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Abstract: The mixed-mode bending test ha_'.been widely used to measure delamination

toughness and was recently standardized by \STM as Standard Test Method D6671-01.

This simple test is a combination of the stal_dard Mode I (opening) test and a Mode II
(sliding) test. This test uses a unidirectionai composite test specimen with an artificial
delamination subjected to bending loads to characterize when a delamination will
extend. When the displacements become large, the linear theory used to analyze the

results of the test yields errors in the calculated toughness values. The current standard

places no limit on the specimen loading and therefore test data can be created using the
standard that are significantly in error. A method of limiting the error that can be
incurred in the calculated toughness values L,.needed. In this paper, nonlinear models of
the MMB test are refined. One of the nonlir, ear models is then used to develop a simple

criterion for prescribing conditions where tht: nonlinear error will remain below 5%.
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Crack length

Specimen width
Lever length
Half thickness of the specimen

Hinge height
nondimensionalized parameters derived in the KIN model

Half span length of the MMB appara_ us
Extensional modulus

Bending stiffness of half-thickness b_am

Applied moment correction paramet¢ r from the KIN model
Strain energy release rate
Shear modulus
Load reacted on the MMB specimen

Applied load to the MMB apparatus

Height of applied load location
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Parameter Definitions
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The location of a point in the local co _rdinate system
Rotation of a point on the test specim,_n (in the global coordinate system)

displacement at the applied load poini
displacement at hinged end of specim_zn

Scaling term for deformation base on individual modes

Rotation of crack tip (and therefore the local coordinate system)

Rotation of the lever in the global coc_rdinate system

defined correction parameters from the KIN model

Slope of the test specimen at a point (in local coordinate system)

Crack length correction factor

anisotropy factor

Change in parameter causing nonline.rity

Parameter pertaining to a give_l location on the specimen
Parameter pertaining to the ap._lied loading location on the MMB fixture

Pertaining to the longitudinal, transverse, and shear, respectively

Pertaining to Mode I or Mode II
Pertaining to the top lever am

Pertaining to the bottom lever arm
estimated value

Pertaining to the combined M)de I and Mode I! strain energy release rate
Parameter expressed in the lo_ al coordinate system

Parameter expressed in the gl.bal coordinate system
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Introduction

The mixed-mode bending (MMB) tes shown in Figure 1 combines the double

cantilever beam (DCB) test which is the stan Jard test for Mode I toughness, with the end
notched flexure (ENF) test[l] for Mode II toughness. This test was standardized by
ASTM in 2001 as the Test Method for Mixed Mode I-Mode II Interlaminar Fracture

Toughness of Unidirectional Fiber Reinforc,'d Polymer Composite (D 6671). Although

originally designed to test the static delamfi,ation toughness of composites, researchers
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Figure 1--Superpoa ;tion of loading modes

have extended the use of the MMB test to fi tigue loading[2,3] and to toughness testing

of adhesives[4].
The two loads shown in Figure 1, which are reacted on the MMB specimen are

applied using a lever so that only one applied load is required. The ratio of the two
loads and therefore the proportion of Mode i and Mode II loading is controlled varying

the length of the lever ann. The advantage_ of the MMB test over other mixed-mode

tests include: (1) the use of a single test specimen configuration to test over almost the

entire range of Mode I to Mode II ratios, (2) a closed form model that is used to

calculate the toughness values from measu_ed quantities, and (3) a mixed-mode ratio

that remains essentially constant during de]amination growth[5]. The original MMB

fixture showed a nonlinearity in the loading curve due to the rotation of the lever. This

nonlinearity caused significant errors in the ¢alculated toughness values and changed the

mixed-mode ratio. This problem was largely alleviated by changing the way in which

the lever was loaded[6, 7]. The modified MS"clB apparatus, shown in Figure 2, loads the

lever slightly above the midplane of the specimen using a saddle/yoke configuration.

This loading height was optimized to reduce the nonlinear errors. The dramatic drop in
the nonlinear error due to this modification ia loading arrangement was confirmed by an

independent analysis on a fatigue version 3f the MMB apparatus[8]. Although this

redesign dramatically reduced the nonlinear

effect, errors could still become significant if

the loading was large enough[9].
The nonlinear errors found when loading

becomes large come from many differei_lt

sources. The most significant sources are

shown schematically in Figure 3. The first

source of error is caused by the crack leng!h

becoming shorter due to large bendi_g

deflections of the specimen. This change _n

apparent crack length causes the applitd

moment at the crack tip to be less th_n

expected because the moment arm to tt_e

loads at the split end of the specimen are

reduced. The calculated toughness therefore Figure 2--ModifiedMMB apparatus



a) Shorter effective crack length due to
Crack Tip Opening
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c) Shorter effective crack length due to
Hinge Height and Specimen Rotation

b) Longer effective lever length due to
Lever Rotation
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d) Horizontal loading at right support due to
Rotation of Loading at Left Support

Figure 3--Source. of nonlinear error

over predicts that which was actually seen b) the test specimen.
The second source of error, shown in tigure 3b, is due to the lever arm changing

with deformation. This changes the moment that is applied to the specimen by the lever.
Because the lever loading point begins sligtbtly above the hinge point, the moment arm

initially increases, but it can eventually drop below its original value. This change in the

lever length can also cause the mixed-mode tatio to change.
The third source of error is a shortenin G of the crack length. Unlike the first source,

this shortening of the crack length is due to the rotation of the specimen where the

hinges attach. Because the hinges are offset from the center line of specimen rotation,
the rotation causes the load point of the hi age to shift horizontally thus reducing the
moment arm of the specimen and consequently the moment loading on the crack tip.

A fourth source of nonlinear error is sl,own in Figure 3d. This error is caused by

the roller loading at the end opposite the hin_:es. As the specimen bends, the slope of the

specimen at the roller changes. Since tide loading is through a roller, it remains

perpendicular to the surface of the specimen and a horizontal load component develops.
Since no horizontal load is applied to the le,,er, the horizontal load from the base roller

must be reacted by the hinge that is also attached to the base. This horizontal load on
the base hinge increases the moment at the crack tip and shifts the mixed-mode ratio. A
similar error is also created by the reaction of the roller in the center of the specimen,

however the rotation of the specimen in the center is much smaller than that at the end

so this error is negligible.
Because of all these sources for nonlin zarity, estimating the error in using a linear

MMB data reduction is complicated. The trle toughness can be greater than or less than

the apparent toughness. The nonlinear effects can also change the mixed-mode ratio. It



is importantthatthesesourcesof nonlinea_errorbecontrolledin somewaysothat
erroneousdataisnotgenerarted.

Kinlochetal. [10]proposedamethodo"correctingforthenonlinearerrorbasedon
nonlinearcorrectionproposedbyWilliams[J1] for this type of bending specimen. This
method only corrected for the nonlinear err.)r associated with crack length shortening

(source 1 shown in Figure 3a). The method calls for estimating the shortening of the
crack length based on measurements of tt_e opening displacement between loading

hinges. A correction to the toughness value calculated from linear theory could then be
made.

Sainath[9] used this correction when analyzing test data from T800H/3900-2

composite material. This material is quite to_tgh so the applied loading in these tests was
quite high. For such a tough material, the :alculated delamination fracture toughness
from the linear model was reported to be in error by as much as 6.5%. The largest errors

occurred in the region where Mode II was dominant. These results showed that the
current ASTM standard which does not include corrections for nonlinear errors could

produce data which is significantly in error when testing very tough composites. This

problem is expected to become worse as even tougher composites are developed.
The model used by Sainath[9] only c, wrects for crack length shortening due to

opening displacement. In the current paper 5 different data reduction schemes for the

MMB test are presented. One of these sche nes uses a new iterative nonlinear analysis
which accounts for all of the sources of trror identified in Figure 3. An example

problem is then used to highlight differences between the 5 data reduction schemes. The
iterative nonlinear model, which is assumed to be the most accurate, is then used to
formulate a criterion which limits the nonliaear error to a small value so that a linear

model can be used.

Analyses of the MMB Test

Five different data reduction schemes a_e compared in this paper. The linear model

(LN) will be used as the baseline because i_ is the basis for the data reduction scheme
that is called for in the ASTM standard. Tile basic beam theory model (BT) is also a
linear model derived from Euler-Bernuli bedim theory but without correction terms that
are found in the LN model. This model will be used to help explain some of the

characteristics of the nonlinear models. The iterative nonlinear model (NL) accounts for
all four of the sources of nonlinear error identified in Figure 3, and therefore, it is

believed to be the most accurate of the 5 models presented. The Kinloch model (KIN) is

a nonlinear model that accounts for crack ler, gth shortening shown in Figure 3a. Finally,
the modified Kinloch model (MK) corrects the KIN model for some deficiencies that

will be described in the paper. Figure 4 shows many of the model parameters which will
be used in the following sections.

Linear Model (LN)
The linear model is used to derive the equations used in the ASTM standard and is

the basis against which the others will be compared. The equations are based on basic

beam theory but are adjusted for deforn_ation near the crack tip that causes the
displacements (and G) to be larger than that predicted from basic beam theory. The

corrections proposed by Williams[l/] are b_sed on a curve fit to FEM results where the
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Figure 4--Diagram of MMB apt aratus showing model parameters.

magnitude of the deformation of a Mode I sl,ecimen corresponds to a specimen with the
crack length artificially increased by ×h. The x parameter is a function of the in-plane

and the out-of-plane elastic moduli of the g_aphite composite material, and h is the half
thickness of the specimen. The correction t_ the Mode II deformation was found to be
similar but the effective increase in crack It ngth was found to be 0.42xh [12]. The qx

and tin parameters (defined under parameter definitions in the nomenclature section) are
used to scale the Mode I and Mode II deformations to account for the corrected crack

lengths. The following equations were usel to calculate displacements, rotations, and

strain energy release rate values:

b PappliedLJ3c-L_ 2 3 2 ] (1)=_[u,_--_) a rll+(c+L]_L , \(2L3+3a3)rh'

bab 3EI l_ 4L ] ]

(2)

oA +( / (3)

B_pp,,c,I,o_3c-L_a-3L_2(c,_//L3_3a'-a3_]a 32E1 [_-[_---)_--)a "q,+ --_---- • _ )rill (4)

 ppl,ed',6 3c-L 'a3'(c ] (5)



GI__

p2
applied

b EI 3c_L 2 3,2()264b ,Lapplied C (a +0.42xh) 2(a + xh) 2 GII = +L
-TUj

(6)

Basic Beam Theory Model(BT)
The most basic model of the MMB spe,:imen based on Euler-Bernuli beam theory.

Results from basic beam theory are created by using the linear model equations but with

x set to 0. (rh and rlH therefore become 1)

Iterative Nonlinear Model (NL)
The linear model predicts deformations based on the loading applied to the

specimen. The deformations change the loa{1ing on the specimen so the nonlinear model
iterates until a deformation is obtained whicll is consistent with the loading that created

it. The model uses a local coordinate sy'_tem defined by the crack tip to describe

displacements. The choice of coordinate system reduces rotations that can cause
nonlinear error. The equations used in the qL model start with the basic beam theory

equation. The deformations are separated ir,to Mode I and Mode II components so that

they can be scaled by the appropriate factor using the Williams z corrections[l/]. Once
a converged deformed shape is obtained, a s.acond correction is made to account for the

shortening of the crack length due to large bending deformations. This is based on a
formulation which was also proposed by Wi:lliams[l 1]. The nonlinear model is similar
to the nonlinear model used when the mix_ d-mode bending fixture was redesigned to

minimize nonlinear errors[6] but differs in tile treatment of deformation about the crack

tip. The iterative nonlinear model found in reference [6] also did not include the crack

shortening correction which has been ad,led to the current model. The iterative
nonlinear model is given in the Appendix.

Kinloch Model (KIN)
The Kinloch model[10] uses the correction proposed by Williams[l/] to correct for

the shortening crack length. Other sources of nonlinear error are not considered. The

implementation of this correction calls for tBe measurement of the Mode I opening (Sab)

during the MMB test (Figure 4). This openng displacement is then used to predict the
rotation of the crack tip and rotation of the specimen at each hinge. These rotations are
used to predict the shortening of the crack iength due to the large beam deformations.

The shortening of the crack length causes _he loading at the crack tip to change, and
therefore, the value of GT also changes. To ,:orrect the toughness value, the moments on

the upper and lower arms are scaled (Fa and fb, respectively) to correct for shortening of
the lever arm. In this paper, the lab input into the model was taken from the NL model.

The following model is presented fr{ m Kinloch et al.[10] and is presented in

exactly the same form as the original ext ept that the notation was modified to be
consistent with the rest of the notation in thL, paper. This includes substituting 2L for the

full span length and L for the distance between the center roller to the hinge. These
were originally distinct values since the derivation was for an apparatus with an

unsymmetrical span length.
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Modified Kinloch Model (MK)

One more model will be developed based on the Kinloch model[lO] but modified as

suggested by results from the example problem presented in the next section. Equations

15-18 are substituted for equations %10 in the previous model, respectively. The

changes to the previous equations are clearly marked. The addition of the L 3 term in

equation 16 is the inclusion of a term that had inadvertently been dropped in the original
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Comparison of Data Reduction M, _dels Using a Numerical Example Problem

To first explore these models the t_st case presented by Sainath[9] will be
investigated. The numerical values to be used

Table 1--Example numerical values in the example problem are given in Table 1.
Parameter Value N_tice that the value of V and h* were not

Eli 142 GPa (20.6 Msi) given in the original paper and so typical

E22 10.5 GPa(1.53 Msi) wlues were chosen. The toughness results

Gn2 4.1 GPa(0.6 Msi) calculated from the linear (LN), nonlinear

L 51 mm (2.00 in) (_ L) and Kinloch (Kin) models are shown in

a 25.5 mm (1.004 in.) Tt,ble 2. Both Gv and G./Gv are calculated

b 25.48 mm (1.003 in) for each method. The percent deviation form

h 1.5 mm (0.057 in) thz linear model is also calculated for each

h* 2.5 mm (0.1 in) ncnlinear prediction. The deviation from the

V 15 mm (0.6 in) li_Lear model can be thought of as the
predicted error caused by ignoring the

nonlinear effects. In all cases, the predictioi of Gv by the KIN model is smaller than the

linear model while the prediction of the Nll model is larger than the linear. Also, the

magnitude of the deviation predicted by th_ KIN model is generally twice as great as
that from the NL model. Note that a prediction at 100% Gn/GT cannot be made with the

KIN model because it uses a Mode I displacement as input which goes to 0 at 100%

G./Gv.



Table2--Toughnessre: ults from nonlinear models

GII/G T c P_pliea
% mm N

40 48.6 334

60 36.3 504

80 27.1 727

100 16.8 1213

G T

kJ/m 2

GIJGT
%

LN NL KIb MK LN NL KIN MK

1.27 1.29 1.23 1.25 41.9 40.1 41.9 41.9

59.7 56.9 60.0 59.9

81.0 78.9 81.1 81.1

1009 99.5 - --

1.55 1.60 1.48 1.50

2.05 2.13 1.79 1.82

3.25 3.30 - --

To understand why the predictions of the KIN and NL models are so different the

predicted displacements were examined. T.ble 3 shows three different displacements:

1) 6._, the vertical displacement between th_ hinges which is associated with a Mode I

deformation; 2) al= (d-aS)/2, the difference n slope between the top and bottom hinge,

which corresponds to the angle if the entire loading were in Mode I; and 3) a. = (etA+orB)/2,

the average of the top and bottom slope at the hinges, which is dominated by the Mode

II deformation t. The displacements are shown for the linear (LN), beam theory (BT),

nonlinear (NL), and Kinloch (KIN) models. The deviations from the LN model are also

calculated and displayed in the table.

Comparison of the deformation value s shows that BT model significantly under

predicts (-30%) the Mode I deformation fronl the LN model while agreeing on the Mode

II deformation reasonably well. The NL model is believed to provide the most accurate

prediction of deformation and the results sh,_w there is little difference between the NL

and LN model predictions of deformation, l'he one exception is that when the Mode I

component was small, the deviation in Mode I displacement could become significant

(13% and larger). The KIN model agrees with the LN model (and therefore the NL

model) in the Mode I deformation but sho_ s very significant deviation on the Mode II

prediction (64-86%). Two reasons were fouad for this discrepancy in Mode II. First, in

the original derivation of the KIN model[10], the equation used to describe the rotation

at the crack tip (, °) which was derived usiag basic beam theory was found to have a

missing term. Equation 16 shows how thi,_ L 3 term is added into the equation for ,o

Second, the KIN model uses the measured value of 6,_ to predict the slope of points A,

B, and O on the specimen based on basic beam theory. Because basic beam theory

grossly under-predicts Mode I deformation, when the Mode I deformation (6,,_) is used

as input, the resulting predictions of the Mode II deformation (such as a,= (d+as)/2) is

largely over-predicted. The large over prediction of the Mode II deformation pattern

caused the predicted error in GT to be worse than is actually the case.

The two previously discussed probleJas with the KIN model were fixed in the

Modified Kinloch model (MK). In this m._del the missing term in the a° equation is

added and deformations are predicted using the X crack length correction terms which

an is not completely mode 11 because of a contri _ution made by a rigid body rotation of the mode I

deformed body required to keep the far end of he specimen on the roller at point D.



Table 3--Displacement re_'ults from nonlinear models

GJGII 6,, a t= "tl3I.A-I_ Ir )/2 ctH= ""'_taA+ct"J/z
% mm

LN BT NL LN BT NL KIN MK LN BT NL KIN MK

4O
Devladon

8O

]oo

2.21 1.55 2.29

2.06 1.45 2.18

..... 6 i;,

1.56 1.09 1.78

0 0 0.38

0.068 .048 0.071 0.070 0.070

0.062 0.044 0.068 0.066 0.066

0.047 0.043 0.055 0.054 0.054

0.000 0.000 0_)128 0.0116 0.0116

0.098 0.092 0.100 0.161 0.101

0.124 0.119 0.127 0.214 0.132

0.155 0.150 0.159 0.289 0,176

0.214 0,209 0.221 Large Large

were used in the LN model. Table 3 shows that the MK model does a reasonably good

job of predicting both the Mode I and Mod,:, II deformations. Table 2 also shows that
these modifications to the KIN model cause the predicted deviation from the LN model

to be cut by half in this test case. The MK model predicts the error caused by ignoring
the nonlinear effect on GT to be less than 4% in all cases.

Several problems remain with the MK model. First, it only models the nonlinear

problem of crack length shortening due to beam deformation. There are several other
sources of nonlinear error. Since in this te'st case the MK model always predicted a

negative deviation in Gv while the NL model always predicted a positive deviation, the
phenomenon modeled by the MK model doe_ not even appear to be the dominant effect.
A second problem with the MK model i_ that it is based on a measured Mode I

displacement, which causes problems in the high Mode II region. To a first order
approximation at a given mixed-mode condi!ion, the correction to G_ (LN) predicted by
the MK model can be shown to be proportional to the measured value of 6o_ squared

(Correction Factor:Constant (6_,) 2 ). When Gii/GT approaches 1, 6,_ approaches 0. This

might not cause a problem if the error in G r also went to zero but the error in Gm can

remain large, so the constant value must become very large. Under this condition small
errors in the measured 6o_ can produce large errors in the MK model predictions of Gv.

Finally at GH/GT=I, 6_ =0 and the correctio_a cannot be used even though the error due

to the shortening crack length remains. Thi,' makes the Mode II value inconsistent with
the other calculations of toughness. A third Jrawback to using the MK correction is that

it requires that an extra measurement be made during the test. Each extra measurement
adds complexity to the test method. For th_ preceding reasons neither the KIN nor the
MK corrections are recommended when anal yzing MMB test results.

The NL model is believed to provide _ better estimate of the nonlinear problems,
but it is too complicated to be of general t_se in determining delamination toughness.

Fortunately the nonlinear problem does no: seem to be as significant as first thought
based results that were generated using the KIN model. In time however, materials that

are so tough that nonlinear errors do becon:,e significant may be developed. Currently
available materials tested with a poorly dr;signed test specimen (i.e. one that is too

compliant) could also result in toughness values that contained significant errors.
Because of this, some way of avoiding the nmlinear errors without requiring an analysis
such as the NL model is needed.



A New Nonlinear Error Avoidance Criterion

One method to avoid nonlinear errols would be to develop correction factors

predicted using the NL model which ha,/e been plotted based on a few critical

parameters. Unfortunately the nonlinear err,)rs in this problem are influence by a large
number of parameters. The most significant influences seem to come from the

following parameters:

Normalized lever position therefore mix zd-mode ratio (c/L _ G_I/GT)

Applied load and therefore toughness (P ,pplicd _ GT)

Specimen stiffness (EI)
Normalized crack length (a/L)

Span length (L)
Normalized hinge height (h*/L)

Normalized lever loading height (V/L)

Each of these parameters affects one or mor.r of the sources of nonlinear error shown in

Figure 3 and the effect of each of these pararaeters is shown in Figure 5. In Figure 5, the
error in a GT value calculated using the LN model is plotted versus G,/GT. which is

varied by varying the normalized lever lengtil (c/L). For each of the other parameters, a
nominal value is chosen at a level similar to that studied in the example problem. Each

parameter was then varied to values above _nd below the nominal value. The range of
bending stiffness (EI) was attained by keepi_g modulus at 138 GPa (20 Msi) and letting
h take on the values of 1.1, 1.5, and 2.2 mm 0.045, 0.06 and 0.085 in. respectively) with

1.5 mm (0.06 in.) being the nominal value. In Figure 5, the first plot shows the error

with all parameters at their nominal value and also with all possible variations. This plot
shows that the nonlinear error in the nominal case is quite small, but when all the

possible variations are considered, the error can become quite large (much greater than

10%).
To understand how the large errors wete produced, each parameter was considered

individually. A plot was made with each parameter showing how varying just the one

parameter above and below the nominal value effected the nonlinear error. On each of
these plots, the possible errors produced b3 holding the one parameter at the nominal
value while changing all the others was also shown. From these plots, it is clear that,

with the exception of the small bending stifftless case, no one variation from the nominal
creates an overriding amount of error. It ca_ also be seen that the error can remain quite

large if only one parameter is tightly controlied. The variations in the shapes of the error
curves and the fact that the values are positive and negative indicates that the variables

are interacting in complex, often compensating ways and no simple way of estimating
the error based on these variables was found

A simple way of avoiding large errors dae to nonlinear deformation, however, was
found. Although each parameter effects the error directly and interacts with the other

parameters to effect the error indirectly, the ,='rror in all cases is due to the deformation of
the test specimen. Figure 6 shows values of normalized applied displacement (6/L)

required to exceed a nonlinear error of -5%. Here the applied load and therefore GT is
varied to achieve the deformation, and one parameter, the V/L value, is constrained at

the nominal value (0.3). All other variables ire varied over the range already given in
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Figure 5. From this plot, it is clear that the curves are greatly consolidated, and it is

possible to define a lower bound where the lerrorl will not be greater than 5%. If the
nonlinear error is less than 5%, then in a linear problem the predicted load for

delamination growth would only be off by 2 5%. This error is small enough that it can

normally be considered negligible. This non] inear error avoidance criterion is:

iS/L < 0.27 - 0.06 GII/GT (19)

The nonlinear avoidance criterion is valid _ver the entire range of mixed-mode ratios

and crack lengths over which the MMB test can be conducted (0.2 < Gn/GT <1.0, 0.475

< a/L <0.9) but requires that the load point 'aeight be set to V/L-- 0.3. The criterion is
sensitive to hinge height so the hinge height :_hould not be greater the range studied here

(h*/L < 0.075). The bending stiffness (El) a_d the half span length (L) were both varied

over a wide range so their values are not beli, wed to be as critical.
Figure 7 shows the values of toughness that are attained using the nonlinear error

avoidance criterion. This shows that the t,:st parameters, which are chosen have an

overriding influence on the toughness values that can be attained before the nonlinear
error avoidance criterion is violated. It also _hows that the toughness values that can be

attained in the high Mode I region is much less than that which can be attained in the

high Mode II region. Because Mode I tou_ hness is rarely more than 0.9 kJ/m 2 (5 in-

lb/in 2) while Mode II fracture toughness can be four times that amount, the lower values

of toughness attainable in the high Mode I r_-gion will normally not be a problem. The
high values of toughness attainable with th,-' nominal test parameters indicates that by
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picking reasonable specimen parameters, the toughness of extraordinarily tough
materials can be measured. On the other hand by picking the test parameters poorly, the

cutoff displacement for nonlinear error woLid be reached before attaining the critical

toughness for even moderately tough m_terials. The linear equation for MMB
deformation given as equation 20 can be u_ed to predict when the displacement will
become large enough to violate the nonlinear error avoidance criterion and can also be

used as a guide for choosing test parameters where nonlinear errors will not be

significant. Generally by keeping the specimen thickness in the nominal range or higher
and by not making the specimen length (L) higher than normal, the error due to

nonlinearity will not be a problem.

p.s,[4 3cL,2 a h ,3 /c+LtW.3 a+042h  3)]
5cst 8bEllh 3L 2

(20)

where

Pest =

. 4GT ,2El 1 h3L 2
(3c- L)2(a+ hX) 2 " 3(c + L)2(a + 0.42hx) 2

(21)

It is possible that the mixed-mode ratio could be significantly in error even though
the error in GT is small. As a final check, t igure 8 shows the error in Gn/GT when the
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loading on the MMB test reaches the nonlinear error avoidance criterion. It is clear that,
in all cases studied, the applied displacemew criterion also restrains the error in mixed-
mode ratio to a small value. In all but a few ,_xtreme cases, the deviation from the linear
values is less than 5%. The nonlinear avoid_nce criterion can therefore be used to limit

the use of the MMB test to conditions where the linear model accurately calculates both

the Gr and the GH/Gv values.

Conclusions

The new test standard for mixed-mode _elamination toughness (ASTM D 6671-01)

had previously been shown to incur significant errors due to geometric nonlinearity
when testing very tough materials. A nonlinear model was created that modeled several

sources of geometric nonlinear error. The magnitude of these errors was shown to be

significantly less than had previously been reported, but with very tough materials or
with very compliant test specimen, nonlin_:ar errors could become significant. The
magnitude of the nonlinear error was showr_ to be a complicated function of many test

parameters, including: material toughness, the mixed-mode ratio, the specimen bending
stiffness, the specimen length, the height of _he loading hinge, and the height of applied

load. A very simple nonlinear error avoid_mce criterion was developed based on the
magnitude of the displacement at the appliec_ load. All the test parameters were allowed

to vary over a significant range except for tie height of the applied load, which was set
at V/L = 0.3 above the hinge attachment point, and the height of the hinge is less than
h*/L < 0.075. The nonlinear error should gtneralty not be a problem, but equations are

presented which can be used to redesign ate _t specimen where the applied displacement

become large enough to violate the nonlinea_ error avoidance criterion."
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Appendix Nonlinear Iterative Model (NL)

The nonlinear model is similar to the mc,del presented by Reeder and Crews[6] with

a couple of significant changes:

1. The deformation equations derived fron, beam theory must be corrected for shear
deflection and for rotations that occur a_ound the crack tip. In the original model,

corrections based on a beam on elastic f_undation analysis[13] and including shear

deformation[14,15] were used. In tbz current model, corrections originally

suggested by Williams[/1,12] employing the X crack length correction terms which
are based on a curve fit to finite element results. These Williams corrections are

used because they have been shown to :_e more accurate[16] and to be consistent
with the equations from the ASTM stal dard which uses the X parameters. Since
these corrections were formulated for the Mode I and Mode II tests, to apply them to

the MMB test, the deformation had t_ be divided into a Mode I and Mode II

component.
2. The nonlinear correction for the crack leagth shortening suggested by Williams[/1]

was included in the current analysis.

It was convenient to use two different c,_ordinate systems in this model as shown in

Figure A1. The origin of the first is located at the crack tip and is termed the specimen
coordinate system. Positions in this coordi late system are signified by X and Y, and

parameters expressed in this coordinate system are indicated by a superscript X or Y.
The term q_is used to refer to the slope ot the specimen in the specimen coordinate

system. Superscripts of A, B, C, D, or O lefer to the position on the specimen. The
origin of the second coordinate system is at point B with a reference angle parallel to the

base of the apparatus. This coordinate system is termed the global coordinate system
because it corresponds to the frame of reference that would normally be observed in

testing. Note that 0o is the angle between the two coordinate systems.

Step 1. Initial position and loading of specimen
The following load values were used to initiate the iterative analysis. These

equations can be obtained from summing forces and moments on the lever and the

specimen before any deformation occurs. Note that initially the two coordinate systems
will be identical except for a shift in origin fi om point O to point B.

c pB = I applied L - cpAy-- Papplied_ Y 2L

c+L pD L+c
pC = -Papplied _ = - Papplied --Y L Y 2L

3c-L L+c

PI -- Papplied 4L PII = Patplied --_

pA=pB =pC =pD=0
X X X X
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b) Global coo,dinate system

Figure A1. Model coordl,rate systems and notation.

Step 2. Calculation of specimen position ba,, ed on specimen loading.
The position and slope of each point on the specimen must be calculated to

determine how the loading changes with ,ieformation. The terms involving qbA and

q_Baccount for the shortening of the crack length due to hinge rotation as shown in

Figure 2c. The calculation of Y displacemeI t and rotation (q_)are all calculated based on
the deformation that would occur due to tl-,e Mode I and Mode II deformation. Each

mode of deformation is scaled by a correclion term (rh and rh, respectively) derived

from the X correction term used to calculate strain energy release rate. All deformations

at points C and D are assumed to be associat,_'d with Mode II.

h", = _-_11 + 1-_-E_-.qu +h+

qbA P1 a2 PII a2=5-fi-_t +--fff'l I



xB: h') y _ _ PIa3 PII a3 •
= 3EI 111 + 1-'_1qll -h-h

_B Pla2 + Plla2 !]
=- 2E---'_ rll 8EI il

a-L ( PC (L-a)3 pD(L- a)2(5L- 2a)]

[PC (L-a) 2 PyD(L -,,)(3L -a))

xD__a_2L yD [Pyc(L-a):_(5L-2a) pD(2L-a)3] /= 481 _--_ + _EI -jI] II - h

*°--- + -in16EI II

/

Step3. Calculation of global position based on deformed specimen.
To determine the location of the specimen ir the global coordinate system the following

equations are used. The angle between tie local coordinate system and the global

system is obtained for the vertical displacement between the base hinge support and the

right roller support divided by the horizontal distance. A similar approach is used to

determine the angle of the MMB lever. The global position of point O is determined by

a simple transfer in the coordinate system.

0°=-Tan-l[ YB-YD+h*]2L 01 = 00 + Tan_lI.yA _ YCL- h*]

XX°---XBCoS[0o]+',' Sin[0o]Y','°o-XBSin[0o]-""CoS[0o]

Step 4 Calculation of specimen loading bast d on deformed shape.

The loading on the specimen begins by translating the applied load, which is

vertical in the global coordinate system, intt, the specimen coordinate system. The rest

of the loading is determined by the summing the loads and moments on the lever to

determine the loading at A and C and then oll the specimen to determine the loading at B

and D. Note that the loading on a roller is perpendicular to the surface and that no

moment is transferred through the hinges.



pV =0 pF =-Papplied
XX Y _'

 osEOol+   inE0ol  inE°o]+ Cost0ol
X Y XX YY

pC = __CpC
X Y Y (XC_XA)+ C(yC_yA)

pA = pF _ pC
X X X

pA =pF _pC
Y Y Y

pD=

Y

pB =-pD-pC-pA pB =_pD_pC_pA
X X X X Y Y Y Y

Pl -- (pa_pB)/2 Pu = 2(PA +PB)
Y Y Y Y

Step 5. Iterate on steps 2-4.

A new displacement is calculated based on tie most recent load value, and then a new

loading based on the newly calculated displa,-ements. These steps are iterated until all

parameters reach a stable value, which normadly only takes a few iterations.

Step 6. Calculation of global terms from sta,'filized values.
Once final values of loading and displacement of the specimen have been

determined, these stabilized values can be used to calculate toughness values. The

stabilized values can also be transformed int_, the global coordinate system.

To calculate toughness, the moments at the crack tip applied from the split ends of

the beam are calculated and divided into symmetric and unsymmetric loading (Mj and

Mm respectively). Assuming superposition of the two modes shown in Figure 1, these
moments are used to calculated the Mode l and Mode II components of toughnesses

using the appropriate X corrections. Tt-,e equations for moment include a term

containing q_,which is the correction for _he shortening of the crack length. This

correction is not included in the iterative part of the analysis for two reasons. First it

will be relatively small since the deformatioqs are expressed in the specimen coordinate

system. Second, including this third-order effect would lead to accounting for the

sliding of the rollers on the specimen, which would prove difficult in this type of model.
This correction is therefore included as sho.a,n here, which should capture the majority

of the effect:



M1= MA - M B
2

M 2

= __1_I 1
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2
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