WhichBit, int PortAddress);

//Extracts the bit number 'WhichBit' from the 'PortAddress'

/* pin2 a0 DIN

pin3 al CCLK

pin4 a2 !PROG

pin5 a3 ---

pin6 a4 ---

(inverted)

pin7 a5 ---

pin8 a6 ---

(inverted)

pin9 a7 ---

(inverted)

* (inverted)*

*/

#define PortA 0x378;

#define PortB 0x379;

#define TRUE 0x01

#define FALSE 0x00

#define MSB

#define LSB

#define PROG LOW 0x00

#define PROG_HIGH 0x04

#define CCLK LOW 0x00

#define CCLK_HIGH 0x02

#define INIT_BIT 0x03

#define DONE BIT 0X05

#define BYTE SIZE 0x08

#define ONE ARG

#define TWO_ARG

pinl5 b3

pinl3 b4 ---

pinl2 b5 DONE

pinl0 b6

pinll b7

!INIT

pinl cO ---

pinl4 cl ---

pinl6 c2

pinl7 c3

// address of PortA

// address of PortB

// Boolean flag

// Boolean falg

0x07 // MSB of a byte

0x00 // LSB of a byte

// Value of PortA that pulls PROG low

// Value of PortA that pulls PROG high

// Value of PortA that pulls CCLK low

// Value of PortA that pulls CCLK high

// Bit number of INIT in PortB

// Bit Number of DONE in PortB

// # of array slots needed to hold a byte

0x01 // Specifies that one argument was supplied

0x02 // Specifies that two arguments were supplied

void main(int argc, char *argv[])

{
if (ioperm(0x378,3) == -I);

perror("ioperm");

exit(l);

fstream DataIn; // declares file stream variable

ProcessArgs(argc, argyll], Dataln); //processes users command line args

ClearFPGA(); //clears FPGA

TransferBits(DataIn); //transfers bit file to FPGA

)

void TransferBits(ifstream& DataIn)

(
int bits[BYTE_SIZE];

int Init = TRUE;

unsigned char CharByte;

unsigned int IntByte;

int Done;

while ((Init == TRUE] && (!DataIn.eof{))]

{
DataIn.get(CharByte); // gets a byte from bit file as type char

IntByte = CharByte; // converts byte from type char to int

for (int a=LSB; a <=MSB; a++)

// extracts the 8 bits from IntByte and stores them in array bits[]

{
bits[a] = IntByte % 2;

IntByte = IntByte / 2;

FPGA

high

}

for {int b=MSB; b>=LSB; b--) // puts bit on DIN and then clocks it lnto

outb((PROG HIGH + CCLK LOW + bits[b]), PortA);

// equivalent to '0000Ol0X' where X represents bits[a] -- clock low

outb((PROG HIGH + CCLK HIGH +bits[b]), PortA);

// equivalent to '0000OIIX' where X represents bits[a] -- clock

}

Init = ExtractBit(INIT_BIT, PortB); // extracts !INIT

)
DataIn.close(); // detaches file stream variable from external file

Done = ExtractBit(DONE_BIT, PortB); // extracts DONE

if (Done == TRUE)

{

cout << "Programming successful!in";

}

else

{
cout << "Error. Program was not successful.in";

}

void ClearFPGA()

(
int Init;

outp(PROG LOW, PortA); // pulls !PROGI low

outp(PROG_HIGH, PortA); // '12' is equivalent to '00000100' -- pulls !PROG high

Init = ExtractBit(INIT_BIT, PortB}; // extracts !INIT

while (Init == FALSE) // waits for !INIT to signal that the FPGA is clear

[

Init = ExtractBit(INIT BIT, PortB); // extracts !INIT

)

}

void ProcessArgs(int argc, char *argvl, ifstream& DataIn)

{
if (argc == ONE ARG) // if user doesn't specify which bit file to read from

[
cout << "\nError. No file name specified.in";

abort{);

}

else if (argc == TWO_ARG)

// is user specifies the bit file

[
DataIn.open(argvl, ios::nocreate I los:: binary);

// opens bit file as specified by user -- if non-existant, no new file is

created

if (DataIn.fail())

{
cout << "\nError. Invalid path or file name.kn";

abort{);

}

cout << "\nProgramming Spartan II FPGA #1...\n";

}

else // if user specifies too many arguments...

(
cout << "\n\nError. Invalid arguments.in";

abort () ;

}

)

int ExtractBit(int WhichBit, int PortAddress)

unsigned int DataByte;

DataByte = inb(PortAddress);

return ((DataByte / int[pow(2,WhichBit))) % 2);

Only the changed lines are shown from the original installation to the new installation for

the MERCAL. This sets up the serial transfers between the DIMM-PC and the computer.

68: # Serial lines

69: sl:12345:respawn:/sbin/agetty 115200 ttyS0 vtl00

70: s2:12345:respawn:/sbin/agetty 115200 ttySl vtl00

This file is like the autoexec.bat in DOS. This runs the programs at startup. The only

difference is that the ampersand lets the program run in the background.

1:

2:

3:

4:

5:

6:

7:

8:

9:

I0:

II:

#!/bin/sh

#

/etc/rc.d/rc.local:

#

Put any local setup

Local system init.

commands in here:

script.

Start up Serial Communications

agetty std.l15200 ttys0 vtl00 &

Automatically Program FPGA

/mercal/bin/fpgaconfig /mercal/bit/autoprogram.bit

Only the changes from the original file are shown. Basically the serial ports are set from

auto-configured to manually configured by commenting out lines 45 and 46 and

uncomment lines 152 and 153.

45: #${SETSERIAL} /dev/ttyS0 ${AUTO_IRQ} skip test

autoconfig ${STD_FLAGS}

46: #${SETSERIAL} /dev/ttySl ${AUTO_IRQ} skip test

autoconfig ${STD FLAGS}

152: ${SETSERIAL} /dev/ttyS0 uart 16450 port 0x3F8

${STD FLAGS}

153: ${SETSERIAL} /dev/ttySl uart 16450 port 0x2F8

${STD FLAGS}

irq

irq

The lilo.conf file needs to be changed then the command lilo must be executed to rewrite

the boot sector of the hard drive. This is done because the MERCAL is not ISA

compilient at boot time and therefore hangs the system. In order to correct this the ISA

PnP bus is turned off. The PCI bus is turned off for safety since there is not PCI bus on

the DIMM-PC.

i: # LILO configuration file

2: # generated by 'liloconfig'

3: #

4: # Start LILO global section

5: boot = /dev/hda

6: #compact # faster, but won't work

7: delay = 5

8: vga : normal # force sane state

9: # ramdisk : 0 # paranoia setting

I0: # End LILO global section

ii: # Linux bootable partition

12: image = /vmlinuz

13: root = /dev/hdal

14: label = linux

15: append = "noisapnp flopPy =none pci=off

16: read-only

17: # Linux bootable partition config ends

on all systems.

config begins

hdb=none"

Appendix E

Examples using schematic capture

Schematic Design Xilinx Foundation Series 3.1 i

Written by: Timothy P. Niemczyk

Creating new designs can be entered either as a schematic or as a text based entry using

VHDL or Verilog. Figure 1 is an example of a top-level schematic design. This design

implements input & output ports, input & output pads, multiplexer, clock signal, D-Latch

Flip Flops, and combinational logic.

Implementation of Ports is as follows:

Input Port A - 8 Bit enable IOR/Address 300

Input Port B - 4 Bit enable IOR/Address 302

Output LED's - 8 Bit enable IOW/Address 302

Output Port E - 4 Bit enable lOW/Address 303

PORTAI

PORTE

Figure 1. Xilinx Foundation Schematic Editor - implementation of 8 bit input and output

ports.

This design also implemented hierarchical macros. Hierarchical macros are previously

designed circuit that is isolated from the rest of the design and is stored in the library as

its own symbol. Macro symbols are placed within the design and can be used in multiple

instances. The actual macro schematic is connected to the top-level or upper hierarchy

design via the terminals. These terminals correspond to a pin within the macro symbol.

Figure 2 demonstrates an example of an implemented hierarchical macro. This macro

selects the address in which data will flow in or out.

sA2 l

_H02112

02 _,[

Figure 2. Address Multiplexer

Figure3 demonstratesahierarchicalmacrothatcontrolsthedataflow. By usingthetri-
statebuffersdatacanbecontrolledreliably.

OI,_L FTlff2[_--

_ [_

LOC=P 193

D6 __J-_ ,

D5_92 __L"

LOC=P189 F_2_''-'-_
.

LOC=P188 F'_ -F-n

LOC=P 178 *°B'OrTr_

DO<:22:::>-----_,
LOC=P 174 ,ae_F_r_8

op¢?<

0IX!<

B[NI_

DIM2

OMI

OMO

OR2

AND281

DOU]?<

n_Ta.

DOdT_

n_dT3.

IIOIJ_

BI_dT I

_jIN[7

_. _0 .JT[7 0]

Figure 3. Data Port.

By the using hierarchical macros, designs can be broken up into parts. This will allow a

faster design turnaround and a simper approach to designing complex circuits.

