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Abstract: The mixed-mode bending test ha: been widely used to measure delamination
toughness and was recently standardized by \STM as Standard Test Method D6671-01.
This simple test is a combination of the standard Mode 1 (opening) test and a Mode II
(sliding) test. This test uses a unidirectional composite test specimen with an artificial
delamination subjected to bending loads io characterize when a delamination will
extend. When the displacements become lurge, the linear theory used to analyze the
results of the test yields errors in the calculated toughness values. The current standard
places no limit on the specimen loading and therefore test data can be created using the
standard that are significantly in error. A method of limiting the error that can be
incurred in the calculated toughness values i+ needed. In this paper, nonlinear models of
the MMB test are refined. One of the nonlir.ear models is then used to develop a simple
criterion for prescribing conditions where the nonlinear error will remain below 5%.
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Nomenclature

Crack length

Specimen width

Lever length

Half thickness of the specimen

Hinge height

nondimensionalized parameters defired in the KIN model
Half span length of the MMB apparatus

Extensional modulus

Bending stiffness of half-thickness beam

Applied moment correction parameter from the KIN model
Strain energy release rate

Shear modulus

Load reacted on the MMB specimen

Pappiica Applied load to the MMB apparatus

\Y% Height of applied load location
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X,Y The location of a point in the local cordinate system

a Rotation of a point on the test specim:n (in the global coordinate system)
) displacement at the applied load poin:

Oab displacement at hinged end of specim:n

M Scaling term for deformation base on individual modes

8, Rotation of crack tip (and therefore the local coordinate system)

0L Rotation of the lever in the global cocrdinate system

g defined correction parameters from the KIN model

¢ Slope of the test specimen at a point (:n local coordinate system)

X Crack length correction factor

r anisotropy factor

A Change in parameter causing nonlinearity

Superscript

A,B,C,D,0  Parameter pertaining to a given location on the specimen

F Parameter pertaining to the apolied loading location on the MMB fixture
Subscript

11,22,12 Pertaining to the longitudinal, transverse, and shear, respectively
LI Pertaining to Mode I or Mode 1

a Pertaining to the top lever armr:

b Pertaining to the bottom lever arm

est estimated value

T Pertaining to the combined Mode I and Mode I strain energy release rate
XY Parameter expressed in the lot al coordinate system

XX, YY Parameter expressed in the global coordinate system

Parameter Definitions
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Introduction

The mixed-mode bending (MMB) tes: shown in Figure 1 combines the double
cantilever beam (DCB) test which is the stan Jard test for Mode I toughness, with the end
notched flexure (ENF) test[/] for Mode 1I toughness. This test was standardized by
ASTM in 2001 as the Test Method for Mixed Mode I-Mode II Interlaminar Fracture
Toughness of Unidirectional Fiber Reinforc::d Polymer Composite (D 6671). Although
originally designed to test the static delamiration toughness of composites, researchers
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Figure 1—Superposition of loading modes

have extended the use of the MMB test to f:tigue loading[2,3] and to toughness testing
of adhesives[4].

The two loads shown in Figure 1, which are reacted on the MMB specimen are
applied using a lever so that only one applied load is required. The ratio of the two
loads and therefore the proportion of Mode | and Mode II loading is controlled varying
the length of the lever arm. The advantages of the MMB test over other mixed-mode
tests include: (1) the use of a single test specimen configuration to test over almost the
entire range of Mode I to Mode II ratios, (2) a closed form model that is used to
calculate the toughness values from measuied quantities, and (3) a mixed-mode ratio
that remains essentially constant during de!amination growth[5]. The original MMB
fixture showed a nonlinearity in the loading curve due to the rotation of the lever. This
nonlinearity caused significant errors in the calculated toughness values and changed the
mixed-mode ratio. This problem was largely alleviated by changing the way in which
the lever was loaded[6,7]. The modified MMB apparatus, shown in Figure 2, loads the
lever slightly above the midplane of the specimen using a saddle/yoke configuration.
This loading height was optimized to reduce the nonlinear errors. The dramatic drop in
the nonlinear error due to this modification in loading arrangement was confirmed by an
independent analysis on a fatigue version of the MMB apparatus[§]. Although this
redesign dramatically reduced the nonlineur
effect, errors could still become significant if
the loading was large enough[9].

The nonlinear errors found when loading
becomes large come from many different
sources. The most significant sources are
shown schematically in Figure 3. The first
source of error is caused by the crack lengih
becoming shorter due to large bending
deflections of the specimen. This change :n
apparent crack length causes the applied
moment at the crack tip to be less thun
expected because the moment arm to the
loads at the split end of the specimen are
reduced. The calculated toughness therefore Figure 2—Modified MMB apparatus
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Figure 3—Source. of nonlinear error

over predicts that which was actually seen by the test specimen.

The second source of error, shown in ligure 3b, is due to the lever arm changing
with deformation. This changes the moment that is applied to the specimen by the lever.
Because the lever loading point begins slightly above the hinge point, the moment arm
initially increases, but it can eventually drop below its original value. This change in the
lever length can also cause the mixed-mode 1atio to change.

The third source of error is a shortening of the crack length. Unlike the first source,
this shortening of the crack length is due to the rotation of the specimen where the
hinges attach. Because the hinges are offset from the center line of specimen rotation,
the rotation causes the load point of the hinge to shift horizontally thus reducing the
moment arm of the specimen and consequen!ly the moment loading on the crack tip.

A fourth source of nonlinear error is slown in Figure 3d. This error is caused by
the roller loading at the end opposite the hinges. As the specimen bends, the slope of the
specimen at the roller changes. Since the loading is through a roller, it remains
perpendicular to the surface of the specimen and a horizontal load component develops.
Since no horizontal load is applied to the lever, the horizontal load from the base roller
must be reacted by the hinge that is also at:ached to the base. This horizontal load on
the base hinge increases the moment at the crack tip and shifts the mixed-mode ratio. A
similar error is also created by the reaction of the roller in the center of the specimen,
however the rotation of the specimen in the center is much smaller than that at the end
so this error is negligible.

Because of all these sources for nonlin:arity, estimating the error in using a linear
MMB data reduction is complicated. The trie toughness can be greater than or less than
the apparent toughness. The nonlinear effects can also change the mixed-mode ratio. It



is important that these sources of nonlinea- error be controlled in some way so that
erroneous data is not generarted.

Kinloch et al. [/0] proposed a method o+ correcting for the nonlinear error based on
nonlinear correction proposed by Williams[/ /] for this type of bending specimen. This
method only corrected for the nonlinear error associated with crack length shortening
(source 1 shown in Figure 3a). The metho calls for estimating the shortening of the
crack length based on measurements of the opening displacement between loading
hinges. A correction to the toughness value calculated from linear theory could then be
made.

Sainath[9] used this correction when analyzing test data from T800H/3900-2
composite material. This material is quite tough so the applied loading in these tests was
quite high. For such a tough material, the :alculated delamination fracture toughness
from the linear model was reported to be in error by as much as 6.5%. The largest errors
occurred in the region where Mode Il was dominant. These results showed that the
current ASTM standard which does not include corrections for nonlinear errors could
produce data which is significantly in error when testing very tough composites. This
problem is expected to become worse as even tougher composites are developed.

The model used by Sainath[9] only corrects for crack length shortening due to
opening displacement. In the current paper 5 different data reduction schemes for the
MMB test are presented. One of these sche nes uses a new iterative nonlinear analysis
which accounts for all of the sources of crror identified in Figure 3. An example
problem is then used to highlight differences between the 5 data reduction schemes. The
iterative nonlinear model, which is assumed to be the most accurate, is then used to
formulate a criterion which limits the nonlinear error to a small value so that a linear
model can be used.

Analyses of the MMB Test

Five different data reduction schemes ate compared in this paper. The linear model
(LN) will be used as the baseline because it is the basis for the data reduction scheme
that is called for in the ASTM standard. Tiae basic beam theory model (BT) is also a
linear model derived from Euler-Bernuli be:im theory but without correction terms that
are found in the LN model. This model will be used to help explain some of the
characteristics of the nonlinear models. The iterative nonlinear model (NL) accounts for
all four of the sources of nonlinear error :dentified in Figure 3, and therefore, it is
believed to be the most accurate of the 5 models presented. The Kinloch model (KIN) is
a nonlinear model that accounts for crack lerigth shortening shown in Figure 3a. Finally,
the modified Kinloch model (MK) corrects the KIN model for some deficiencies that
will be described in the paper. Figure 4 shov/s many of the model parameters which will
be used in the following sections.

Linear Model (LN)

The linear model is used to derive the equations used in the ASTM standard and is
the basis against which the others will be compared. The equations are based on basic
beam theory but are adjusted for deforn.ation near the crack tip that causes the
displacements (and G) to be larger than that predicted from basic beam theory. The
corrections proposed by Williams[//] are based on a curve fit to FEM results where the



Figure 4—Diagram of MMB apy aratus showing model parameters.

magnitude of the deformation of a Mode I sj-ecimen corresponds to a specimen with the
crack length artificially increased by xh. The x parameter is a function of the in-plane
and the out-of -plane elastic moduli of the graphite composite material, and h is the half
thickness of the specimen. The correction to the Mode II deformation was found to be
similar but the effective increase in crack length was found to be 0.42xh [12]. The v,
and ny, parameters (defined under parameter definitions in the nomenclature section) are
used to scale the Mode I and Mode 11 deformations to account for the corrected crack
lengths. The following equations were use to calculate displacements, rotations, and
strain energy release rate values:
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Basic Beam Theory Model(BT)

The most basic model of the MMB spe:imen based on Euler-Bernuli beam theory.
Results from basic beam theory are created by using the linear model equations but with
x setto 0. (1, and n, therefore become 1)

Iterative Nonlinear Model (NL)

The linear model predicts deformations based on the loading applied to the
specimen. The deformations change the loading on the specimen so the nonlinear model
iterates until a deformation is obtained which is consistent with the loading that created
it. The model uses a local coordinate sy:tem defined by the crack tip to describe
displacements. The choice of coordinate system reduces rotations that can cause
nonlinear error. The equations used in the NL model start with the basic beam theory
equation. The deformations are separated irito Mode I and Mode 11 components so that
they can be scaled by the appropriate factor using the Williams x corrections[//]. Once
a converged deformed shape is obtained, a szcond correction is made to account for the
shortening of the crack length due to large bending deformations. This is based on a
formulation which was also proposed by Wi:lliams[//]. The nonlinear model is similar
to the nonlinear model used when the mixed-mode bending fixture was redesigned to
minimize nonlinear errors[6] but differs in the treatment of deformation about the crack
tip. The iterative nonlinear model found in reference [6] also did not include the crack
shortening correction which has been ad.led to the current model. The iterative
nonlinear model is given in the Appendix.

Kinloch Model (KIN)

The Kinloch model[ /0] uses the correction proposed by Williams[//] to correct for
the shortening crack length. Other sources of nonlinear error are not considered. The
implementation of this correction calls for the measurement of the Mode I opening (&ab)
during the MMB test (Figure 4). This open:ng displacement is then used to predict the
rotation of the crack tip and rotation of the specimen at each hinge. These rotations are
used to predict the shortening of the crack iength due to the large beam deformations.
The shortening of the crack length causes the loading at the crack tip to change, and
therefore, the value of Gr also changes. To orrect the toughness value, the moments on
the upper and lower arms are scaled (F, and Fy, respectively) to correct for shortening of
the lever arm. In this paper, the &, input into the model was taken from the NL model.

The following model is presented frcm Kinloch et al.[/0] and is presented in
exactly the same form as the original except that the notation was modified to be
consistent with the rest of the notation in this paper. This includes substituting 2L for the
full span length and L for the distance between the center roller to the hinge. These
were originally distinct values since the derivation was for an apparatus with an
unsymmetrical span length.
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Modified Kinloch Model (MK)

One more model will be developed based on the Kinloch model[ /0] but modified as
suggested by results from the example problem presented in the next section. Equations
15-18 are substituted for equations 7-10 in the previous model, respectlvely The
changes to the previous equations are clearly marked. The addition of the L? term in
equation 16 is the inclusion of a term that had inadvertently been dropped in the original



derivation. The other changes involve the 1 and v, parameters which more accurately
partition the Mode I and Mode II component. of deformation.
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Comparison of Data Reduction Models Using a Numerical Example Problem
To first explore these models the test case presented by Sainath[9] will be
investigated. The numerical values to be used

Table 1—Example numerical values in the example problem are given in Table 1.
Parameter Value Notice that the value of V and h* were not
En 142 GPa (20.6 Msi) given in the original paper and so typical

Ej 10.5 GPa (1.53 Msi) velues were chosen. The toughness results
Gz 4.1 GPa (0.6 Msi) calculated from the linear (LN), nonlinear

L 51 mm (2.00 in) (ML) and Kinloch (Kin) models are shown in

a 25.5 mm (1.004 in.) Tuble 2. Both Gt and G\/Gr are calculated

b 25.48 mm (1.003 in) for each method. The percent deviation form

h 1.5 mm (0.057 in) thz linear model is also calculated for each

h* 2.5 mm (0.1 in) ncnlinear prediction. The deviation from the

\% 15 mm (0.6 in) linear model can be thought of as the

predicted error caused by ignoring the
nonlinear effects. In all cases, the predictior: of Gr by the KIN model is smaller than the
linear model while the prediction of the N1, model is larger than the linear. Also, the
magnitude of the deviation predicted by th: KIN model is generally twice as great as
that from the NL model. Note that a prediction at 100% Gy/Gr cannot be made with the
KIN model because it uses a Mode I displicement as input which goes to 0 at 100%
G“/GT.



Table 2—Toughness re: ults from nonlinear models
G,/Gr

Gy/Gy ¢ Papplied
% mm N

81.1
01%

To understand why the predictions of the KIN and NL models are so different the
predicted displacements were examined. Tible 3 shows three different displacements:
1) 6., the vertical displacement between th: hinges which is associated with a Mode [
deformation; 2) a= («'-o®)/2,the difference :n slope between the top and bottom hinge,
which corresponds to the angle if the entire lbading were in Mode I; and 3) ay= (a*+a®)2,
the average of the top and bottom slope at the hinges, which is dominated by the Mode
11 deformation'. The displacements are shcwn for the linear (LN), beam theory (BT),
nonlinear (NL), and Kinloch (KIN) models. The deviations from the LN model are also
calculated and displayed in the table.

Comparison of the deformation values shows that BT model significantly under
predicts (-30%) the Mode I deformation froni the LN model while agreeing on the Mode
11 deformation reasonably well. The NL model is believed to provide the most accurate
prediction of deformation and the results show there is little difference between the NL
and LN model predictions of deformation. The one exception is that when the Mode |
component was small, the deviation in Mode I displacement could become significant
(13% and larger). The KIN model agrees with the LN model (and therefore the NL
model) in the Mode I deformation but shows very significant deviation on the Mode I
prediction (64-86%). Two reasons were fouad for this discrepancy in Mode I1. First, in
the original derivation of the KIN model[/0|, the equation used to describe the rotation
at the crack tip («°) which was derived using basic beam theory was found to have a
missing term. Equation 16 shows how this L? term is added into the equation for o°.
Second, the KIN model uses the measured value of 8,, to predict the slope of points A,
B, and O on the specimen based on basic beam theory. Because basic beam theory
grossly under-predicts Mode I deformation, when the Mode I deformation (8. ) is used
as input, the resulting predictions of the Mcde II deformation (such as oy= ra'+a®)2) Is
largely over-predicted. The large over prediction of the Mode II deformation pattern
caused the predicted error in Gr to be worse than is actually the case.

The two previously discussed probleins with the KIN model were fixed in the
Modified Kinloch model (MK). In this m.del the missing term in the «” equation is
added and deformations are predicted using the y crack length correction terms which

' @ is not completely mode 11 because of a contribution made by a rigid body rotation of the mode [
deformed body required to keep the far end of :he specimen on the roller at point D.



Table 3—Displacement results from nonlinear models
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were used in the LN model. Table 3 shows that the MK model does a reasonably good
job of predicting both the Mode I and Mode: II deformations. Table 2 also shows that
these modifications to the KIN model cause the predicted deviation from the LN model
to be cut by half in this test case. The MK 1nodel predicts the error caused by ignoring
the nonlinear effect on Gr to be less than 4% in all cases.

Several problems remain with the MK model. First, it only models the nonlinear
problem of crack length shortening due to heam deformation. There are several other
sources of nonlinear error. Since in this test case the MK model always predicted a
negative deviation in Gy while the NL mode| always predicted a positive deviation, the
phenomenon modeled by the MK model does not even appear to be the dominant effect.
A second problem with the MK model i that it is based on a measured Mode I
displacement, which causes problems in the high Mode II region. To a first order
approximation at a given mixed-mode condi:ion, the correction to Gr (LN) predicted by
the MK model can be shown to be proportional to the measured value of d. squared
(Correction Factor -Constant (6, Y ). When 5/Gr approaches 1, 8., approaches 0. This
might not cause a problem if the error in Gr also went to zero but the error in Grcan
remain large, so the constant value must become very large. Under this condition small
errors in the measured 8,, can produce large errors in the MK model predictions of Gr.
Finally at G;/Gr=1, 4., =0 and the correction cannot be used even though the error due
to the shortening crack length remains. This makes the Mode II value inconsistent with
the other calculations of toughness. A third drawback to using the MK correction is that
it requires that an extra measurement be ma:e during the test. Each extra measurement
adds complexity to the test method. For the preceding reasons neither the KIN nor the
MK corrections are recommended when analyzing MMB test results.

The NL model is believed to provide « better estimate of the nonlinear problems,
but it is too complicated to be of general use in determining delamination toughness.
Fortunately the nonlinear problem does no: seem to be as significant as first thought
based results that were generated using the KIN model. In time however, materials that
are so tough that nonlinear errors do become significant may be developed. Currently
available materials tested with a poorly dusigned test specimen (i.e. one that is too
compliant) could also result in toughness values that contained significant errors.
Because of this, some way of avoiding the nonlinear errors without requiring an analysis
such as the NL model is needed.



A New Nonlinear Error Avoidance Criterion

One method to avoid nonlinear errors would be to develop correction factors
predicted using the NL model which have been plotted based on a few critical
parameters. Unfortunately the nonlinear errors in this problem are influence by a large
number of parameters. The most significant influences seem to come from the
following parameters:

Normalized lever position therefore mix :d-mode ratio (c/L — Gu/Gr)
Applied load and therefore toughness (P ppiica = Gr)

Specimen stiffness (EI)

Normalized crack length (a/L)

Span length (L)

Normalized hinge height (h*/L)

Normalized lever loading height (V/L)

Each of these parameters affects one or mor: of the sources of nonlinear error shown in
Figure 3 and the effect of each of these pararaeters is shown in Figure 5. In Figure 5, the
error in a Gt value calculated using the LN model is plotted versus Gy/Gr, which is
varied by varying the normalized lever length (c/L). For each of the other parameters, a
nominal value is chosen at a level similar to that studied in the example problem. Each
parameter was then varied to values above «nd below the nominal value. The range of
bending stiffness (EI) was attained by keeping modulus at 138 GPa (20 Msi) and letting
h take on the values of 1.1, 1.5, and 2.2 mm :0.045, 0.06 and 0.085 in. respectively) with
1.5 mm (0.06 in.) being the nominal value. In Figure 5, the first plot shows the error
with all parameters at their nominal value and also with all possible variations. This plot
shows that the nonlinear error in the nominal case is quite small, but when all the
possible variations are considered, the error can become quite large (much greater than
10%).

To understand how the large errors were produced, each parameter was considered
individually. A plot was made with each pirameter showing how varying just the one
parameter above and below the nominal value effected the nonlinear error. On each of
these plots, the possible errors produced by holding the one parameter at the nominal
value while changing all the others was also shown. From these plots, it is clear that,
with the exception of the small bending stiffiess case, no one variation from the nominal
creates an overriding amount of error. It car: also be seen that the error can remain quite
large if only one parameter is tightly controlied. The variations in the shapes of the error
curves and the fact that the values are positive and negative indicates that the variables
are interacting in complex, often compensa:ing ways and no simple way of estimating
the error based on these variables was found

A simple way of avoiding large errors due to nonlinear deformation, however, was
found. Although each parameter effects the error directly and interacts with the other
parameters to effect the error indirectly, the rror in all cases is due to the deformation of
the test specimen. Figure 6 shows values of normalized applied displacement (&/1)
required to exceed a nonlinear error of -5%. Here the applied load and therefore Gr is
varied to achieve the deformation, and one parameter, the V/L value, is constrained at
the nominal value (0.3). All other variables ire varied over the range already given in
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Figure 5. From this plot, it is clear that the curves are greatly consolidated, and it is
possible to define a lower bound where the |error| will not be greater than 5%. If the
nonlinear error is less than 5%, then in a linear problem the predicted load for
delamination growth would only be off by 2 5%. This error is small enough that it can
normally be considered negligible. This nonlinear error avoidance criterion is:

d/L < 0.27 - 0.06 Gi/Gr (19)

The nonlinear avoidance criterion is valid cver the entire range of mixed-mode ratios
and crack lengths over which the MMB test can be conducted (0.2 < Gy/Gr <1.0, 0.475
< a/L <0.9) but requires that the load point 1eight be set to V/L=10.3. The criterion is
sensitive to hinge height so the hinge height should not be greater the range studied here
(h*/L < 0.075). The bending stiffness (EI) and the half span length (L) were both varied
over a wide range so their values are not beli-ved to be as critical.

Figure 7 shows the values of toughness that are attained using the nonlinear error
avoidance criterion. This shows that the t:st parameters, which are chosen have an
overriding influence on the toughness valucs that can be attained before the nonlinear
error avoidance criterion is violated. It also shows that the toughness values that can be
attained in the high Mode I region is much less than that which can be attained in the
high Mode II region. Because Mode I toug hness is rarely more than 0.9 kJ/m? (5 in-
Ib/in®) while Mode 11 fracture toughness can be four times that amount, the lower values
of toughness attainable in the high Mode I r:gion will normally not be a problem. The
high values of toughness attainable with th:: nominal test parameters indicates that by
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Figure 7—Toughness values attainable while avoiding large nonlinear errors



picking reasonable specimen parameters, the toughness of extraordinarily tough
materials can be measured. On the other han. by picking the test parameters poorly, the
cutoff displacement for nonlinear error would be reached before attaining the critical
toughness for even moderately tough meterials. The linear equation for MMB
deformation given as equation 20 can be used to predict when the displacement will
become large enough to violate the nonlinezr error avoidance criterion and can also be
used as a guide for choosing test paramecters where nonlinear errors will not be
significant. Generally by keeping the specimen thickness in the nominal range or higher
and by not making the specimen length (L) higher than normal, the error due to
nonlinearity will not be a problem.

- _&3_2_ 4(3c-L)¥(a+ hy) +(c+ L)2(2L3 +3a+ O.42hx)3)] (20)
8bE;; h3L
where
4 G 22E;; WL
Pcst= 3 rron (21)

(3c- L)2(a + hx)2 %(c + L)z(a + 0.42h)()2

It is possible that the mixed-mode ratio could be significantly in error even though
the error in Gy is small. As a final check, I igure 8 shows the error in GGt when the
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Figure 8—Error in G ratio at nonlinear ervor avoidance criterion



loading on the MMB test reaches the nonline.r error avoidance criterion. It is clear that,
in all cases studied, the applied displacemen! criterion also restrains the error in mixed-
mode ratio to a small value. In all but a few :xtreme cases, the deviation from the linear
values is less than 5%. The nonlinear avoid:nce criterion can therefore be used to limit
the use of the MMB test to conditions where the linear model accurately calculates both
the Gr and the Gy/Gr values.

Conclusions

The new test standard for mixed-mode celamination toughness (ASTM D 6671-01)
had previously been shown to incur significant errors due to geometric nonlinearity
when testing very tough materials. A nonlinzar model was created that modeled several
sources of geometric nonlinear error. The nagnitude of these errors was shown to be
significantly less than had previously been reported, but with very tough materials or
with very compliant test specimen, nonlin:ar errors could become significant. The
magnitude of the nonlinear error was shown to be a complicated function of many test
parameters, including: material toughness, the mixed-mode ratio, the specimen bending
stiffness, the specimen length, the height of he loading hinge, and the height of applied
load. A very simple nonlinear error avoidance criterion was developed based on the
magnitude of the displacement at the appliec load. All the test parameters were allowed
to vary over a significant range except for tl e height of the applied load, which was set
at V/L = 0.3 above the hinge attachment point, and the height of the hinge is less than
h*/L < 0.075. The nonlinear error should generally not be a problem, but equations are
presented which can be used to redesign a test specimen where the applied displacement
become large enough to violate the nonlinear error avoidance criterion.”
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Appendix Nonlinear Iterative Model (WL)

The nonlinear model is similar to the mcdel presented by Reeder and Crews[6] with
a couple of significant changes:

1. The deformation equations derived fron. beam theory must be corrected for shear
deflection and for rotations that occur around the crack tip. In the original model,
corrections based on a beam on elastic frundation analysis[/3] and including shear
deformation[/4,15] were used. In the current model, corrections originally
suggested by Williams[//,12] employing the y crack length correction terms which
are based on a curve fit to finite element results. These Williams corrections are
used because they have been shown to »e more accurate[/6] and to be consistent
with the equations from the ASTM stardard which uses the  parameters. Since
these corrections were formulated for the Mode I and Mode I tests, to apply them to
the MMB test, the deformation had tc be divided into a Mode I and Mode 11
component.

2. The nonlinear correction for the crack length shortening suggested by Williams[//)
was included in the current analysis.

It was convenient to use two different coordinate systems in this model as shown in
Figure Al. The origin of the first is located at the crack tip and is termed the specimen
coordinate system. Positions in this coordiiate system are signified by X and Y, and
parameters expressed in this coordinate system are indicated by a superscript X or Y.
The term ¢is used to refer to the slope of the specimen in the specimen coordinate
system. Superscripts of A, B, C, D, or O refer to the position on the specimen. The
origin of the second coordinate system is at j-oint B with a reference angle parallel to the
base of the apparatus. This coordinate system is termed the global coordinate system
because it corresponds to the frame of refcrence that would normally be observed in
testing. Note that 6, is the angle between the two coordinate systems.

Step 1. Initial position and loading of specinien

The following load values were used to initiate the iterative analysis. These
equations can be obtained from summing forces and moments on the lever and the
specimen before any deformation occurs. Note that initially the two coordinate systems
will be identical except for a shift in origin fiom point O to point B.

A c B L-c¢c
PY = l)applied E PY =1 applied 'I
C c+L D _ L+c
PY = ~Tapplied L PY =- Papplied oL
3c-L L+c
P =Pypplied T P =Py plied -

pA_pB-pC -pP o
X X X X



f—— 1 - L——

a) Specimen coordinate system

b) Global coo-dinate system

Figure Al. Model coordiate systems and notation.

Step 2. Calculation of specimen position ba:ed on specimen loading.

The position and slope of each point on the specimen must be calculated to
determme how the loading changes with :leformation. The terms involving ¢" and
¢® account for the shortening of the crack length due to hinge rotation as shown in
Figure 2c. The calculation of Y displacemer:t and rotation (¢) are all calculated based on
the deformation that would occur due to the Mode I and Mode II deformation. Each
mode of deformation is scaled by a correciion term (n, and w,, respectively) derived
from the 7 correction term used to calculate strain energy release rate. All deformations
at points C and D are assumed to be associatd with Mode IL
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Step 3. Calculation of global position based on deformed specimen.

To determine the location of the specimen ir the global coordinate system the following
equations are used. The angle between tle local coordinate system and the global
system is obtained for the vertical displacement between the base hinge support and the
right roller support divided by the horizont.l distance. A similar approach is used to
determine the angle of the MMB lever. The global position of point O is determined by
a simple transfer in the coordinate system.

yB_yPin"

6, =0, + Tan™!
oL 1 o

8, =-Tan™!

yA_yC_p"
L

xx° = -XBcos[6, ]+ YBsin[6,]  YY°=-XPsin[8,]- Y BCos[8, |

Step 4 Calculation of specimen loading based on deformed shape.

The loading on the specimen begins by translating the applied load, which is
vertical in the global coordinate system, into the specimen coordinate system. The rest
of the loading is determined by the summing the loads and moments on the lever to
determine the loading at A and C and then on the specimen to determine the loading at B
and D. Note that the loading on a roller is perpendicular to the surface and that no
moment is transferred through the hinges.
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Step 5. Iterate on steps 2-4.

A new displacement is calculated based on tl.e most recent load value, and then a new
loading based on the newly calculated displa:ements. These steps are iterated until all
parameters reach a stable value, which normally only takes a few iterations.

Step 6. Calculation of global terms from stanilized values.

Once final values of loading and displacement of the specimen have been
determined, these stabilized values can be used to calculate toughness values. The
stabilized values can also be transformed into the global coordinate system.

To calculate toughness, the moments at the crack tip applied from the split ends of
the beam are calculated and divided into symmetric and unsymmetric loading (M, and
My, respectively). Assuming superposition of the two modes shown in Figure 1, these
moments are used to calculated the Mode | and Mode II components of toughnesses
using the appropriate % corrections. The equations for moment include a term
containing ¢, which is the correction for :he shortening of the crack length. This
correction is not included in the iterative p.rt of the analysis for two reasons. First it
will be relatively small since the deformatioas are expressed in the specimen coordinate
system. Second, including this third-order effect would lead to accounting for the
sliding of the rollers on the specimen, which would prove difficult in this type of model.
This correction is therefore included as shown here, which should capture the majority
of the effect:
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