A Collection of Nonlinear Aircraft Simulations in MATLAB

Frederico R. Garza
George Washington University
Joint Institute for the Advancement of Flight Sciences
Langley Research Center, Hampton, Virginia

Eugene A. Morelli
Langley Research Center, Hampton, Virginia

January 2003
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA counterpart of peer-reviewed formal professional papers, but having less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or co-sponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results ... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA STI Help Desk at (301) 621-0134
- Phone the NASA STI Help Desk at (301) 621-0390
- Write to:
 NASA STI Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076-1320
A Collection of Nonlinear Aircraft Simulations in MATLAB

Frederico R. Garza
George Washington University
Joint Institute for the Advancement of Flight Sciences
Langley Research Center, Hampton, Virginia

Eugene A. Morelli
Langley Research Center, Hampton, Virginia
The use of trademarks or names of manufacturers in the report is for accurate reporting and does not constitute an official endorsement, either expressed or implied, of such products or manufacturers by the National Aeronautics and Space Administration.
Table of Contents

TABLES.. iv
FIGURES... v
ABSTRACT... vi
NOMENCLATURE.. vii

SUPERSCRIPTS:... x
SUBSCRIPTS:.. x
NON-DIMENSIONAL DERIVATIVES:.. xi

Longitudinal .. xi
Lateral / Directional ... xi

I. INTRODUCTION ... 1

II. EQUATIONS OF MOTION ... 2

ASSUMPTIONS .. 2
COLLECTED EQUATIONS OF MOTION.. 2
ENGINE MODEL... 6
AERODYNAMIC MODEL.. 7
ATMOSPHERIC PROPERTIES ... 7
AIRCRAFT STATES AND CONTROLS... 8

III. GENERAL SIMULATION TOOLS ... 9

TRIM.. 9

LINEARIZATION.. 11
 Detailed Linearization Example ... 12

NUMERICAL INTEGRATION.. 15
 Euler’s Method .. 16
 Runge-Kutta Method of Order Two .. 16
 Runge-Kutta Method of Order Four ... 17
 Adams-Bashforth Method of Order Three .. 17
 Detailed Numerical Integration Example ... 17
IV. AVDS / MATLAB INTERFACE ... 21

EQUIPMENT / REQUIREMENTS ... 21

SOFTWARE INSTALLATION ... 21

INTERACTIVE SIMULATION ... 22

Joystick Control Input ... 23

Initial States for Interactive Simulation ... 23

AVDS / MATLAB Piloted Simulation Software .. 24

Stick Gain Modification ... 26

Control Deflection Exaggeration Factor .. 27

Integration Routine .. 27

Starting the AVDS / MATLAB Simulation ... 27

V. SPECIFIC AIRCRAFT SIMULATION DETAILS .. 29

F-16 SIMULATION .. 29

Aerodynamic Model and Database .. 30

Engine Model and Database ... 31

Mass Properties ... 33

F-106B SIMULATION .. 33

Aerodynamic Model and Database .. 34

Engine Model and Database ... 35

Mass Properties ... 35

F-14 SIMULATION .. 36

Aerodynamic Model and Database .. 37

Engine Model and Database ... 39

Mass Properties ... 39

F-4 SIMULATION ... 39

Aerodynamic Model and Database .. 40

Engine Model and Database ... 45

Mass Properties ... 45

FASER SIMULATION ... 45

Aerodynamic Model and Database .. 46

Engine Model and Database ... 48

Mass Properties ... 49

HL-20 SIMULATION ... 49

Aerodynamic Model and Database .. 50

Dynamic Equations ... 53

Mass Properties ... 53
Tables

Table 1. Mass Properties of the Simulated F-16 .. 33
Table 2. Mass Properties of the Simulated F-106B ... 36
Table 3. Mass Properties of the Simulated F-14 ... 39
Table 4. Mass Properties of the Simulated F-4 ... 45
Table 5. Mass Properties of the Simulated FASER .. 49
Table 6. Mass Properties of the Simulated HL-20 ... 54
Table 7. Mass Properties of the Simulated X-31 .. 58
Table 8. Mass Properties of the Simulated A-7 .. 61
Table A-1. F-16 Simulation Package (Directory name: F-16) 70
Table A-2. F-106B Simulation Package (Directory name: F-106B) 71
Table A-3. F-14 Simulation Package (Directory name: F-14) 72
Table A-4. F-4 Simulation Package (Directory name: F-4) 72
Table A-5. FASER Simulation Package (Directory name: FASER) 73
Table A-6. HL-20 Simulation Package (Directory name: HL-20) 73
Table A-7. X-31 Simulation Package (Directory name: X-31) 74
Table A-8. A-7 Simulation Package (Directory name: A-7) 74
Figures

<table>
<thead>
<tr>
<th>Figure</th>
<th>Description</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FIGURE 1</td>
<td>Flowchart for Numerical Linearization</td>
<td>12</td>
</tr>
<tr>
<td>FIGURE 2</td>
<td>Flowchart for Nonlinear Simulation</td>
<td>16</td>
</tr>
<tr>
<td>FIGURE 3</td>
<td>Elevator Perturbation</td>
<td>18</td>
</tr>
<tr>
<td>FIGURE 4</td>
<td>AVDS Aircraft State Initialization Window</td>
<td>24</td>
</tr>
<tr>
<td>FIGURE 5</td>
<td>Interactive Simulation Flowchart</td>
<td>25</td>
</tr>
<tr>
<td>FIGURE 6</td>
<td>Screen Shot of the F-16 AVDS / MATLAB Interactive Simulation</td>
<td>26</td>
</tr>
<tr>
<td>FIGURE 7</td>
<td>Three-View of the F-16</td>
<td>30</td>
</tr>
<tr>
<td>FIGURE 8</td>
<td>Three-View of the F-106B</td>
<td>34</td>
</tr>
<tr>
<td>FIGURE 9</td>
<td>Three-View of the F-14</td>
<td>37</td>
</tr>
<tr>
<td>FIGURE 10</td>
<td>Three-View of the F-4</td>
<td>40</td>
</tr>
<tr>
<td>FIGURE 11</td>
<td>Three-View of the FASER</td>
<td>46</td>
</tr>
<tr>
<td>FIGURE 12</td>
<td>Three-View of the HL-20</td>
<td>50</td>
</tr>
<tr>
<td>FIGURE 13</td>
<td>Three-View of the X-31</td>
<td>55</td>
</tr>
<tr>
<td>FIGURE 14</td>
<td>Three-View of the A-7</td>
<td>59</td>
</tr>
<tr>
<td>FIGURE 15</td>
<td>Three-View of the MiG-15 Aircraft</td>
<td>63</td>
</tr>
<tr>
<td>FIGURE 16</td>
<td>Front and Rear Fuselage Openings</td>
<td>64</td>
</tr>
<tr>
<td>FIGURE 17</td>
<td>Modeled MiG-15 Fuselage Section</td>
<td>64</td>
</tr>
<tr>
<td>FIGURE 18</td>
<td>3-D Model with Wing, Tail, and Control Surfaces</td>
<td>65</td>
</tr>
<tr>
<td>FIGURE 19</td>
<td>Model with Wire Frame Canopy</td>
<td>65</td>
</tr>
<tr>
<td>FIGURE 20</td>
<td>Completed 3-D MiG-15 Model</td>
<td>66</td>
</tr>
<tr>
<td>FIGURE 21</td>
<td>Input Screen for ACNAME.SIM.INI</td>
<td>67</td>
</tr>
</tbody>
</table>
ABSTRACT

Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Subscale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.
NOMENCLATURE

\(\alpha \) angle of attack, deg or rad

\(\beta \) angle of sideslip, deg or rad

\(\Delta t \) numerical integration time step, s

\(\delta_{a, left} \) left aileron control surface deflection, deg

\(\delta_{a, right} \) right aileron control surface deflection, deg

\(\delta_a \) aileron control surface deflection = \(\left(\delta_{a, right} - \delta_{a, left} \right)/2 \), deg

\(\delta_c \) canard control surface deflection, deg

\(\delta_{df} \) differential flap deflection, deg

\(\delta_e \) elevator control surface deflection, deg

\(\delta_{lf} \) leading edge flap deflection, deg

\(\delta_{lg} \) landing gear deflection, deg

\(\delta_{nf} \) negative flap deflection, deg

\(\delta_{pf} \) positive flap deflection, deg

\(\delta_r \) rudder control surface deflection, deg

\(\delta_{sb} \) speed brake deflection, deg

\(\delta_{sp} \) symmetric wing spoiler deflection, deg

\(\delta_{tf} \) trailing edge flap deflection, deg

\(\delta_{th} \) throttle deflection

\(\delta_{th, left} \) left engine throttle deflection

\(\delta_{th, right} \) right engine throttle deflection

\(\delta_{tv} \) outboard thrust-vectoring paddle deflection, deg

\(\Phi \) Euler roll angle, rad
\(\gamma \) flight path angle, rad
\(\Theta \) Euler pitch angle, rad
\(\rho \) atmospheric density, slug/\text{ft}^3
\(\tau_{\text{eng}} \) engine power level time constant, s
\(\Psi \) Euler yaw angle, rad
\(\omega_{\text{eng}} \) angular velocity of the engine rotating mass about the X body-axis, rad/s
\(a_X \) linear acceleration along X body-axis, g
\(a_Y \) linear acceleration along Y body-axis, g
\(a_Z \) linear acceleration along Z body-axis, g
\(A \) system matrix
\(b \) wing span, ft
\(B \) input matrix
\(\bar{c} \) mean aerodynamic chord, ft
\(C \) output matrix
\(c \) vector of mass / inertia properties
\(c_1, \ldots, c_9 \) inertia constants
\(C_A \) non-dimensional axial force coefficient, \(C_A = -C_X \)
\(C_D \) drag coefficient
\(C_{D_{\text{min}}} \) minimum drag coefficient
\(C_I \) non-dimensional rolling moment coefficient
\(C_L \) lift coefficient
\(C_{L_{\alpha}} \) lift-curve slope
\(C_m \) non-dimensional pitching moment coefficient
\(C_N \) non-dimensional normal force coefficient, \(C_N = -C_Z \)
\(C_n \) non-dimensional yawing moment coefficient
\(C_X \) non-dimensional X body-axis force coefficient
\(C_Y \) non-dimensional Y body-axis force coefficient
C_Z non-dimensional Z body-axis force coefficient
D feed-through matrix
g earth gravitational acceleration = 32.174 ft/s2
h altitude above mean sea level, ft
h_{eng} engine angular momentum about X body-axis, slug-ft2/s
I_{eng} X body-axis moment of inertia for the engine rotating mass, slug-ft2
I_X X body-axis moment of inertia, slug-ft2
I_{XZ} X-Z body-axis product of inertia, slug-ft2
I_Y Y body-axis moment of inertia, slug-ft2
I_Z Z body-axis moment of inertia, slug-ft2
m aircraft mass, slugs
M Mach number
$O(\cdot)$ order
p X body-axis angular velocity component, rad/s
P_c commanded engine power level, percent
P_a actual engine power level, percent
q Y body-axis angular velocity component, rad/s
q dynamic pressure, lb/ft2
r Z body-axis angular velocity component, rad/s
S wing reference area, ft2
T engine thrust, lb
T^* temperature factor
T_{idle} idle engine thrust, lb
T_l rolling moment about X body-axis generated by thrust, ft-lb
T_m pitching moment about Y body-axis generated by thrust, ft-lb
T_{max} maximum engine thrust, lb
$T_{max,ab}$ engine thrust with maximum afterburner, lb
\(T_{mil} \) military engine thrust, lb
\(T_{min,ab} \) engine thrust with minimum afterburner, lb
\(T_n \) yawing moment about Z body-axis generated by thrust, ft-lb
\(T_X \) X body-axis thrust component, lb
\(T_Y \) Y body-axis thrust component, lb
\(T_Z \) Z body-axis thrust component, lb
\(u \) X body-axis translational velocity component, ft/s
\(u \) control vector
\(v \) Y body-axis translational velocity component, ft/s
\(V_t \) airspeed, ft/s
\(w \) Z body-axis translational velocity component, ft/s
\(x \) state vector
\(x_{c.g.} \) longitudinal center of gravity location, fraction of \(ar{c} \)
\(x_{c.g.,ref} \) reference longitudinal center of gravity location, fraction of \(ar{c} \)
\(x_E \) X earth-axis position, ft
\(y \) output vector
\(y_E \) Y earth-axis position, ft

SUPERSCRIPTS:

\(. \) time derivative

SUBSCRIPTS:

0 basic or trim value
left left
right right
S stability axes
E earth axes
NON-DIMENSIONAL DERIVATIVES:

Longitudinal

\[
C_{L_i} = \frac{\partial C_X}{\partial i}, \quad C_{L_q} = \frac{\partial C_X}{\partial \frac{q_c}{2V_t}}
\]

\[
C_{X_i} = \frac{\partial C_X}{\partial i}, \quad C_{X_q} = \frac{\partial C_X}{\partial \frac{q_c}{2V_t}}
\]

\[
C_{Z_i} = \frac{\partial C_Z}{\partial i}, \quad C_{Z_q} = \frac{\partial C_Z}{\partial \frac{q_c}{2V_t}}
\]

\[
C_{n_i} = \frac{\partial C_m}{\partial i}, \quad C_{n_q} = \frac{\partial C_m}{\partial \frac{q_c}{2V_t}}
\]

where \(i = V_t, \alpha, \delta_e \), and/or other controls

Lateral / Directional

\[
C_{Y_j} = \frac{\partial C_Y}{\partial j}, \quad C_{Y_k} = \frac{\partial C_Y}{\partial \frac{kb}{2V_t}}
\]

\[
C_{l_j} = \frac{\partial C_l}{\partial j}, \quad C_{l_k} = \frac{\partial C_l}{\partial \frac{kb}{2V_t}}
\]

\[
C_{n_j} = \frac{\partial C_n}{\partial j}, \quad C_{n_k} = \frac{\partial C_n}{\partial \frac{kb}{2V_t}}
\]

where \(j = \beta, \delta_u, \delta_r \), and/or other controls and \(k = p, r, p_S, r_S \)
I. INTRODUCTION

Nonlinear aircraft simulations are useful for dynamic analysis, control law design and validation, guidance and trajectory studies, air combat investigations, pilot training, and many other tasks. Most real-time nonlinear aircraft simulations are implemented in programming languages such as FORTRAN or C++, for historical reasons or to achieve the required execution speed. Advances in desktop computing capabilities have made it possible to implement real-time nonlinear aircraft simulations in an advanced computing environment called MATLAB\(^1\), using relatively inexpensive desktop personal computer hardware. MATLAB is easy to learn and program, is portable across many computing platforms without modification, and is a popular tool for scientific and engineering computations. The speed of current desktop computing hardware is sufficient for real-time execution of nonlinear aircraft simulations programmed in MATLAB, including numerical integration of the nonlinear equations of motion, general nonlinear aerodynamic and engine model computations, and interface with software to read pilot inputs and display of a pilot view or a 3-D view of the aircraft in motion from an arbitrary vantage point outside the aircraft.

In addition to these computational hardware and software capabilities, reports available in the open literature contain aircraft geometry, mass / inertia properties, and extensive wind tunnel and flight test aerodynamic data for a variety of different aircraft, many of which are still in service. Data on engine performance is less common in the open literature, but available nonetheless.

This report describes realistic and easy-to-use nonlinear aircraft simulations implemented in MATLAB for a variety of different aircraft whose particular characteristics were available in the open literature. The nonlinear simulations include a general framework for the nonlinear equations of motion and a set of utility programs that apply to all the aircraft. For each individual aircraft, routines that implement the specific aerodynamic, propulsion, and mass / inertia characteristics of the aircraft were developed and documented.

Aircraft simulations included in this report are the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. Complete MATLAB simulations for each individual aircraft were developed in independent software packages. Each software package includes the capability to calculate aircraft trim conditions, linearize the equations of motion, run batch simulations of linear and nonlinear aircraft dynamics, and perform real-time interactive flight simulation. A commercially-available program called Aviator Visual Design Simulator (AVDS)\(^2\) is used to interface each MATLAB nonlinear aircraft simulation with a human pilot in real time. Software to run each MATLAB simulation and exchange data with AVDS in real time is included in the simulation packages, along with 3-D model definition files for
 each aircraft. The 3-D model definition files are used by AVDS to create the 3-D display of the aircraft in flight.

Full documentation of each nonlinear aircraft simulation is included in this work, along with instructions for implementing the simulation software. Examples illustrate the steps required to execute the trim, linearization, and nonlinear simulation routines, and run the MATLAB nonlinear aircraft simulations in real time using AVDS. A short tutorial detailing the creation and importation of a 3-D Computer-Aided Design (CAD) aircraft model into AVDS is also provided.

II. EQUATIONS OF MOTION

Aircraft nonlinear equations of motion were implemented in MATLAB. Nonlinear aerodynamic and propulsion models were used to simulate the applied forces and moments for each aircraft. Usually, the aerodynamic and propulsion models were implemented as linear interpolations using look-up tables in a database. In some cases, analytic polynomial models were used to model the aerodynamic and propulsion dependencies on state and control variables. Some simplifying assumptions were made in the development of the nonlinear aircraft simulations, as described next.

ASSUMPTIONS

Each modeled aircraft was assumed rigid with constant mass density and symmetry about the X-Z plane in body axes. Forces and moments acting on the aircraft were from aerodynamics, propulsion, and gravity. Thrust was assumed to act along the X body-axis and through the center of gravity. A stationary atmosphere was assumed, with aircraft flight limited to altitudes less than 50,000 feet and subsonic speeds. The earth’s curvature was ignored and the earth was assumed to be fixed in inertial space, so that earth axes were considered inertial axes. The gravity field was assumed to be uniform, so that the center of mass and the center of gravity were coincident, and there were no gravity moments or changes in gravity with altitude.

Full nonlinear six-degree-of-freedom rigid body translational and rotational aircraft motion was modeled, neglecting relative motion of the aircraft internal components, structural distortion, and sloshing of liquid fuel. The gyroscopic effects caused by rotating engine turbomachinery were included for some aircraft. Airplane rotation conventions follow the usual right-hand rule. Control surface deflections follow a standard right-hand rule sign convention, in which the fingers curl in the direction of positive control surface deflections when the thumb is pointed along the control surface hinge line in the direction of a positive body axis.

COLLECTED EQUATIONS OF MOTION

The six nonlinear rigid-body equations of motion were used to model the nonlinear aircraft dynamics in translational and rotational motion. These equations are3-7:
\[\dot{u} = rv - qw - g \sin \Theta + \frac{\overline{qSC}_X + T}{m} \]
\[\dot{v} = pw - ru + g \cos \Theta \sin \Phi + \frac{\overline{qSC}_Y}{m} \]
\[\dot{w} = qu - pv + g \cos \Theta \cos \Phi + \frac{\overline{qSC}_Z}{m} \] \hspace{1cm} (1)

\[\dot{p}I_X - \dot{r}I_{XZ} = \overline{qSbC}_1 - qr(I_Z - I_Y) + qpI_{xz} \]
\[\dot{q}I_Y = \overline{qS\overline{C}}m - pr(I_X - I_Z) - \left(p^2 - r^2 \right)I_{XZ} - rh_{eng} \]
\[\dot{r}I_Z - \dot{p}I_{XZ} = \overline{qSbC}_n - pq(I_Y - I_X) - qrI_{XZ} + qh_{eng} \] \hspace{1cm} (2)

where \(h_{eng} \) is the magnitude of the angular momentum vector for the rotating mass of the engine, assumed to act along the positive X body-axis,

\[
h_{eng} = \begin{bmatrix} h_{eng} & 0 & 0 \end{bmatrix}^T = \begin{bmatrix} I_{eng} \omega_{eng} & 0 & 0 \end{bmatrix}^T
\]

It is preferable to write the translational equations in terms of \(V_t, \alpha, \beta \) instead of \(u,v,w \), because \(V_t, \alpha, \beta \) can be measured directly on real aircraft, and have a more direct relationship to piloting and the aerodynamic forces and moments. The relationships between \(V_t, \alpha, \beta \) and \(u,v,w \) are:

\[V_t = \sqrt{u^2 + v^2 + w^2} \]
\[\alpha = \tan^{-1}\left(\frac{w}{u} \right) \] \hspace{1cm} (3)
\[\beta = \sin^{-1}\left(\frac{v}{V_t} \right) \]

and

\[u = V_t \cos \alpha \cos \beta \]
\[v = V_t \sin \beta \] \hspace{1cm} (4)
\[w = V_t \sin \alpha \cos \beta \]

Differentiating the equations (3) with respect to time gives
The translational states for the nonlinear aircraft simulations are V_t, α, and β. The time derivatives of these translational states are found by computing \dot{u}, \dot{v}, and \dot{w} from (1), then computing u, v, and w from (4) using current values of V_t, α, and β, then substituting these u, v, and w values and the current value of V_t into (5) to obtain \dot{V}_t, $\dot{\alpha}$, and $\dot{\beta}$ for use in the numerical integration routines. This approach avoids the lengthy nonlinear calculations associated with the equations of motion written in wind axes, and allows aircraft non-dimensional aerodynamic coefficient data to be implemented in the body-axis coordinate system, with no need for converting the data to wind axes components.

For the rotational motion, straightforward algebraic manipulation transforms the equations (2) into a form suitable for numerical integration, with only one time derivative on the left side of each equation,

\[
\begin{align*}
\dot{p} &= \left(c_1 r + c_2 p + c_4 h_{\text{eng}} \right) q + \bar{q} S b \left(c_3 C_l + c_4 C_n \right) \\
\dot{q} &= \left(c_5 p - c_7 h_{\text{eng}} \right) r - c_6 \left(p^2 - r^2 \right) + \bar{q} S \bar{c}_7 C_m \\
\dot{r} &= \left(c_8 p - c_2 r + c_9 h_{\text{eng}} \right) q + \bar{q} S b \left(c_4 C_l + c_9 C_n \right)
\end{align*}
\]
where

\[
\begin{align*}
 c_1 &= \frac{(I_Y - I_Z)I_Z - I_{XZ}^2}{I_X I_Z - I_{XZ}^2} \\
 c_2 &= \frac{(I_X - I_Y + I_Z)I_{XZ}}{I_X I_Z - I_{XZ}^2} \\
 c_3 &= \frac{I_Z}{I_X I_Z - I_{XZ}^2} \\
 c_4 &= \frac{I_{XZ}}{I_X I_Z - I_{XZ}^2} \\
 c_5 &= \frac{I_Z - I_X}{I_Y} \\
 c_6 &= \frac{I_{XZ}}{I_Y} \\
 c_7 &= \frac{1}{I_Y} \\
 c_8 &= \frac{(I_X - I_Y)I_X - I_{XZ}^2}{I_X I_Z - I_{XZ}^2} \\
 c_9 &= \frac{I_X}{I_X I_Z - I_{XZ}^2}
\end{align*}
\]

(7)

The nonlinear aircraft simulation also includes rotational kinematic equations and navigation equations. The rotational kinematic equations, which relate Euler angular rates to body-axis angular rates, are given by:

\[
\begin{align*}
 \dot{\Phi} &= p + \tan \Theta (q \sin \Phi + r \cos \Phi) \\
 \dot{\Theta} &= q \cos \Phi - r \sin \Phi \\
 \dot{\Psi} &= \frac{q \sin \Phi + r \cos \Phi}{\cos \Theta}
\end{align*}
\]

(8)

Equations (8) are nonlinear state equations for the Euler angles \(\Phi, \Theta, \) and \(\Psi \), in a form suitable for numerical integration. The rotational kinematic equations describe the time evolution of the aircraft attitude angles, which are required to properly resolve the gravity force along the aircraft body axes in (1). A singularity exists for the rotational kinematic state equations at \(\Theta = \pm 90^\circ \). This is eliminated within the simulation code by limiting \(\Theta \) to the ranges 0° to ±89.99° and ±90.01° to ±180°. This limits \(\left| \cos \Theta \right|^{-1} \) to a maximum value of approximately 5730, which allows sufficiently accurate calculations of the kinematic state derivatives near the singularity. In the nonlinear simulation, \(\Theta \) automatically skips from ±89.99° to ±90.01° and vice-versa depending on the direction of aircraft pitch angle motion near \(\Theta = \pm 90^\circ \).

The navigation equations relate aircraft translational velocity components in body axes to earth-axis components, neglecting wind effects. These differential equations describe the time evolution of the position of the aircraft c.g. relative to earth axes:
\[
\dot{x}_E = u \cos \Psi \cos \Theta + v \left(\cos \Psi \sin \Theta \sin \Phi - \sin \Psi \cos \Phi \right) \\
+ w \left(\cos \Psi \sin \Theta \cos \Phi + \sin \Psi \sin \Phi \right) \\
\dot{y}_E = u \sin \Psi \cos \Theta + v \left(\sin \Psi \sin \Theta \sin \Phi + \cos \Psi \cos \Phi \right) \\
+ w \left(\sin \Psi \sin \Theta \cos \Phi - \cos \Psi \sin \Phi \right) \\
\dot{h} = u \sin \Theta - v \cos \Theta \sin \Phi - w \cos \Theta \cos \Phi
\]

Assuming thrust acts along the X body-axis, body-axis accelerations \(a_X \), \(a_Y \), and \(a_Z \) are calculated from

\[
a_X = \frac{\bar{q}SC_X + T}{mg} \\
a_Y = \frac{\bar{q}SC_Y}{mg} \\
a_Z = \frac{\bar{q}SC_Z}{mg}
\]

Equations (1), (4), (5), (6), (7), (8), and (9) are the nonlinear aircraft equations of motion for each aircraft simulation. These nonlinear dynamic equations are implemented for each simulated aircraft in functions called \(AC\text{name}_{\text{deq}}.m \), where \(AC\text{name} \) is the aircraft name (e.g., \(F16_{\text{deq}}.m \), \(F106B_{\text{deq}}.m \), etc.). Body-axis accelerations \(a_X \), \(a_Y \), and \(a_Z \) are also calculated in each \(AC\text{name}_{\text{deq}}.m \) function, using equations (10).

ENGINE MODEL

The engine power dynamic response was modeled with an additional state equation as a simple first order lag in the actual power level response to commanded power level:

\[
\dot{P}_a = \frac{1}{\tau_{\text{eng}}} (P_c - P_a)
\]

Commanded power level was computed as a function of throttle position,

\[
P_c = P_c \left(\delta_{th} \right)
\]
and the engine power level time constant τ_{eng} was chosen at or near 1 sec. Engine thrust force was typically computed by linear interpolation of an engine thrust database, as a function of actual power level, altitude, and Mach number,

$$T = T(P_a, h, M)$$

For each aircraft simulation, calculation of the engine thrust occurs in a function called $ACname_engine.m$, where $ACname$ is the aircraft name (e.g., $F16_engine.m$, $F106B_engine.m$, etc.). The routine $tgear.m$ implements the throttle gearing, which translates the throttle deflection in the interval $[0,1]$ to commanded power level in the interval $[0,100]$, but not always in a linear fashion. The routine $rtau.m$ computes the engine power level time constant τ_{eng}, and $pdot.m$ implements the engine thrust dynamics in equation (11).

For many of the simulated aircraft, engine data was not available. In these cases, the engine model for the F-16 aircraft was used, and the output thrust was scaled to match the engine thrust of the specific aircraft.

AERODYNAMIC MODEL

Aerodynamic forces and moments acting on each aircraft were characterized in terms of non-dimensional coefficients in body axes. Typically, the non-dimensional force and moment coefficients were calculated from an expression that included separate build-up functions for each non-dimensional coefficient. The value for each build-up function was usually found by linear interpolation of aerodynamic data, using current values of the states and controls. For values of states and controls outside the range of the available data, the interpolation routines extrapolated linearly using the nearest data points. In a few cases, build-up functions or complete non-dimensional coefficients were computed using analytical polynomial expressions involving state and control variables. Once the non-dimensional aerodynamic force and moment coefficients were calculated, these values were used in equations (1) and (6) with thrust, mass / inertia properties, geometry, and current states and controls to compute state time derivatives for the aircraft dynamics. Subsequent sections describing the individual aircraft simulations contain details of the aerodynamic model for each nonlinear aircraft simulation.

ATMOSPHERIC PROPERTIES

Air density and the speed of sound were calculated using relations modeling the U.S. Standard Atmosphere\(^3\). Required quantities that depend on these atmospheric properties, namely Mach number M, and dynamic pressure $\sqrt{\bar{q}}$, were also calculated. The relationships are:

$$T^* = 1 - 0.703 \times 10^{-5} h$$
\[
\rho = 0.002377 \left(T^* \right)^{4.14}
\]

\[
M = \begin{cases}
\frac{V_t}{\sqrt{1.4(1716.3)390}} & h \geq 35,000 \text{ ft} \\
\frac{V_t}{\sqrt{1.4(1716.3)(519T^*)}} & h < 35,000 \text{ ft}
\end{cases}
\] (12)

\[
\bar{q} = \frac{1}{2} \rho V_t^2
\]

The function \textit{atm.m} was used to compute all the quantities from equations (12), given \(h \) and \(V_t \).

AIRCRAFT STATES AND CONTROLS

For a typical aircraft, the state vector was:

\[
x = [V_t \ \alpha \ \beta \ \Phi \ \Theta \ \Psi \ \rho \ \varphi \ \xi \ \eta \ \zeta \ \phi \ \chi \ \psi \ \alpha \ \beta \ \gamma \ h \ P_a]^T
\] (13)

The elements of the state vector are associated with equations (1), (4), (5), (6), (7), (8), (9), and (11). A typical control vector was:

\[
u = [\delta_{th} \ \delta_c \ \delta_e \ \delta_r]^T
\] (14)

The number of control inputs and engine power states varied depending on the number of control surfaces and aircraft engines. The set of coupled, nonlinear, first-order ordinary differential equations that comprise the simulation model can be represented by the vector differential equation:

\[
\dot{x} = f(x, u)
\] (15)

The output equations can be represented by the vector equation:

\[y = h(x, u)\]
III. GENERAL SIMULATION TOOLS

Approximating the solution to the nonlinear equations of motion requires a suitable numerical integration technique. Linearization of the nonlinear equations of motion requires appropriate numerical gradient techniques, which are necessary to calculate elements of the linearized system matrices. Numerical algorithms for both these tasks are included in the software. Reference [8] provides background information on the numerical techniques applied. Runge-Kutta and Adams-Bashforth numerical integration routines are used to approximate solutions to the nonlinear equations of motion. Finite difference numerical gradient procedures are used to determine the elements of the linearized system matrices. The scripts called gen_ACname_model.m, where ACname is the simulated aircraft name (e.g., gen_F16_model.m, gen_F106B_model.m, etc.), demonstrate the use of the trim and linearization tools for each simulated aircraft.

TRIM

A linearized form of the state-space model for the nonlinear equations of motion is obtained using a first-order multivariable Taylor series expansion about an equilibrium flight condition known as trim. At the trim condition, all translational and rotational accelerations are equal to zero. This condition is described by the equation:

$$\dot{x}_0 = 0 = f(x_0, u_0)$$ \hspace{1cm} (16)

where only the state equations for $V_t, \alpha, \beta, p, q, r$ are included in equation (16). The six force and moment equations are augmented with a rate of climb constraint, and a coordinated turn constraint, for a total of eight trim equations: \hspace{1cm} 3,4:

$$0 = \dot{V}_t = \frac{u \dot{u} + v \dot{v} + w \dot{w}}{V_t}$$

$$0 = \dot{\alpha} = \frac{u \dot{w} - w \dot{u}}{u^2 + w^2}$$

$$0 = \dot{\beta} = \frac{V_t \dot{v} - v \dot{V}_t}{V_t^2 \sqrt{1 - \left(\frac{v}{V_t}\right)^2}}$$
0 = \dot{p} = (c_1 r + c_2 p + c_4 h_{eng}) q + \bar{q} S b (c_3 C_l + c_4 C_n) \\
0 = \dot{q} = (c_5 p - c_7 h_{eng}) r - c_6 \left(p^2 - r^2 \right) + \bar{q} S c_7 C_m \\
0 = \dot{r} = (c_8 p - c_2 r + c_9 h_{eng}) q + \bar{q} S b (c_4 C_l + c_3 C_n) \\

0 = \tan \Theta - \frac{ab + \sin \gamma \sqrt{a^2 - \sin^2 \gamma + b^2}}{a^2 - \sin^2 \gamma} \quad ; \quad \Theta \neq 90^\circ \quad \text{[rate of climb constraint]} \\
0 = G \cos \beta \left(\sin \alpha \tan \Theta + \cos \alpha \cos \Phi \right) \quad ; \quad \Theta \neq 90^\circ \quad \text{[coordinated turn constraint]} \\

where \[
\begin{align*}
a &= \cos \alpha \cos \beta \\
b &= \sin \Phi \sin \beta + \cos \Phi \sin \alpha \cos \beta \\
G &= \frac{\dot{\psi} V}{g}
\end{align*}
\]

With eight trim equations to find the trim condition, any combination of eight state or control surface deflection variables can be free to vary so that the trim equations can be satisfied.

User-defined values for fixed states, control surface deflections, and trim values for \(\gamma \) and turn rate \(\dot{\psi} \) are set in the function \(ACname_trm.m \), where \(ACname \) is the simulated aircraft name (e.g., \(F16_trm.m \), \(F106B_trm.m \), etc.), via code modification. The \(ACname_trm.m \) function calls the \(ACname_deq.m \) function to implement the state derivative equations included in the trim equations. Pitch angle \(\Theta \) is limited to the ranges \(0^\circ \) to \(\pm 89.99^\circ \) and \(\pm 90.01^\circ \) to \(\pm 180^\circ \) in the function \(ACname_deq.m \), as described above. This eliminates the singularity at \(\Theta = \pm 90^\circ \) within the rate of climb and coordinated turn constraint equations. In addition, the engine power level dynamics in equation (11) are bypassed for the trimming operation, so \(P_o \) is set equal to \(P_c \) inside \(ACname_trm.m \).

Trim solutions are obtained by solving the eight nonlinear trim equations above, using the function \(solve.m \). Function \(solve.m \) uses a Newton-Raphson iterative solution technique, where gradients are calculated in \(grad.m \) by central finite differences. Trim solution convergence is determined using \(cnvrg.m \). Convergence is achieved when the absolute value of every trim equation is less than the solution tolerance, and the absolute value of every change in the free states and controls for successive iterations has reduced to less than the solution tolerance. The solution tolerance is specified as \(1 \times 10^{-8} \) within the code. When the trim search is successful, the words \text{CONVERGENCE CRITERIA SATISFIED} are output to the MATLAB command window.
LINEARIZATION

A linear, time-invariant (LTI) system representing aircraft dynamics for small perturbations about a reference trim condition is given by the state and output equations:

\[
\dot{x} = Ax + Bu \\
y = Cx + Du
\]

(18)

Elements of the constant-coefficient matrices in the linearized dynamic equations are gradients evaluated at the trim values \(x_0 \) and \(u_0 \):

\[
A = \left. \frac{\partial f(x,u)}{\partial x} \right|_{x_0,u_0} = n \times n \text{ matrix} \quad B = \left. \frac{\partial f(x,u)}{\partial u} \right|_{x_0,u_0} = n \times m \text{ matrix}
\]

\[
C = \left. \frac{\partial h(x,u)}{\partial x} \right|_{x_0,u_0} = l \times n \text{ matrix} \quad D = \left. \frac{\partial h(x,u)}{\partial u} \right|_{x_0,u_0} = l \times m \text{ matrix}
\]

(19)

where \(n \) is the number of elements in the state vector, \(m \) is the number of elements in the control vector, and \(l \) is the number of elements in the output vector. The gradients are obtained numerically by perturbing each state and control input independently and recording the changes in the trimmed state and output equations. This is done using the numerical technique of central finite differences:

\[
\frac{\partial f(x,u)}{\partial x} \bigg|_{x_0,u_0} = \frac{f(x_0 + \frac{\Delta x}{2},u_0) - f(x_0 - \frac{\Delta x}{2},u_0)}{\Delta x}
\]

\[
\frac{\partial f(x,u)}{\partial u} \bigg|_{x_0,u_0} = \frac{f(x_0,u_0 + \frac{\Delta u}{2}) - f(x_0,u_0 - \frac{\Delta u}{2})}{\Delta u}
\]

(20)

where \(\Delta x \) and \(\Delta u \) are the perturbations of the state and control variables, respectively. In the simulations, the output vector is the state vector \(h(x,u) = x \), so \(C \) is an identity matrix, and \(D \) is a null matrix. A flowchart describing the numerical linearization scheme is shown in figure 1.
Figure 1. Flowchart for Numerical Linearization

For a reference trim condition of straight and level flight, linearization results in two decoupled sets of linear, constant-coefficient differential equations for longitudinal and lateral / directional motion. The linearization is valid for small perturbations about the reference trim condition.

Detailed Linearization Example

The trim state and control vectors \(\mathbf{x}_0 \) and \(\mathbf{u}_0 \) are assembled in the function `ic_firm.m`, for use in `lnze.m`, which computes the linear system matrices \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \) and \(\mathbf{D} \), using central finite differences. Perturbations equal to 1% of the trim reference values are used for each state and control variable during gradient calculation for the elements of the system matrices. If the trim state or control is zero, the perturbation size is set to 0.01. Setting the variable `lonflg` to 1 within the MATLAB workspace before executing `gen_AName_model.m`, where `AName` is the simulated aircraft name (e.g., `gen_F16_model.m`, `gen_F106B_model.m`, etc.), produces the longitudinal system matrices. Setting `lonflg` to 0 provides the lateral / directional system matrices. Typical constant-coefficient longitudinal or lateral / directional system matrices \(\mathbf{A}, \mathbf{B}, \mathbf{C}, \) and \(\mathbf{D} \), for an aircraft with controls for throttle, elevator, aileron, and rudder deflection, are created in the form:
For \(\text{lonflg} = 1 \):

\[
\begin{align*}
\begin{bmatrix}
\Delta \dot{V}_t \\
\Delta \dot{\alpha} \\
\Delta \dot{q} \\
\Delta \dot{\Theta} \\
\Delta \dot{P}_a
\end{bmatrix}
& =
A
\begin{bmatrix}
\Delta V_t \\
\Delta \alpha \\
\Delta q \\
\Delta \Theta \\
\Delta P_a
\end{bmatrix}
+B
\begin{bmatrix}
\Delta \delta_{th} \\
\Delta \delta_e
\end{bmatrix}
\quad y = C
\begin{bmatrix}
\Delta V_t \\
\Delta \alpha \\
\Delta q \\
\Delta \Theta \\
\Delta P_a
\end{bmatrix}
+ D
\begin{bmatrix}
\Delta \delta_{th} \\
\Delta \delta_e
\end{bmatrix}
\end{align*}
\]

For \(\text{lonflg} \neq 1 \):

\[
\begin{align*}
\begin{bmatrix}
\Delta \beta \\
\Delta \rho \\
\Delta r \\
\Delta \phi
\end{bmatrix}
& =
A
\begin{bmatrix}
\Delta \beta \\
\Delta \rho \\
\Delta r \\
\Delta \phi
\end{bmatrix}
+B
\begin{bmatrix}
\Delta \delta_a \\
\Delta \delta_r \\
\Delta \delta_e
\end{bmatrix}
\quad y = C
\begin{bmatrix}
\Delta \beta \\
\Delta \rho \\
\Delta r \\
\Delta \phi
\end{bmatrix}
+ D
\begin{bmatrix}
\Delta \delta_a \\
\Delta \delta_r \\
\Delta \delta_e
\end{bmatrix}
\end{align*}
\]

The following example illustrates the procedure used to trim the F-16 simulation and calculate the longitudinal and lateral / directional linearized system matrices.

<table>
<thead>
<tr>
<th>Fixed Quantities</th>
<th>Free States / Controls</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_t = 500 \text{ ft/s})</td>
<td>(x_E = 0 \text{ ft})</td>
</tr>
<tr>
<td>(p = 0 \text{ rad/s})</td>
<td>(y_E = 0 \text{ ft})</td>
</tr>
<tr>
<td>(q = 0 \text{ rad/s})</td>
<td>(h = 10,000 \text{ ft})</td>
</tr>
<tr>
<td>(r = 0 \text{ rad/s})</td>
<td>(\gamma = 0.349)</td>
</tr>
<tr>
<td>(\Psi = 0 \text{ rad})</td>
<td>(\dot{\psi} = 0.052 \text{ rad/s})</td>
</tr>
<tr>
<td>(\text{x.c.g.} = 0.3)</td>
<td>(\alpha, \beta, \Phi, \Theta, \delta_h, \delta_e, \delta_s, \text{ and } \delta_r)</td>
</tr>
</tbody>
</table>

Step 1. Modify \(F16_trm.m \) to account for the desired trim condition, indicating the fixed and free state and control variables. Within this file, the variables \(\text{xfree} \) and \(\text{xinit} \) control how the states are handled for trim. The definitions of \(\text{xfree} \) and \(\text{xinit} \) are located on lines 117 and 118, respectively. Line 117 and 118 must be modified to read:

\[
\text{xfree} = [0,1,1,1,0,0,0,0,0,0,0,0]'; \\
\text{xinit} = [500,0,0,0,0,0,0,0,0,0,10000,0]';
\]

In the vector \(\text{xfree} \), a 0 element indicates that the corresponding state is fixed, while 1 specifies that the corresponding state is free to be chosen by the trim solver. Values for the fixed states are input using the vector \(\text{xinit} \). If the state is free, the corresponding element of \(\text{xinit} \) contains the starting value.
used to determine trim solution. If the state is fixed, the corresponding element of \(\mathbf{x}_{\text{init}} \) contains the fixed value.

The variables \(\mathbf{ufree} \) and \(\mathbf{uinit} \) contain information for fixed and free control variables. They are located on lines 122 and 123, respectively. All controls are free variables for this particular example. Lines 122 and 123 should be changed to:

\[
\begin{align*}
\mathbf{ufree} &= [1,1,1,1]; \\
\mathbf{uinit} &= [0,0,0,0];
\end{align*}
\]

Other starting values for the free state and control variables may need to be tried in order to converge to the trim solution.

Flight path angle \(\gamma \) is input in radians on line 127:

\[
\gamma = 0.349;
\]

which corresponds to an angle of 20 deg.

Turn rate is input in rad/s on line 131:

\[
\text{trate} = 0.052;
\]

This corresponds to a turn rate of 3 deg/s. This completes the necessary modifications to \(F16_trm.m \). Save the modified file.

Step 2. Modify the file \(F16_massprop.m \) to account for an \(x_{cg} \) location at 30\% of the mean aerodynamic chord. Percentages must be normalized to values between 0 and 1. Change line 45 of the file to read:

\[
x_{cg} = 0.3;
\]

Step 3. Set the variable \(\mathbf{lonflg} \) in the MATLAB workspace to either 1 or 0. Setting \(\mathbf{lonflg} \) to 1 will provide the longitudinal system matrices, while setting the variable to 0 will provide lateral / directional matrices.

Step 4. Run the file \(gen_F16_model.m \) by typing the following on the MATLAB command line:

\[
\text{gen}_F16_model;
\]

This function computes the trim solution as well as the linear system matrices at the desired flight condition and longitudinal center of gravity location. After program execution, \(\mathbf{x}_0 \) and \(\mathbf{u}_0 \) are stored in the MATLAB workspace as variables \(\mathbf{x}_0 \) and \(\mathbf{u}_0 \), respectively. The linear system matrices are stored in the MATLAB workspace as matrix variables \(A, B, C, \) and \(D \).

The preceding procedure can be applied to the other supplied aircraft simulations with little modification (e.g., replace \(F16 \) with \(F106B, F14, F4 \), etc. in the called functions).
NUMERICAL INTEGRATION

The equations of motion for a rigid aircraft are a set of coupled first-order nonlinear ordinary differential equations. Experimental aerodynamic and thrust data are used to model the applied aerodynamic and propulsion forces and moments for arbitrary states and controls. There is no closed form solution to such problems, so the equations must be solved using numerical integration. Techniques for solving this initial value problem for ordinary differential equations are employed to obtain approximate solutions at discrete points along the aircraft state trajectory.

The equations of motion have already been arranged into the form:

\[
\dot{x} = f(x, u)
\]

(21)

where

\[
x = \begin{bmatrix} V_t & \alpha & \beta & \Phi & \Theta & \Psi & p & q & r & x_E & y_E & h & P_a \end{bmatrix}^T
\]

\[
u = \begin{bmatrix} \delta_h & \delta_e & \delta_o & \delta_r \end{bmatrix}^T
\]

(22)

Control vector elements can be added or removed depending on the modeled aircraft.

A number of numerical integration techniques are available to approximate the solutions of the well-posed equations of motion. The choice of which technique to use depends on the desired accuracy of the solution and the computational effort to be expended. Three types of numerical integration techniques are employed within the software to approximate solutions to the equations of motion – Euler’s method, Runge-Kutta method of orders two and four, and Adams-Bashforth method of order three. A flowchart illustrating the procedure used during the nonlinear simulation is given in figure 2.
Euler’s Method

Euler’s method is a one-step integration routine that approximates solutions to the initial value problem at discrete time steps Δt. Solutions to the state equations are approximated starting from initial states given at $t = 0$ with arbitrary control inputs provided for $t \geq 0$. The local truncation error for this method is $O(\Delta t)$. A single state derivative calculation is required for each time step, making this the least computationally intensive of the three approximation methods used in the simulation. However, it is also the least accurate. The algorithm is given in difference equation form as:

$$x(t + \Delta t) = x(t) + \Delta t f(x(t), u(t))$$ (23)

Runge-Kutta Method of Order Two

The second-order Runge-Kutta method is also a one-step integration routine but provides for a more accurate solution approximation as compared to Euler’s method. However, two state derivative calculations per time step are required making it comparatively slower than Euler’s method. The local truncation error for this routine is $O(\Delta t^2)$. The difference equation is given by:

$$x(t + \Delta t) = x(t) + \Delta t f \left(\frac{x(t) + \Delta t}{2} f(x(t), u(t)) \right), u \left(t + \frac{\Delta t}{2} \right)$$ (24)
Runge-Kutta Method of Order Four

The fourth-order Runge-Kutta method is a one-step routine with a local truncation error of \(O(\Delta t^4) \). Solution approximations are more accurate than either the Euler or second-order Runge-Kutta method, but the method runs one-fourth and one-half as fast, respectively. The difference equation for this scheme is given by:

\[
\mathbf{x}(t + \Delta t) = \mathbf{x}(t) + \Delta t \left(\frac{k_1}{6} + \frac{k_2}{3} + \frac{k_3}{3} + \frac{k_4}{6} \right)
\]

where

\[
\begin{align*}
 k_1 &= f(x(t), u(t)) \\
 k_2 &= f\left(x(t) + \frac{\Delta t}{2} k_1, u\left(t + \frac{\Delta t}{2}\right)\right) \\
 k_3 &= f\left(x(t) + \frac{\Delta t}{2} k_2, u\left(t + \frac{\Delta t}{2}\right)\right) \\
 k_4 &= f\left(x(t) + \Delta t k_3, u\left(t + \Delta t\right)\right)
\end{align*}
\]

Adams-Bashforth Method of Order Three

The third-order Adams-Bashforth method is a multi-step routine that approximates the solution of the initial value problem using three previous step calculations. The approximation has a local truncation error of \(O(\Delta t^3) \). Second-order Runge-Kutta is used for the initial time steps before switching to the Adams-Bashforth integration method. The difference equation for the third-order Adams-Bashforth method is given by

\[
\begin{align*}
 \mathbf{x}(t + 3\Delta t) &= \mathbf{x}(t + 2\Delta t) + \frac{\Delta t}{12} \left[23 f\left(\mathbf{x}(t + 2\Delta t), u\left(t + 2\Delta t\right)\right) \\
 &\quad -16 f\left(\mathbf{x}(t + \Delta t), u\left(t + 2\Delta t\right)\right) + 5 f\left(\mathbf{x}(t), u\left(t + \Delta t\right)\right) \right]
\end{align*}
\]

Detailed Numerical Integration Example

The state vector derivative \(\dot{x} \) is integrated numerically in the function \(ACname.m \), where \(ACname \) is the simulated aircraft name (e.g., \(F16.m \), \(F106B.m \), \(F4.m \), etc.) using arbitrary control inputs for \(t \geq 0 \) with initial states specified at \(t = 0 \). This produces a set of state time histories \(x(t) \) and output time histories \(y(t) \) for \(t \geq 0 \). Inputs to \(ACname.m \) are the control input time history \(u(t) \), time vector \(t \), initial state vector \(x \) at \(t = 0 \), and the vector of mass / inertia properties \(c \). The function \(mksqw.m \) is provided to allow creation of a \(u(t) \) comprised of arbitrary square waves with user-specified amplitudes, widths, delay, step size, and total length in seconds. However, any \(u(t) \) can be used with the
nonlinear simulation. A user-specified integration routine, such as the Adams-Bashforth method of order three \((ab3.m)\), Runge-Kutta method of order two \((rk2.m)\), or Runge-Kutta method of order four \((rk4.m)\), is called within the \(ACname.m\) function.

A sample procedure for calculating state and output trajectories is provided below for the F-16 simulation. Procedures for the other aircraft simulations are similar.

Step 1. Create \(u(t)\) along with \(t\), which will be inputs to the nonlinear simulation function. The control vector must be stored in the MATLAB workspace as a matrix with the individual controls making up the columns and the deflection of each control over time comprising the rows. The time vector contains the discrete time points for the control vector. An example using the supplied function \(mksqw.m\) to create \(u(t)\) is shown below in figure 3. The elevator control surface \(\delta\) will be deflected using a doublet with an amplitude of 1 degree that will be applied after a 3 second delay, while keeping the remaining control inputs \((\delta_h, \delta, \text{and } \delta)\) unperturbed from their trim values. Each pulse of the doublet will have a width of 2 seconds. The entire length of the maneuver will be 10 seconds with a sampling interval 0.025 seconds. The elevator perturbation time history is shown in figure 3.

![Elevator Doublet Simulation](image)

Figure 3. Elevator Perturbation

\[a. \text{ Type the following command in MATLAB:}\]

\[\texttt{[usw,t]=mksqw(1,2,[1 1], 3,0.025,10);}\]

The first input to the function gives pulse amplitude, the second gives the width of a single pulse in seconds, the third gives the vector of
integer pulse widths, the fourth gives the delay in seconds, the fifth
gives the sampling time, and the final input gives the length of the entire
maneuver in seconds. The output of the function is stored in the
MATLAB workspace under the variable names \texttt{usw} and \texttt{t}. The
variable \texttt{usw} is a column vector composed of 401 elements describing
the deflection history. The variable \texttt{t} is also a column vector composed
of 401 elements recording the sample times for \texttt{usw}.

b. Create the control matrix \texttt{u} within the MATLAB workspace by adding
\texttt{usw} to the second column of a 401 \times 4 dimensional matrix, where the
first column corresponds to values of \(\delta_h\), the second to \(\delta_e\), the third to \(\delta_a\),
and the last column to \(\delta_r\). If the elements in the columns of \texttt{u} are
initially set to the trim values of the controls, then adding \texttt{usw} to
column 2 creates \texttt{u}(\texttt{t}) for an elevator doublet perturbation deflection,
leaving other control inputs unperturbed from trim values during the
maneuver.

Step 2. Define the initial state vector \texttt{x0} by creating a 13 \times 1 vector composed of the
user-defined state initial conditions. This vector contains the same state
variables as the state vector \texttt{x} of the simulation model. To start from trim, use
the trim state vector output from 	exttt{ic_firm.m} or \texttt{gen_ACname_model.m}.

Step 3. Generate the mass property vector \texttt{c} by running the function 	exttt{F16_massprop.m}:

\begin{verbatim}
c=F16_massprop;
\end{verbatim}

The vector \texttt{c} will be available in the MATLAB workspace after execution of this
function. Center of gravity position \texttt{x}_c.g. can be adjusted within this file to
simulate various longitudinal c.g. locations.

Step 4. Run the nonlinear F-16 simulation using the following command on the
MATLAB command line:

\begin{verbatim}
[y,x]=F16(u,t,x0,c);
\end{verbatim}

The output time history is stored in the MATLAB vector \texttt{y}, and the state output
time history is stored in the vector \texttt{x}.

By default, the nonlinear simulation implements the Runge-Kutta integration method
of order two. The user can modify the code to implement either the Runge-Kutta method
of order four or the Adams-Bashforth method of order three. This is done by modifying
the function \texttt{F16.m} following the procedure below:

To use Fourth-Order Runge-Kutta

Change line 102 to read:

\begin{verbatim}
%x=rk2('F16_deq',u,t,x0,c);
\end{verbatim}

line 101 to read:

\begin{verbatim}
x=rk4('F16_deq',u,t,x0,c);
\end{verbatim}
and line 103 to read:

% x=ab3('F16_deq',u,t,x0,c);

To use Third-Order Adams-Bashforth

Change line 102 to read:

% x=rk2('F16_deq',u,t,x0,c);

line 101 to read:

% x=rk4('F16_deq',u,t,x0,c);

and line 103 to read:

x=ab3('F16_deq',u,t,x0,c);
IV. AVDS / MATLAB INTERFACE

A MATLAB software interface to the software package called AVDS was developed to provide the capability to fly the MATLAB nonlinear aircraft simulations interactively in real time, using AVDS to read pilot inputs and display the aircraft response. Pilot inputs are measured by AVDS and used as inputs to the MATLAB simulations. Results of the simulation numerical integration are sent to AVDS and used to draw 3-D images of the aircraft in motion. Control deflections are also shown on the 3-D aircraft model displayed by AVDS. The following material provides instructions for AVDS / MATLAB software installation and usage.

EQUIPMENT / REQUIREMENTS

The nonlinear simulation software described here was developed and tested on IBM-compatible personal computers (PC), using MATLAB version 6.1, and AVDS version 1.2.14. System requirements for these commercially-available software tools are specified in their documentation. A graphics accelerator card capable of hardware acceleration using OpenGL™ produces smoother-running piloted simulations.

Control inputs are supplied to AVDS via a mouse, joystick, and / or keyboard. A joystick is recommended. A Microsoft® SideWinder® Precision 2 joystick has been used exclusively during software development and is recommended for use; however, any joystick can be used. This particular joystick contains a throttle control lever, hat switch, rudder control, and eight programmable buttons, which provide for somewhat realistic aircraft controls.

SOFTWARE INSTALLATION

AVDS is available from RasSimTech Ltd.© and is not part of the MATLAB aircraft simulation packages. The AVDS software allowing data communication between MATLAB and AVDS is available with version 1.2.14 of AVDS, available on the Internet at http://www.rassimtech.com.

Once the AVDS software is installed, the 3-D aircraft images provided for each simulated aircraft can be installed into AVDS. The 3-D image files are included in the aircraft simulation packages. The provided 3-D aircraft models are installed into AVDS using the following procedure:

Step 1. Copy the following aircraft 3-D files to the AVDS directory

```
\usr\local\AVDS\craft\:

\usr\local\F-16\F16_hires.txt
\usr\local\F-16\F16_lores.txt
\usr\local\F-106B\F106B.txt
\usr\local\F-14\F14.txt
```
High and low resolution 3-D aircraft models are provided for the F-16 and FASER aircraft. The user has the choice to use either during interactive piloted simulations. Low-resolution models are provided for simulation on slower computers.

Step 2. Add the following lines to the file `craftcap.txt` located in the directory `\usr\local\AVDS\craft\`:

```plaintext
include "F16_lores.txt"
include "F16_hires.txt"
include "F106B.txt"
include "F14.txt"
include "F4.txt"
include "FASER_lores.txt"
include "FASER_hires.txt"
include "HL20.txt"
include "X31.txt"
include "A7.txt"
```

This file tells AVDS which 3-D aircraft models to make available for interactive simulation.

INTERACTIVE SIMULATION

The user can interactively provide control inputs through AVDS using a mouse, joystick, and/or keyboard. For control input device selection and configuration, consult section 3.4.2.9 of the AVDS User’s Manual. The following will discuss providing interactive control input with the Microsoft® SideWinder® Precision 2 joystick. Other joysticks should work as well, but only this joystick was used in the development and testing of the nonlinear simulations. Configuration of the initial aircraft states is also described.
Joystick Control Input

Control inputs for pitch, roll, yaw, and thrust during piloted interactive simulations can be provided by a Microsoft® SideWinder® Precision 2 joystick. For proper set-up of the joystick, set the scale factors for X, Y, Z, and R joystick axes to 2, 2, 1, and –2, respectively, within the AVDS joystick configuration screen (refer to section 3.4.2.9 of the AVDS User’s Manual2). This normalizes AVDS inputs to the ranges 0 to 1 for thrust control, and –1 to 1 for pitch, roll, and yaw. The normalized values are then converted to actual control surface deflections, measured in degrees, within the function $AVDS_Matlab_ACname.m$, where $ACname$ is the simulated aircraft name (e.g., $AVDS_Matlab_F16.m$, $AVDS_Matlab_F106B.m$, $AVDS_Matlab_F4.m$, etc.). Other joystick settings, such as dead-zone, bias, trim step size, etc., can also be configured within the AVDS joystick configuration screen.

Aircraft pitch control is achieved with the fore / aft movement of the joystick, left / right movement of the joystick provides roll, and clockwise / counterclockwise twist of the joystick supplies yaw control. Throttle deflection is actuated by means of a small lever located at the base of the joystick. A hat switch located on the tip of the joystick is used to set elevator and aileron control surface trim deflections. Trim elevator deflection can be varied by pressing the top or bottom of the trim hat, while trim aileron can be set by pressing the left and right sides of the trim hat. The eight programmable buttons of the joystick have not been configured for use in AVDS / MATLAB interactive simulations.

Initial States for Interactive Simulation

AVDS allows specification of aircraft initial conditions for interactive simulations. The user can specify the aircraft starting altitude, velocity, Euler angles, and throttle position. These are set in the Aircraft State Initialization pop-up window, shown in figure 4, which is called within AVDS prior to simulation start-up. This is done as follows:

Step 1. Select Initialize from the top menu

Step 2. Select Aircraft State

Initial altitude, given in feet above sea level, is adjusted by moving the corresponding slider up or down. Initial body-axis velocity components u, v, and w (in ft/s), initial Euler angles Φ, Θ, and Ψ (in degrees), and initial throttle position δ_h (in percent) are adjusted similarly. Starting x_E and y_E positions cannot be adjusted with these sliders. The default starting positions for x_E and y_E are both set to 0 ft. Before hitting the OK button to complete initial state configuration, make certain that the Apply Settings button is depressed so that a check appears in the box. This allows the initial states set with the sliders to take effect in the interactive simulation. The button Apply Init Lat/Long has no effect within the AVDS / MATLAB simulation since starting x_E and y_E aircraft positions are set within the MATLAB simulation software.
AVDS / MATLAB Piloted Simulation Software

Piloted simulations are executed using the function *AVDS_Matlab_ACname.m* included in the aircraft simulation packages. This function establishes communication between AVDS and MATLAB and implements the integration routine to numerically solve the nonlinear equations of motion. Integration time steps during piloted simulations are dynamically updated within the *AVDS_Matlab_ACname.m* file, to prevent MATLAB from lagging behind AVDS simulation time. This allows synchronization of the real-time simulation of the aircraft in MATLAB with the 3-D display in AVDS. However, an upper limit (0.035 s) is imposed on the time steps to prevent loss of model fidelity. For less powerful computers (e.g., 500 MHz and slower), this can cause MATLAB to lag behind AVDS during simulation.

Control inputs at a given time step are sent from AVDS to MATLAB via a shared memory connection. Solutions of the nonlinear equations of motion are computed in MATLAB using the control inputs from AVDS. The solution is returned to AVDS by MATLAB, using the same data pathway. Control inputs and aircraft initial states, supplied by AVDS, are stored in the MATLAB workspace using the variable name *InputVector*. The output vector, stored in the variable called *OutputVector*, contains the translational and rotational states, angle of attack, sideslip angle, linear accelerations in g’s, airspeed, and Mach number, computed by the nonlinear simulation in MATLAB. Elements within *InputVector* and *OutputVector* are identified to AVDS via the file *ACname.sim.ini*, where *ACname* is the simulated aircraft name (e.g., *F16.sim.ini*, *F106B.sim.ini*, etc.). Refer to section 4.2 of the AVDS User’s Manual for modification instructions for this file. Typical elements of these vectors are shown below:
InputVector = $[flag_{run} \ \delta_e \ \delta_a \ \delta_r \ \delta_ih \ t_{AVDS} \ 0 \ 0 \ h \ \Phi \ \Psi \ V_t \ P_a \ \alpha \ \beta]^{T}$

OutputVector = $[x_E \ y_E \ h \ \Phi \ \Theta \ \Psi \ \alpha \ \beta \ g \ V_t \ M \ [\text{control surface deflections}]]^{T}$

where $flag_{run}$ is a flag equal to one when AVDS is running, and zero otherwise, and t_{AVDS} is the simulation time in the AVDS program.

Figure 5 shows a flowchart illustrating the interactive simulation.

![Interactive Simulation Flowchart](image)

Figure 5. Interactive Simulation Flowchart

The translational and rotational aircraft states calculated within MATLAB are used by AVDS to display the 3-D aircraft model along the calculated trajectory. Quantities important to the pilot ($\alpha, \beta, M, V_t, h, \Theta, \Psi,$ and a_N (g’s)) are displayed to the user in the AVDS Head-Up Display (HUD). A screen shot of the AVDS screen during interactive simulation of the F-16 is shown in figure 6. Flight path of the aircraft is shown with trailing ribbons generated on each wing tip and the aircraft center tail section.
Stick Gain Modification

Stick gains for elevator, aileron, and rudder are applied within the function `AVDS_Matlab_ACname.m` to allow for easier open-loop flying. All stick gains for the simulated aircraft are set to 0.5 by default. The procedure used to modify the stick gains for the F-16 simulation are given below (other simulation modifications are similar):

To change elevator stick gain
Modify line 123 within `AVDS_Matlab_F16.m` to read:

```
gain_el = xxx;
```
where `xxx` is the user-defined numerical value for the elevator stick gain.

To change aileron stick gain
Modify line 124 within `AVDS_Matlab_F16.m` to read:

```
gain_ail = xxx;
```
where `xxx` is the user-defined numerical value for the aileron stick gain.

To change rudder stick gain
Modify line 125 within `AVDS_Matlab_F16.m` to read:

```
gain_rdr = xxx;
```
where `xxx` is the user-defined numerical value for the rudder stick gain.
Control Deflection Exaggeration Factor

Deflections of aircraft control surfaces, shown in green on the AVDS aircraft 3-D models, can be visually exaggerated for easier viewing. By default, all deflections shown in AVDS are exaggerated by a factor of two. The following provides an example of modifying the exaggeration factor for the F-16. Other simulation modifications are similar.

To adjust control surface deflection exaggeration factor

Modify line 130 within AVDS_Matlab_F16.m to read:

```
cdfac = xxx;
```

where xxx is the user-defined numerical value for the deflection exaggeration factor. If cdfac is set to 2, the displayed control surface deflections will be 2 times the actual control surface deflections being used in the MATLAB nonlinear aircraft simulation.

Integration Routine

Integration routines used to solve the equations of motion for the AVDS / MATLAB interactive simulations are implemented within AVDS_Matlab_ACname.m as opposed to ab3.m, rk2.m, and rk4.m for the batch nonlinear simulations. The AVDS_Matlab_ACname.m function can implement either the Adams-Bashforth integration method of order three, the Runge-Kutta method of order two, or Euler’s method. The following gives an example for implementing particular integration routines for the F-16 simulation (AVDS_Matlab_F16.m). Modifications for other simulations are similar.

To implement Adams-Bashforth method of order three

Remove the % character from the beginning of lines 250-266 and add the % character to the beginning of lines 270-274 and lines 278-280. MATLAB ignores lines of code beginning with the % character during function execution.

To implement Runge-Kutta method of order two

Remove the % character from the beginning of lines 270-274 and add the % character to the beginning of lines 250-266 and lines 278-280.

To implement Euler’s method

Remove the % character from the beginning of lines 278-280 and add the % character to the beginning of lines 250-266 and lines 270-274.

Starting the AVDS / MATLAB Simulation

The following provides an example of running the F-16 piloted simulation. A similar procedure is used for the other provided simulations.

To start the piloted F-16 simulation

Step 1. Start AVDS
Step 2. Load the simulation initialization file F16.sim.ini
 a. Select File from the top menu
 b. Select Simulation Init, then Open
 c. Choose the file F16.sim.ini located in the F-16 directory of the simulation software package

Step 3. Load the 3-D aircraft image F-16 (Lo-Res) or F-16 (Hi-Res)
 a. Select Initialize from the top menu
 b. Select Aircraft Image
 c. Select either F-16 (Lo-Res) or F-16 (Hi-Res)

Step 4. In AVDS, switch to simulation mode and start the simulation
 a. Press SIMULATION button on main toolbar
 b. Press START button on main toolbar

Step 5. Run AVDS_Matlab_F16 in MATLAB
 a. Set the current directory to the F-16 directory of the simulation software package
 b. Type AVDS_Matlab_F16 on the MATLAB command line followed by ENTER

To end the simulation

Press the STOP button located on main toolbar in AVDS
V. SPECIFIC AIRCRAFT SIMULATION DETAILS

Details specific to each aircraft simulation package are given below. Unique simulation characteristics such as aerodynamic and engine models, aircraft controls, and valid ranges for the states and controls are given. Angle of attack, sideslip angle, and control surface deflection inputs to the aerodynamic models are in degrees, unless specified otherwise. Aircraft angular velocities are in radians per second, unless specified otherwise. For a list of the files included in each package, refer to tables A-1 through A-8 in the Appendix.

F-16 SIMULATION

The General Dynamics F-16 is a single-seat, multi-role fighter with a blended wing / body and a cropped delta wing planform with leading edge sweep of 40°. The wing is fitted with leading edge flaps and trailing edge flaperons (flaps / ailerons). Tail surfaces are swept and cantilevered. The horizontal stabilator is composed of two all-moving tail plane halves, while the vertical tail is fitted with a trailing edge rudder. Thrust is provided by one General Electric F110-GE-100 or Pratt & Whitney F100-PW-220 afterburning turbofan engine mounted in the rear fuselage.

The aircraft was modeled with controls for $\delta_{th}, \delta_e, \delta_a$, and δ_r. Aerodynamic force and moment data were derived from low-speed static and dynamic forced oscillation wind tunnel tests conducted on a 16% scale model of the F-16 flown out of ground effect, with landing gear retracted, and no external stores3,9. Static aerodynamic data are in tabular form as a function of angle of attack and sideslip over the ranges $-10^\circ \leq \alpha \leq 45^\circ$ and $-30^\circ \leq \beta \leq 30^\circ$. Dynamic data is provided in tabular form at zero sideslip angle over the angle of attack range $-10^\circ \leq \alpha \leq 45^\circ$. Each non-dimensional aerodynamic force and moment coefficient is built up from component functions. Aerodynamic coefficients are referenced to a center of gravity location at $0.35 \bar{c}$. Corrections to the flight center of gravity position are made in the coefficient build-up equations.

The aerodynamic database was simplified slightly by dropping second order dependencies (e.g., dependence of longitudinal aerodynamic forces on sideslip angle). Throttle deflection is limited to the range $0 \leq \delta_{th} \leq 1$, elevator deflection is limited to $-25^\circ \leq \delta_e \leq 25^\circ$, aileron deflection is limited to $-21.5^\circ \leq \delta_a \leq 21.5^\circ$, and rudder deflection is limited to $-30^\circ \leq \delta_r \leq 30^\circ$.

Engine thrust data is in tabular form as a function of power level, altitude, and Mach number over the ranges $0 \text{ ft} \leq h \leq 50,000 \text{ ft}$ and $0 \leq M \leq 1$, for idle, military, and maximum power settings. Engine power level dynamics and gyroscopic effects9 are included for this aircraft simulation, in the manner described previously. Figure 7 shows a three-view of the F-16.
Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the F-16 vary non linearly with flow angles (α, β), aircraft angular velocities (p, q, r), and control surface deflections (δ_e, δ_a, δ_r). Moment coefficients C_n and C_m include a correction for the center of gravity position. The coefficients are computed as follows:

$$C_X = C_{X_0} (\alpha, \delta_e) + \left(\frac{q\bar{c}}{2V_t}\right) C_{X_q} (\alpha)$$

$$C_Y = -0.02\beta + 0.021\left(\frac{\delta_a}{20}\right) + 0.086\left(\frac{\delta_r}{30}\right) + \left(\frac{b}{2V_t}\right) \left(C_{Y_p} (\alpha) p + C_{Y_r} (\alpha) r \right)$$

$$C_Z = C_{Z_0} (\alpha) \left[1 - \left(\frac{\beta\pi}{180}\right)^2 \right] - 0.19\left(\frac{\delta_e}{25}\right) + \left(\frac{q\bar{c}}{2V_t}\right) C_{Z_q} (\alpha)$$
\[
C_l = C_{l0}(\alpha, \beta) + \Delta C_{l\alpha=20^\circ} \left(\frac{\delta_a}{20} \right) + \Delta C_{l\beta=30^\circ} \left(\frac{\delta_r}{30} \right) + \left(\frac{b}{2V_t} \right) \left(C_{l_p}(\alpha)p + C_{l_r}(\alpha)r \right)
\]

\[
C_m = C_{m0}(\alpha, \delta_c) + \left(\frac{qc}{2V_t} \right) C_{mq}(\alpha) + (x_{c.g..ref} - x_{c.g..}) C_Z
\]

\[
C_n = C_{n0}(\alpha, \beta) + \Delta C_{n\alpha=20^\circ} \left(\frac{\delta_a}{20} \right) + \Delta C_{n\beta=30^\circ} \left(\frac{\delta_r}{30} \right) + \left(\frac{b}{2V_t} \right) \left(C_{n_p}(\alpha)p + C_{n_r}(\alpha)r \right) - \left(\frac{c}{b} \right) (x_{c.g..ref} - x_{c.g..}) C_Y
\]

where

\[
\Delta C_{l\alpha=20^\circ} = C_{l\alpha=20^\circ}(\alpha, \beta) - C_{l0}(\alpha, \beta)
\]

\[
\Delta C_{l\beta=30^\circ} = C_{l\beta=30^\circ}(\alpha, \beta) - C_{l0}(\alpha, \beta)
\]

\[
\Delta C_{n\alpha=20^\circ} = C_{n\alpha=20^\circ}(\alpha, \beta) - C_{n0}(\alpha, \beta)
\]

\[
\Delta C_{n\beta=30^\circ} = C_{n\beta=30^\circ}(\alpha, \beta) - C_{n0}(\alpha, \beta)
\]

Data tables for the component functions of the non-dimensional coefficients are defined in the file \textit{F16_aero_setup.m}. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in \textit{F16_aero.m}, using linear interpolation in the functions \textit{cxo.m}, \textit{czo.m}, \textit{clo.m}, \textit{cno.m}, \textit{dda.m}, \textit{ddr.m}, \textit{dndm.m}, and \textit{dampder.m}.

Engine Model and Database

The F-16 is powered by a single afterburning turbofan jet engine, which is modeled taking into account throttle gearing and engine power level lag. The engine angular momentum \(h_{eng}\) is assumed to act along the aircraft X body-axis with a fixed value of 160 slug-ft\(^2\)/s. Throttle gearing is implemented in the file \textit{tgear.m}, which outputs commanded engine power in percent of full power \([0,100]\) using throttle setting input \([0,1]\). Commanded power \(P_c\) is a function of \(\delta_{th}\), given by:

\[
P_c(\delta_{th}) = \begin{cases}
64.94\delta_{th} & \text{if } \delta_{th} \leq 0.77 \\
217.38\delta_{th} - 117.38 & \text{if } \delta_{th} > 0.77
\end{cases}
\]

Engine power level dynamic response is modeled using a first order lag with the time constant computed by the function \textit{rtau.m}. The module \textit{pdot.m} calculates the rate of
change of power level with time using the difference between P_c and P_a. The actual power level derivative \dot{P}_a is given by:

$$\dot{P}_a = \frac{1}{\tau_{eng}} (P_c - P_a)$$

where

$$P_c = \begin{cases}
P_c & \text{if } P_c \geq 50.0 \text{ and } P_a \geq 50.0 \\
60 & \text{if } P_c \geq 50.0 \text{ and } P_a < 50.0 \\
40 & \text{if } P_c < 50.0 \text{ and } P_a \geq 50.0 \\
P_c & \text{if } P_c < 50.0 \text{ and } P_a < 50.0
\end{cases}$$

$$\frac{1}{\tau_{eng}} = \begin{cases}
5.0 & \text{if } P_c \geq 50.0 \text{ and } P_a \geq 50.0 \\
1 & \text{if } P_c \geq 50.0 \text{ and } P_a < 50.0 \\
5.0 & \text{if } P_c < 50.0 \text{ and } P_a \geq 50.0 \\
1 & \text{if } P_c < 50.0 \text{ and } P_a < 50.0
\end{cases}$$

$$\frac{1}{\tau_{eng}} = \begin{cases}
1.0 & \text{if } (P_c - P_a) \leq 25.0 \\
0.1 & \text{if } (P_c - P_a) \geq 50.0 \\
1.9 - 0.036(P_c - P_a) & \text{if } 25.0 < (P_c - P_a) < 50.0
\end{cases}$$

Engine thrust is modeled as a function of h, M, and P_a. Data tables for idle, military, and maximum power as a function of h and M are defined in the file \textit{F16_engine_setup.m}. Linear interpolation and thrust calculation is performed in the module \textit{F16_engine.m}. Thrust is computed from:
\[
T = \begin{cases}
T_{idle} + (T_{mil} - T_{idle}) \left(\frac{P_a}{50} \right) & \text{if } P_a < 50 \\
T_{mil} + (T_{max} - T_{mil}) \left(\frac{P_a - 50}{50} \right) & \text{if } P_a \geq 50
\end{cases}
\]

Mass Properties

The mass properties of the F-16 are given in the file `F16_massprop.m`. These properties include the weight of the aircraft, \(x_{c.g.}, I_X, I_Y, I_Z, \) and \(I_{XZ} \). This module also calculates the constants \(c_1, c_2, \ldots, c_9 \) for use in the body-axis moment equations. The longitudinal center of gravity location \(x_{c.g.} \) is given in fraction of mean aerodynamic chord, and can be adjusted within this module to account for different longitudinal center of gravity locations. Table 1 lists the mass properties used in the F-16 simulation.

Table 1. Mass Properties of the Simulated F-16

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>(I_X) (slug-ft(^2))</th>
<th>(I_Y) (slug-ft(^2))</th>
<th>(I_Z) (slug-ft(^2))</th>
<th>(I_{XZ}) (slug-ft(^2))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>20,500</td>
<td>9,496</td>
<td>55,814</td>
<td>63,100</td>
<td>982</td>
</tr>
</tbody>
</table>

F-106B SIMULATION

The Convair F-106B is a two-seat all-weather interceptor incorporating a delta wing planform with a single swept vertical tail surface. Elevon control surfaces, which perform both elevator and aileron control functions, are located at the trailing edges of the wing. The rudder control surface is located at the trailing edge of the vertical tail. Thrust is provided by a single Pratt & Whitney J75-P-17 afterburning jet engine mounted in the rear fuselage.

The aircraft simulation has controls for \(\delta_{th}, \delta_e, \delta_a, \) and \(\delta_r \). Low-speed static and dynamic forced oscillation wind tunnel tests on a 15% scale model of the aircraft provided aerodynamic force and moment data. Tests were conducted in the NASA Langley 30- by 60-foot wind tunnel, with the model flown out of ground effect, with landing gear retracted, and no external stores. Static and dynamic aerodynamic data are in tabular form as a function of angle of attack over the range \(-5^\circ \leq \alpha \leq 50^\circ\). Each non-dimensional aerodynamic force and moment coefficient is built up from component functions. Aerodynamic coefficients are referenced to a center of gravity location at \(0.275 \bar{c} \), and corrected to the flight center of gravity position in the coefficient build-up equations.
Throttle deflection is limited to the range $0 \leq \delta_b \leq 1$, elevator deflection is limited to $-28^\circ \leq \delta_e \leq 28^\circ$, aileron deflection is limited to $-7^\circ \leq \delta_a \leq 7^\circ$, and rudder deflection is limited to $-25^\circ \leq \delta_r \leq 25^\circ$.

The F-106B engine has maximum thrust values of 24,500 lb and 17,200 lb with and without afterburner, respectively. A scaled version of the F-16 engine model was used for this simulation. Idle, military, and maximum power settings were scaled using the maximum thrust for the F-106B engine. Throttle gearing, gyroscopic effects, and engine power level dynamics were carried over from the F-16 engine model. Figure 8 shows a three-view of the F-106B aircraft.

![Figure 8. Three-View of the F-106B](image)

Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the F-106B vary non-linearly with flow angles (α, β), aircraft angular velocities (p, q, r), and control surface deflections ($\delta_e, \delta_a, \delta_r$). Moment coefficients C_n and C_m include a correction for the center of gravity position. The coefficients are computed as follows:

$$C_X = C_{\delta b} (\alpha, \delta_e) \sin \left(\frac{\alpha \pi}{180} \right) - C_{\delta r} (\alpha, \delta_e) \cos \left(\frac{\alpha \pi}{180} \right)$$

$$C_Y = C_{\beta} (\alpha) \beta + \left(\frac{b}{2V_t} \right) \left(C_{\alpha p} (\alpha) p + C_{\alpha r} (\alpha) r \right)$$

$$C_Z = -C_{\delta b} (\alpha, \delta_e) \cos \left(\frac{\alpha \pi}{180} \right) - C_{\delta r} (\alpha, \delta_e) \sin \left(\frac{\alpha \pi}{180} \right) - \left(\frac{q \pi}{2V_t} \right) C_{N q} (\alpha)$$
\[C_l = C_l \beta (\alpha) \beta + \Delta C_{l, \delta_a = \gamma} \left(\frac{\delta_a}{7} \right) + \Delta C_{l, \delta_r = 25} \left(\frac{\delta_r}{25} \right) + \left(\frac{b}{2V_t} \right) \left(C_{l, p} (\alpha) p + C_{l, r} (\alpha) r \right) \]

\[C_m = C_m_0 (\alpha, \delta_c) + \left(\frac{q \bar{c}}{2V_t} \right) C_{m, q} (\alpha) + (x_{c.g., ref} - x_{c.g.}) C_Z \]

\[C_n = C_n \beta (\alpha) \beta + \Delta C_{n, \delta_a = \gamma} \left(\frac{\delta_a}{7} \right) + \Delta C_{n, \delta_r = 25} \left(\frac{\delta_r}{25} \right) + \left(\frac{b}{2V_t} \right) \left(C_{n, p} (\alpha) p + C_{n, r} (\alpha) r \right) \]

\[-\left(\frac{\bar{c}}{b} \right) (x_{c.g., ref} - x_{c.g.}) C_Y \]

where

\[\Delta C_{l, \delta_a = \gamma} = C_{l, \delta_a = \gamma} (\alpha) - C_{l, 0} (\alpha) \]

\[\Delta C_{l, \delta_r = 25} = C_{l, \delta_r = 25} (\alpha) - C_{l, 0} (\alpha) \]

\[\Delta C_{n, \delta_a = \gamma} = C_{n, \delta_a = \gamma} (\alpha) - C_{n, 0} (\alpha) \]

\[\Delta C_{n, \delta_r = 25} = C_{n, \delta_r = 25} (\alpha) - C_{n, 0} (\alpha) \]

Data tables for the component functions of the non-dimensional coefficients are defined in the file `F106B_aero_setup.m`. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in `F106B_aero.m`, using linear interpolation in the functions `cdo.m`, `clo.m`, `cmo.m`, `dldb.m`, `dlda.m`, `dldr.m`, `dndb.m`, `dnda.m`, `dndr.m`, `dydb.m`, `dydr.m`, and `dampder.m`.

Engine Model and Database

Thrust scaling for the F-106B engine is applied in the function `F106B_engine_setup.m`. Linear interpolation and thrust calculation is performed in the module `F106B_engine.m`. Functions `tgear.m`, `pdot.m`, and `rtau.m` are unaltered from the F-16 engine simulation.

Mass Properties

Aircraft mass properties are given in the module `F106B_massprop.m`. Table 2 lists the mass properties used in the F-106B simulation.
Table 2. Mass Properties of the Simulated F-106B

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>I_X (slug-ft²)</th>
<th>I_Y (slug-ft²)</th>
<th>I_Z (slug-ft²)</th>
<th>I_{XZ} (slug-ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>29,776</td>
<td>18,634</td>
<td>177,858</td>
<td>191,236</td>
<td>5,539</td>
</tr>
</tbody>
</table>

F-14 SIMULATION

The Grumman F-14 is a two-seat, carrier-based, multi-role fighter with a variable geometry wing and leading edge sweep varying between 20° and 68°. Small canard surfaces extend from the leading edges of the fixed portion of the wing to provide extra longitudinal stability. Spoilers are located on the upper surfaces of the wing and provide aileron control during low speed flight. Trailing edge flaps are located at the rear portion of the wing and extend over most of the span, while slats are fitted to the wing leading edges. Two all-moving horizontal tail surfaces are located at the rear of the fuselage and provide aileron and elevator control using differential and symmetric deflections, respectively. Twin vertical tails, also located at the rear of the fuselage, are fitted with trailing edge rudder control surfaces. Speed brakes deflect symmetrically from a location at the rear fuselage between the bases of the vertical tails. Two Pratt & Whitney TF30-P-412A afterburning turbofan engines, located at the rear of the fuselage, provide thrust for the aircraft.

The aircraft was modeled in the unswept wing configuration, with controls for δ_{th}, δ_e, δ_a, δ_r, δ_{sp}, and δ_{sb}. Aircraft aerodynamic data was taken with the vehicle flown out of ground effect, with landing gear retracted, and no external stores12,13. Static aerodynamic data are in tabular form as a function of angle of attack, sideslip angle, and Mach number over the ranges $-5^\circ \leq \alpha \leq 50^\circ$, $-20^\circ \leq \beta \leq 20^\circ$, and $0 \leq M \leq 1$. The aerodynamic effects of angular rates are also in tabular form over the same angle of attack range. Each non-dimensional aerodynamic force and moment coefficient is built up from component functions. Aerodynamic coefficients are referenced to a center of gravity location at $0.16\overline{c}$, and corrected to the flight center of gravity position in the coefficient build-up equations.

Throttle deflection is limited to the range $0 \leq \delta_{th} \leq 1$, elevator deflection is limited to $-30^\circ \leq \delta_e \leq 12^\circ$, aileron deflection is limited to $-21^\circ \leq \delta_a \leq 21^\circ$, rudder deflection is limited to $-30^\circ \leq \delta_r \leq 30^\circ$, wing spoiler deflection is limited to $0^\circ \leq \delta_{sp} \leq 55^\circ$, and speed brake deflection is limited to $0^\circ \leq \delta_{sb} \leq 60^\circ$.

Tabular data for idle, military, and maximum thrust were used to model the thrust produced by the F-14 engine. Engine dynamics and throttle gearing were carried over from the F-16 engine model; however, engine angular momentum was neglected. Figure 9 shows a three-view of the F-14.
Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the F-14 model vary nonlinearly with relative airflow quantities (\(\alpha, \beta, M\)), aircraft angular velocities (\(p, q, r\)), and control surface deflections (\(\delta_e, \delta_a, \delta_r, \delta_{sp}, \delta_{sb}\)). Moment coefficients \(C_n\) and \(C_m\) include a correction for the center of gravity position. The coefficients are computed as follows:

\[
C_X = C_{X0} (\alpha, \beta) + \Delta C_X \delta_e + \Delta C_X \delta_{sb} = 60^\circ \left(\frac{\delta_{sb}}{60} \right) + \Delta C_X \delta_{sp} = 55^\circ \left(\frac{\delta_{sp}}{55} \right)
\]

\[
C_Y = C_{Y0} (\alpha, \beta) + C_{Y\delta_a} (\alpha, \beta) \delta_a + C_{Y\delta_r} (\alpha, \beta) \delta_r + C_{Y\delta_{sp}} (\alpha) \delta_{sp} + \left(\frac{b}{2V_t} \right) \left(C_{Yp} (\alpha) p + C_{Yr} (\alpha) r \right)
\]

\[
C_Z = C_{Z0} (\alpha, \beta) + \Delta C_Z \delta_e + \Delta C_Z \delta_{sb} = 60^\circ \left(\frac{\delta_{sb}}{60} \right) + \Delta C_Z \delta_{sp} = 55^\circ \left(\frac{\delta_{sp}}{55} \right) + \left(\frac{qC}{2V_t} \right) C_{Zq} (\alpha)
\]
\begin{align*}
C_l &= C_{0l} (\alpha, \beta) + C_{l_{\delta_a}} (\alpha, \beta) \delta_a + C_{l_{\delta_r}} (\alpha, \beta) \delta_r + C_{l_{\delta_{sp}}} (\alpha, \beta) \eta_{sp,l} (M) \delta_{sp} \\
&
+ \left(\frac{b}{2V_t} \right) \left[C_{l_p} (\alpha) p + C_{l_r} (\alpha) r \right] \\
C_m &= C_{m_0} (\alpha, \beta) + \Delta C_{m_{\delta_e}} + \Delta C_{m_{\delta_{sb}=60^\circ}} \left(\frac{\delta_{sb}}{60} \right) + \Delta C_{m_{\delta_{sp}=55^\circ}} \left(\frac{\delta_{sp}}{55} \right) \eta_{sp,m} (M) + \left(\frac{\bar{q} \bar{V}}{2V_t} \right) C_{m_q} (\alpha) \\
&
+ \left(x_{c.g.,ref} - x_{c.g.} \right) C_Z \\
C_n &= C_{n_0} (\alpha, \beta) + C_{n_{\delta_a}} (\alpha, \beta) \delta_a + C_{n_{\delta_r}} (\alpha, \beta) \delta_r + C_{n_{\delta_{sp}}} (\alpha) \delta_{sp} + \left(\frac{b}{2V_t} \right) \left(C_{n_p} (\alpha) p + C_{n_r} (\alpha) r \right) \\
&
- \left(\frac{c}{b} \right) \left(x_{c.g.,ref} - x_{c.g.} \right) C_Y \\
\end{align*}

where

\begin{align*}
\Delta C_{X_{\delta_e}} &= C_{X_{\delta_e}} (\alpha, \beta, \delta_e) - C_{X_0} (\alpha, \beta) \\
\Delta C_{X_{\delta_{sb}=60^\circ}} &= C_{X_{\delta_{sb}=60^\circ}} (\alpha) - C_{X_0} (\alpha) \\
\Delta C_{X_{\delta_{sp}=55^\circ}} &= C_{X_{\delta_{sp}=55^\circ}} (\alpha) - C_{X_0} (\alpha) \\
\Delta C_{Z_{\delta_e}} &= C_{Z_{\delta_e}} (\alpha, \beta, \delta_e) - C_{Z_0} (\alpha, \beta) \\
\Delta C_{Z_{\delta_{sb}=60^\circ}} &= C_{Z_{\delta_{sb}=60^\circ}} (\alpha) - C_{Z_0} (\alpha) \\
\Delta C_{Z_{\delta_{sp}=55^\circ}} &= C_{Z_{\delta_{sp}=55^\circ}} (\alpha) - C_{Z_0} (\alpha) \\
\Delta C_{m_{\delta_e}} &= C_{m_{\delta_e}} (\alpha, \beta, \delta_e) - C_{m_0} (\alpha, \beta) \\
\Delta C_{m_{\delta_{sb}=60^\circ}} &= C_{m_{\delta_{sb}=60^\circ}} (\alpha) - C_{m_0} (\alpha) \\
\Delta C_{m_{\delta_{sp}=55^\circ}} &= C_{m_{\delta_{sp}=55^\circ}} (\alpha) - C_{m_0} (\alpha) \\
\eta_{sp,l} (M) &= \text{wing spoiler rolling moment efficiency factor}
\text{given as a function of Mach number} \\
\eta_{sp,m} (M) &= \text{wing spoiler pitching moment efficiency factor}
\text{given as a function of Mach number}
\end{align*}
Data tables for the component functions of the non-dimensional coefficients are defined in the file *F14_aero_setup.m*. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in *F14_aero.m*, using linear interpolation in the functions *etamsp.m*, *etalsp.m*, *ddm.m*, *ddda.m*, *ddld.m*, *ddldr.m*, *dczsp.m*, *dczsb.m*, *dczds.m*, *dcxsp.m*, *dcxsb.m*, *dcxds.m*, *dcm.m*, *dcmw.m*, *dcmsb.m*, *dcmsds.m*, *cxo.m*, *cxyo.m*, *cydsp.m*, *cydr.m*, *cyda.m*, *cxo.m*, *cno.m*, *cndsp.m*, *cmo.m*, *clo.m*, *cldsp.m*, and *dampder.m*.

Engine Model and Database

Data tables for the F-14 engine are defined in the function *F14_engine_setup.m*. Linear interpolation and thrust calculation is performed in the module *F14_engine.m*. Functions *tgear.m*, *pdot.m*, and *rtau.m* are unaltered from the F-16 engine simulation.

Mass Properties

Mass properties for the aircraft are given in the module *F14_massprop.m*. Table 3 lists the mass properties used in the F-14 simulation.

Table 3. Mass Properties of the Simulated F-14

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>I_X (slug-ft²)</th>
<th>I_Y (slug-ft²)</th>
<th>I_Z (slug-ft²)</th>
<th>I_{XZ} (slug-ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>48,669</td>
<td>58,500</td>
<td>227,000</td>
<td>276,000</td>
<td>-2,820</td>
</tr>
</tbody>
</table>

F-4 SIMULATION

The McDonnell Douglas F-4 is a two-seat all-weather fighter/bomber. The aircraft is fitted with a low-mounted swept wing with wingtip dihedral. The tail section consists of an all-moving horizontal stabilator placed in a cathedral configuration and a single vertical tail. The trailing edge of the main wing houses control surfaces for the aileron and flaps. The trailing edge of the vertical tail accommodates a rudder control surface. Thrust is provided by two General Electric GE-J19-17 afterburning jet engines mounted at the rear of the fuselage.

The simulation has controls for δ_b, δ_c, δ_u, and δ_r. Aerodynamic data were acquired with the model flown out of ground effect, with landing gear retracted, and no external stores. Static and dynamic aerodynamics are modeled in terms of polynomial functions, which limit control surface effects to first order dependencies, angle of attack static dependencies to second order, and sideslip angle static dependencies to third order. Polynomial fits for each non-dimensional aerodynamic force and moment coefficient are valid over an angle of attack range of $-15^\circ \leq \alpha \leq 55^\circ$. Aerodynamic coefficients are referenced to a center of gravity location at $0.289 \bar{e}$, and corrected to the flight center of gravity position in the coefficient build-up equations.
Throttle deflection is limited to the range \(0 \leq \delta_{th} \leq 1\), elevator deflection is limited to \(-21^\circ \leq \delta_e \leq 7^\circ\), aileron deflection is limited to \(-15.5^\circ \leq \delta_a \leq 15.5^\circ\), and rudder deflection is limited to \(-30^\circ \leq \delta_r \leq 30^\circ\). A scaled version of the F-16 engine model is used with this simulation. Thrust for idle, military, and maximum power settings were scaled according to the maximum thrust values of the F-4 power plant. Throttle gearing and engine power level dynamics were carried over from the F-16 engine model, neglecting engine angular momentum effects. Figure 10 shows a three-view of the F-4 aircraft.

![Figure 10. Three-View of the F-4](image)

Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the F-4 model vary nonlinearly with flow angles \((\alpha, \beta)\), aircraft angular velocities \((p, q, r)\), and control surface deflections \((\delta_e, \delta_a, \delta_r)\). Moment coefficients \(C_n\) and \(C_m\) include a correction for the center of gravity position. The coefficients are computed as follows:
For $\alpha \leq 15^\circ$

\[
C_X = -0.0434 + 2.39 \times 10^{-3} \alpha + 2.53 \times 10^{-5} \beta^2 - 1.07 \times 10^{-6} \alpha \beta^2 + 9.5 \times 10^{-4} \delta_e \\
-8.5 \times 10^{-7} \delta_e \beta^2 + \left(\frac{180 q \bar{c}}{\pi 2 V_t} \right) \left(8.73 \times 10^{-3} + 0.001 \alpha - 1.75 \times 10^{-4} \alpha^2 \right)
\]

\[
C_Y = -0.012 \beta + 1.55 \times 10^{-3} \delta_r - 8 \times 10^{-6} \delta_r \alpha \\
+ \left(\frac{180 b}{\pi 2 V_t} \right) \left(2.25 \times 10^{-3} p + 0.0117 r - 3.67 \times 10^{-4} r \alpha + 1.75 \times 10^{-4} r \delta_e \right)
\]

\[
C_Z = -0.131 - 0.0538 \alpha - 4.76 \times 10^{-3} \delta_e - 3.3 \times 10^{-5} \delta_e \alpha - 7.5 \times 10^{-5} \delta_e^2 \\
+ \left(\frac{180 q \bar{c}}{\pi 2 V_t} \right) (-0.111 + 5.17 \times 10^{-3} \alpha - 1.1 \times 10^{-3} \alpha^2)
\]

\[
C_l = -5.98 \times 10^{-4} \beta - 2.83 \times 10^{-4} \alpha \beta + 1.51 \times 10^{-5} \alpha^2 \beta \\
- \delta_a \left(6.1 \times 10^{-4} + 2.5 \times 10^{-5} \alpha - 2.6 \times 10^{-6} \alpha^2 \right) \\
- \delta_r \left(-2.3 \times 10^{-4} + 4.5 \times 10^{-6} \alpha \right) \\
+ \left(\frac{180 b}{\pi 2 V_t} \right) \left(-4.12 \times 10^{-3} p - 5.24 \times 10^{-4} p \alpha + 4.36 \times 10^{-5} p \alpha^2 \\
+ 4.36 \times 10^{-4} r + 1.05 \times 10^{-4} r \alpha + 5.24 \times 10^{-5} r \delta_e \right)
\]

\[
C_m = -6.61 \times 10^{-3} - 2.67 \times 10^{-3} \alpha - 6.48 \times 10^{-5} \beta^2 \\
-2.65 \times 10^{-6} \alpha \beta^2 - 6.54 \times 10^{-3} \delta_e - 8.49 \times 10^{-5} \delta_e \alpha \\
+3.74 \times 10^{-6} \delta_e \beta^2 - 3.5 \times 10^{-5} \delta_e^2 \\
+ \left(\frac{180 q \bar{c}}{\pi 2 V_t} \right) (-0.0473 - 1.57 \times 10^{-3} \alpha) \left(x_{c.g.,ref} - x_{c.g.} \right) C_Z
\]
\[
C_n = 2.28 \times 10^{-3} \beta + 1.79 \times 10^{-6} \beta^3 + 1.4 \times 10^{-5} \delta_a \\
+ 7.0 \times 10^{-6} \delta_a \alpha - 9.0 \times 10^{-4} \delta_r + 4.0 \times 10^{-6} \delta_r \alpha \\
+ \left(\frac{180b}{\pi 2V_t} \right) \left(-6.63 \times 10^{-5} p - 1.92 \times 10^{-5} p\alpha + 5.06 \times 10^{-6} p\alpha^2 \\
- 6.06 \times 10^{-3} r - 8.73 \times 10^{-5} r\delta_e + 8.7 \times 10^{-6} r\delta_e \alpha \right) \\
- \left(\frac{\bar{c}}{b} \right) (x_{c.g.,ref} - x_{c.g.}) C_Y
\]

For \(15^\circ < \alpha \leq 30^\circ\)

\[
C_X = 0.141 - 0.0154 \alpha + 2.96 \times 10^{-4} \alpha^2 - 3.72 \times 10^{-4} \beta^2 \\
+ 4.14 \times 10^{-5} \alpha \beta^2 - 9.12 \times 10^{-7} \alpha^2 \beta^2 + 1.82 \times 10^{-3} \delta_e \\
- 7.3 \times 10^{-5} \delta_e \alpha + \left(\frac{180q\bar{c}}{\pi 2V_t} \right) (-0.0602 + 2.04 \times 10^{-3} \alpha)
\]

\[
C_Y = -2.08 \times 10^{-2} \beta + 6.07 \times 10^{-4} \alpha \beta + 2.37 \times 10^{-6} \beta^3 \\
- 3.64 \times 10^{-7} \alpha \beta^3 + 2.3 \times 10^{-3} \delta_r - 5.9 \times 10^{-5} \delta_r \alpha \\
+ \left(\frac{180b}{\pi 2V_t} \right) (-1.62 \times 10^{-3} p + 3.32 \times 10^{-4} p\alpha \\
+ 0.0311 r - 1.4 \times 10^{-3} r\alpha + 1.75 \times 10^{-4} r\delta_e)
\]

\[
C_Z = -0.608 - 0.022 \alpha - 6.77 \times 10^{-3} \delta_e + 9.7 \times 10^{-5} \delta_e \alpha - 7.5 \times 10^{-5} \delta_e^2 \\
+ \left(\frac{180q\bar{c}}{\pi 2V_t} \right) (1.136 - 0.1418 \alpha + 3.11 \times 10^{-3} \alpha^2)
\]
\[
C_l = -1.29 \times 10^{-2} \beta + 1.04 \times 10^{-3} a \beta - 2.02 \times 10^{-5} a^2 \beta \\
+ 1.36 \times 10^{-5} \beta^3 - 1.13 \times 10^{-6} a \beta^3 + 2.01 \times 10^{-8} a^2 \beta^3 \\
- \delta_a (7.74 \times 10^{-4} - 1.9 \times 10^{-5} a) - \delta_r (-2.0 \times 10^{-4} + 5.0 \times 10^{-6} a) \\
+ \left(\frac{180b}{\pi 2V_t} \right) (2.78 \times 10^{-3} p - 2.79 \times 10^{-4} p a - 6.81 \times 10^{-3} r \\
+ 6.46 \times 10^{-4} r a + 5.24 \times 10^{-5} r \delta_e)
\]
\[
C_m = 0.0549 - 6.08 \times 10^{-3} a \alpha - 1.69 \times 10^{-4} \beta^2 + 5.64 \times 10^{-7} a \beta^2 \\
- 8.14 \times 10^{-3} \delta_e + 1.1 \times 10^{-4} \delta_e a - 3.5 \times 10^{-5} \delta_r^2 \\
+ \left(\frac{180q \sigma}{\pi 2V_t} \right) (-0.0951 + 1.4 \times 10^{-3} a) + (x_{c.g.,ref} - x_{c.g.}) C_Z
\]
\[
C_n = 1.02 \times 10^{-2} \beta - 5.12 \times 10^{-4} a \beta - 5.27 \times 10^{-6} \beta^3 \\
+ 3.79 \times 10^{-7} a \beta^3 + 9.1 \times 10^{-5} \delta_a + 3.0 \times 10^{-6} \delta_a a \\
- 1.37 \times 10^{-3} \delta_r + 3.8 \times 10^{-5} \delta_r a \\
+ \left(\frac{180b}{\pi 2V_t} \right) (0.0236 p - 2.5 \times 10^{-3} p a + 6.25 \times 10^{-5} p a^2 \\
+ 6.2 \times 10^{-4} r - 4.89 \times 10^{-4} r a - 8.73 \times 10^{-5} r \delta_e - 8.7 \times 10^{-6} r \delta_e a) \\
- \left(\frac{c}{b} \right) (x_{c.g.,ref} - x_{c.g.}) C_Y
\]
For $\alpha > 30^\circ$

\[
C_X = -0.0326 - 2.16 \times 10^{-3} \alpha + 4.89 \times 10^{-5} \alpha^2 - 1.24 \times 10^{-4} \beta^2
+ 1.076 \times 10^{-5} \alpha \beta^2 - 1.54 \times 10^{-7} \alpha^2 \beta^2 + 7.5 \times 10^{-4} \delta_e
- 3.9 \times 10^{-5} \delta_e \alpha + \left(\frac{180q\overline{C}}{\pi 2V_t} \right) (-0.026 + 8.73 \times 10^{-4} \alpha)
\]

\[
C_Y = -2.095 \times 10^{-3} \beta - 6.36 \times 10^{-5} \alpha \beta - 2.15 \times 10^{-5} \beta^3
+ 5.42 \times 10^{-7} \alpha \beta^3 + 1.4 \times 10^{-3} \delta_r - 2.6 \times 10^{-5} \delta_r \alpha
+ \left(\frac{180b}{\pi 2V_t} \right) (0.196 p - 9.27 \times 10^{-3} p \alpha + 1.01 \times 10^{-4} p \alpha^2
+ 0.0326 r - 2.55 \times 10^{-3} r \alpha + 3.26 \times 10^{-5} r \alpha^2 + 1.75 \times 10^{-4} r \delta_e)
\]

\[
C_Z = -0.891 - 0.01146 \alpha + 6.2 \times 10^{-3} \delta_e - 5.4 \times 10^{-3} \delta_e \alpha
+ 6.2 \times 10^{-6} \delta_e \alpha^2 - 7.5 \times 10^{-5} \delta_e^2
+ \left(\frac{180q\overline{C}}{\pi 2V_t} \right) (0.589 - 0.0494 \alpha + 6.11 \times 10^{-4} \alpha^2)
\]

\[
C_l = 1.18 \times 10^{-2} \beta - 5.29 \times 10^{-4} \alpha \beta + 4.88 \times 10^{-6} \alpha^2 \beta
- 2.2 \times 10^{-5} \beta^3 + 9.05 \times 10^{-7} \alpha \beta^3 - 9.08 \times 10^{-9} \alpha^2 \beta^3
- 5.0 \times 10^{-5} \delta_a - \delta_r (-9.0 \times 10^{-5} + 1.8 \times 10^{-6} \alpha)
+ \left(\frac{180b}{\pi 2V_t} \right) (-0.0428 p + 1.82 \times 10^{-3} p \alpha - 1.94 \times 10^{-5} p \alpha^2
+ 0.073 r - 3.02 \times 10^{-3} r \alpha + 3.14 \times 10^{-5} r \alpha^2 + 5.24 \times 10^{-5} r \delta_e)
\]

\[
C_m = 7.3 \times 10^{-3} - 5.5 \times 10^{-3} \alpha - 7.93 \times 10^{-3} \delta_e - 8.23 \times 10^{-5} \delta_e \alpha
- 3.5 \times 10^{-5} \delta_e^2 + \left(\frac{180q\overline{C}}{\pi 2V_t} \right) (0.16 - 0.0101 \alpha + 1.05 \times 10^{-4} \alpha^2)
+ (x_{c,g,ref} - x_{c,g}) C_Z
\]
\[C_n = -9.23 \times 10^{-3} \beta + 1.52 \times 10^{-4} \alpha \beta + 1.62 \times 10^{-5} \beta^3 \\
-3.46 \times 10^{-7} \alpha \beta^3 + 1.5 \times 10^{-4} \delta_a - 6.8 \times 10^{-4} \delta_r \\
+1.2 \times 10^{-5} \delta_e \alpha - \delta_e (1.67 \times 10^{-4} \beta - 5.56 \times 10^{-6} \alpha \beta \\
-3.81 \times 10^{-7} \beta^3 + 1.27 \times 10^{-8} \alpha \beta^3) \\
+ \left(\frac{180b}{\pi 2V_t} \right) (0.0385 \rho - 1.73 \times 10^{-3} \rho a + 1.92 \times 10^{-5} \rho a^2 \\
-0.0202r + 3.67 \times 10^{-4} r \alpha + 2.58 \times 10^{-3} r \delta_e \\
-1.31 \times 10^{-4} r \delta_e \alpha + 1.69 \times 10^{-6} r \delta_e \alpha^2) \left(\frac{c}{b} \right) (x_{c.g. ref} - x_{c.g.}) C_Y \]

The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in F4_aero.m.

Engine Model and Database

Scaled thrust values for the F-4 power plant are applied in the function F4_engine_setup.m. Linear interpolation and thrust calculation are performed in the module F4_engine.m. Functions tgear.m, pdot.m, and rtau.m are unaltered from the F-16 engine simulation.

Mass Properties

Aircraft mass properties are given in the module F4_massprop.m. Table 4 lists the mass properties used in the F-4 simulation.

Table 4. Mass Properties of the Simulated F-4

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>(I_X) (slug-ft²)</th>
<th>(I_Y) (slug-ft²)</th>
<th>(I_Z) (slug-ft²)</th>
<th>(I_{XZ}) (slug-ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>38,924</td>
<td>24,970</td>
<td>122,190</td>
<td>139,800</td>
<td>1,175</td>
</tr>
</tbody>
</table>

FASER SIMULATION

A radio-controlled aircraft, called the NASA Langley FASER, has the form of a high-wing general aviation aircraft. The aircraft was modeled with controls for \(\delta_h \), \(\delta_e \), \(\delta_a \), and \(\delta_r \). Non-dimensional static and dynamic aerodynamic data were estimated15 using airfoil data and approximations based on aircraft geometry, for the aircraft out of ground effect. The aerodynamic data is in tabular form as a function of angle of attack, Mach
number, lift coefficient, and thrust over the ranges \(-10^\circ \leq \alpha \leq 30^\circ\), \(0.05 \leq M \leq 0.3\),
\(-1 \leq C_L \leq 1.6\), and \(0 \text{ lb} \leq T \leq 10 \text{ lb}\). Each non-dimensional aerodynamic force and
moment coefficient is built up from component functions, which are provided in the
stability-axis frame. Aerodynamic coefficients are referenced to a center of gravity
location at \(0.273 \bar{e}\), and corrected to the flight center of gravity position in the coefficient
build-up equations.

Throttle deflection is limited to the range \(0 \leq \delta_{th} \leq 1\), elevator deflection is limited to
\(-25^\circ \leq \delta_e \leq 25^\circ\), aileron deflection is limited to \(-25^\circ \leq \delta_a \leq 25^\circ\), and rudder deflection is
limited to \(-30^\circ \leq \delta_r \leq 30^\circ\). FASER is fitted with a single electric motor that drives a
propeller to generate thrust. Figure 11 shows a three-view of the FASER.

\[C_X = C_L \sin \left(\frac{\alpha \pi}{180} \right) - C_D \cos \left(\frac{\alpha \pi}{180} \right) \]
\[C_Y = C_{Y\beta} (M) \left(\frac{\beta \pi}{180} \right) + C_{Y\delta_r} (M) \left(\frac{\delta_r \pi}{180} \right) + \left(\frac{b}{2V_t} \right) \left(C_{Yp_s} (\alpha, M) p_S + C_{Yr_s} (\alpha, M) r_S \right) \]

\[C_Z = -C_L \cos \left(\frac{\alpha \pi}{180} \right) - C_D \sin \left(\frac{\alpha \pi}{180} \right) \]

\[C_l = C_{l,S} \cos \left(\frac{\alpha \pi}{180} \right) - C_{n,S} \sin \left(\frac{\alpha \pi}{180} \right) \]

\[C_m = C_{m_0} (\alpha, M) + \left(\frac{qC}{2V_t} \right) C_{m_q} (\alpha, M) + C_{m_{\delta_e}} (\alpha, M) \left(\frac{\delta_e \pi}{180} \right) + \Delta C_{m_T} + \left(x_{c.g.,ref} - x_{c.g.} \right) C_Z \]

\[C_n = C_{l,S} \sin \left(\frac{\alpha \pi}{180} \right) + C_{n,S} \cos \left(\frac{\alpha \pi}{180} \right) - \left(\frac{c}{b} \right) \left(x_{c.g.,ref} - x_{c.g.} \right) C_Y \]

where

\[C_L = C_{L_0} (\alpha, M) + C_{L_{\delta_e}} (\alpha, M) \left(\frac{\delta_e \pi}{180} \right) + \Delta C_{L_T} + \left(\frac{qC}{2V_t} \right) C_{L_q} (\alpha, M) \]

\[C_D = C_{D_0} (\alpha, M) + \Delta C_{D_T} \]

\[C_{l,S} = C_{l_{\beta}} (M, C_L) \left(\frac{\beta \pi}{180} \right) + C_{l_{\delta_a}} (M) \left(\frac{\delta_a \pi}{180} \right) + C_{l_{\delta_r}} (\alpha, M) \left(\frac{\delta_r \pi}{180} \right) + \left(\frac{b}{2V_t} \right) \left(C_{l_{p_s}} (M) p_S + C_{l_{r_s}} (\alpha, M, C_L) r_S \right) \]

\[C_{n,S} = C_{n_{\beta}} (\alpha, M) \left(\frac{\beta \pi}{180} \right) + C_{n_{\delta_a}} (M, C_L) \left(\frac{\delta_a \pi}{180} \right) + C_{n_{\delta_r}} (\alpha, M) \left(\frac{\delta_r \pi}{180} \right) + \left(\frac{b}{2V_t} \right) \left(C_{n_{p_s}} (\alpha, M, C_L) p_S + C_{n_{r_s}} (\alpha, M, C_L) r_S \right) \]

\[\Delta C_{L_T} = C_{L_T}(\alpha, M, T) - C_{L_0}(\alpha, M) \]

\[\Delta C_{D_T} = C_{D_T}(\alpha, M, T) - C_{D_0}(\alpha, M) \]

\[\Delta C_{m_T} = C_{m_T}(\alpha, M, T) - C_{m_0}(\alpha, M) \]
\[p_S = p \cos \left(\frac{\alpha \pi}{180} \right) + r \sin \left(\frac{\alpha \pi}{180} \right) \]

\[r_S = -p \sin \left(\frac{\alpha \pi}{180} \right) + r \cos \left(\frac{\alpha \pi}{180} \right) \]

Data tables for the component functions of the non-dimensional coefficients are defined in the file `FASER_aero_setup.m`. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in `FASER_aero.m`, using linear interpolation in one-, two-, and three-dimensional interpolation functions `int1.m`, `int2.m`, and `int3.m`.

Engine Model and Database

Propulsion for the FASER is modeled neglecting engine angular momentum. Throttle gearing is implemented in the file `tgear.m`, which outputs commanded engine power in percent of full power \([0,100]\) using throttle setting input \([0,1]\). Commanded power \(P_c\) is a linear function of \(\delta_{th}\), given by:

\[P_c(\delta_{th}) = 100\delta_{th} \]

Engine power level dynamic response is modeled using a first order lag with time constant computed by the function `rtau.m`. The module `pdot.m` calculates the rate of change of power level with time using the difference between \(P_c\) and \(P_a\). The actual power level derivative \(\dot{P}_a\) is given by:

\[\dot{P}_a = \frac{1}{\tau_{eng}} (P_c - P_a) \]

where

\[\frac{1}{\tau_{eng}} = \begin{cases}
1.0 & \text{if } (P_c - P_a) \leq 25.0 \\
0.2 & \text{if } (P_c - P_a) \geq 50.0 \\
1.0 - \left(\frac{0.8}{25} \right) \left[(P_c - P_a) - 25.0 \right] & \text{if } 25.0 < (P_c - P_a) < 50.0
\end{cases} \]

Engine thrust is modeled as a linear function of \(P_a\). Thrust calculation is performed in the module `FASER_engine.m` using the equation:

\[T = 0.1P_a \]
Mass Properties

Mass properties of the aircraft are given in the module *FASER_massprop.m*. Table 5 lists the mass properties used in the FASER simulation.

Table 5. Mass Properties of the Simulated FASER

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>I_X (slug-ft2)</th>
<th>I_Y (slug-ft2)</th>
<th>I_Z (slug-ft2)</th>
<th>I_{XZ} (slug-ft2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>16.5</td>
<td>1.324</td>
<td>1.946</td>
<td>0.627</td>
<td>0.317</td>
</tr>
</tbody>
</table>

HL-20 SIMULATION

The NASA HL-20 is a manned lifting-body spacecraft. It is designed to be placed into earth orbit by an expendable launch vehicle and re-enter the atmosphere for an unpowered approach and landing. Aircraft control surfaces consist of an all moving vertical tail (rudder), two upper and lower body flaps, and two trailing edge wing flaps. Elevator control is provided by symmetric deflection of the wing flaps, aileron control by differential deflection of the wing flaps, positive flap control by symmetric deflection of the lower body flaps, negative flap control by symmetric deflection of the upper body flaps, and differential flap control by differential deflection of the upper and lower body flaps.

The HL-20 was modeled with controls for δ_e, δ_a, δ_r, δ_{pf}, δ_{nf}, δ_{df}, and δ_{lg}. Low-speed ($M<0.6$) wind tunnel data for a scale model of the aircraft flown out of ground effect with landing gear retracted and no external stores were taken in the Langley 30- by 60-foot tunnel and Calspan 8-foot transonic tunnel16,17. Landing gear effects were based on scaled Space Shuttle data, and dynamic derivative data were found using estimation techniques. Static and dynamic aerodynamic data are modeled with polynomial fits as a function of angle of attack and sideslip angle over the ranges $-10^\circ \leq \alpha \leq 30^\circ$ and $-10^\circ \leq \beta \leq 10^\circ$. Each non-dimensional aerodynamic force and moment coefficient is built up from component functions. Aerodynamic coefficients are referenced to a center of gravity location at $0.54 \bar{c}$, and corrected to the flight center of gravity position in the coefficient build-up equations.

Elevator deflection is limited to $-30^\circ \leq \delta_e \leq 30^\circ$, aileron deflection is limited to $-30^\circ \leq \delta_a \leq 30^\circ$, rudder deflection is limited to $-30^\circ \leq \delta_r \leq 30^\circ$, positive flap deflection is limited to $0^\circ \leq \delta_{pf} \leq 60^\circ$, negative flap deflection is limited to $-60^\circ \leq \delta_{nf} \leq 0^\circ$, differential flap deflection is limited to $-60^\circ \leq \delta_{df} \leq 60^\circ$, and landing gear deflection is limited to $0^\circ \leq \delta_{lg} \leq 98^\circ$. An engine model is not included in this simulation since the HL-20 uses no propulsion during atmospheric flight after re-entry. Figure 12 shows a three-view of the HL-20.
Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the HL-20 model vary nonlinearly with flow angles (α, β), aircraft angular velocities (p, q, r), and control deflections ($\delta_e, \delta_a, \delta_r, \delta_{pf}, \delta_{nf}, \delta_{df}, \delta_{lg}$). Moment coefficients C_n and C_m include a correction for the center of gravity position. The coefficients are computed as follows:

$$C_X = C_{X_0} + C_{X_e} \delta_e + C_{X_a} \delta_a + C_{X_r} \delta_r + C_{X_{pf}} \delta_{pf} + C_{X_{nf}} \delta_{nf} + C_{X_{df}} \delta_{df}$$

$$+ \Delta C_{X_{lg}}$$

$$C_Y = -0.01242 \beta + C_{Y_e} \delta_e + C_{Y_a} \delta_a + C_{Y_r} \delta_r + C_{Y_{df}} \delta_{df}$$

$$C_Z = C_{Z_0} + C_{Z_e} \delta_e + C_{Z_{pf}} \delta_{pf} + C_{Z_{nf}} \delta_{nf} + \Delta C_{Z_{lg}}$$
\[C_l = -0.00787 \beta + C_l \delta_a + C_l \delta_r + C_l \delta_{df} + \left(\frac{b}{2V_t} \right) \left(C_l p + C_l r \right) \]

\[C_m = C_m + C_m \delta_e + C_m \delta_{pf} + C_m \delta_{nf} + \Delta C_m \delta_{ig} + \left(\frac{\bar{c}q}{2V_t} \right) C_m + (x_{c.g.,ref} - x_{c.g.}) C_Z \]

\[C_n = C_n (\alpha, \beta) + C_n \delta_a + C_n \delta_r + C_n \delta_{df} + \left(\frac{b}{2V_t} \right) \left(C_n p + C_n r \right) - \left(\frac{\bar{c}}{b} \right) (x_{c.g.,ref} - x_{c.g.}) C_Y \]

where

\[C_{X_0} = -(7.362 \times 10^{-2} - 2.56 \times 10^{-4} \alpha - 2.208 \times 10^{-4} \alpha^2 - 2.262 \times 10^{-6} \alpha^3 + 2.966 \times 10^{-7} \alpha^4 \]

\[-3.64 \times 10^{-9} \alpha^5 + 9.388 \times 10^{-12} \alpha^6 - 5.299 \times 10^{-4} |\beta| - 4.709 \times 10^{-4} \beta^2 + 8.572 \times 10^{-5} |\beta|^3 \]

\[-4.199 \times 10^{-6} \beta^4 + 1.295 \times 10^{-4} \alpha |\beta| \]

\[C_{X_e} = -(-1.854 \times 10^{-4} + 2.83 \times 10^{-6} \alpha - 6.966 \times 10^{-7} \alpha^2 + 1.323 \times 10^{-7} \alpha^3 - 2.758 \times 10^{-9} \alpha^4) \]

\[C_{X_a} = -(9.776 \times 10^{-4} - 2.703 \times 10^{-5} \alpha - 8.303 \times 10^{-6} \alpha^2 + 6.645 \times 10^{-7} \alpha^3 - 1.273 \times 10^{-8} \alpha^4) \]

\[C_{X_r} = -(5.812 \times 10^{-4} + 1.41 \times 10^{-5} \alpha - 2.585 \times 10^{-6} \alpha^2 + 3.051 \times 10^{-7} \alpha^3 - 8.161 \times 10^{-9} \alpha^4) \]

\[C_{Y_a} = 3.357 \times 10^{-3} - 1.661 \times 10^{-5} \alpha - 3.28 \times 10^{-6} \alpha^2 + 5.526 \times 10^{-8} \alpha^3 - 3.269 \times 10^{-10} \alpha^4 \]

\[C_{Y_r} = 1.855 \times 10^{-3} + 1.128 \times 10^{-5} \alpha + 6.069 \times 10^{-6} \alpha^2 - 1.78 \times 10^{-7} \alpha^3 - 1.886 \times 10^{-12} \alpha^4 \]

\[C_{Y_{df}} = 2.672 \times 10^{-5} - 3.849 \times 10^{-5} \alpha + 4.564 \times 10^{-7} \alpha^2 + 1.798 \times 10^{-8} \alpha^3 - 4.099 \times 10^{-10} \alpha^4 \]

\[C_{Z_0} = -(-9.025 \times 10^{-2} + 4.07 \times 10^{-2} \alpha + 3.094 \times 10^{-5} \alpha^2 + 1.564 \times 10^{-5} \alpha^3 - 1.386 \times 10^{-6} \alpha^4 \]

\[+ 2.545 \times 10^{-8} \alpha^5 - 1.189 \times 10^{-10} \alpha^6 + 2.564 \times 10^{-3} |\beta| + 8.501 \times 10^{-4} \beta^2 \]

\[-1.156 \times 10^{-4} |\beta|^3 + 3.416 \times 10^{-6} \beta^4 - 4.862 \times 10^{-4} \alpha |\beta|) \]

\[C_{Z_e} = -(5.140 \times 10^{-3} + 3.683 \times 10^{-5} \alpha - 6.092 \times 10^{-6} \alpha^2 + 2.818 \times 10^{-9} \alpha^3 - 2.459 \times 10^{-9} \alpha^4) \]
\[C_{X,\delta_{pf}} = -(1.31 \times 10^{-4} + 1.565 \times 10^{-6} \alpha^2 - 1.542 \times 10^{-9} \alpha^4) \]

\[C_{X,\delta_{nf}} = -(4.415 \times 10^{-4} - 4.056 \times 10^{-6} \alpha - 4.657 \times 10^{-7} \alpha^2) \]

\[C_{X,\delta_{df}} = -(6.043 \times 10^{-4} - 1.858 \times 10^{-5} \alpha + 8 \times 10^{-7} \alpha^2 - 4.848 \times 10^{-8} \alpha^3 + 1.36 \times 10^{-9} \alpha^4) \]

\[\Delta C_{X,\delta_{lg}} = C_{X,\delta_{lg}}(\alpha, \delta_{lg}) - C_{X_0}(\alpha) \]

\[C_{Z,\delta_{pf}} = -(3.7779 \times 10^{-3} - 7.017 \times 10^{-7} \alpha^2 + 1.4 \times 10^{-10} \alpha^4) \]

\[C_{Z,\delta_{nf}} = -(3.711 \times 10^{-3} - 3.547 \times 10^{-5} \alpha - 2.706 \times 10^{-6} \alpha^2 + 2.938 \times 10^{-7} \alpha^3 - 5.552 \times 10^{-9} \alpha^4) \]

\[\Delta C_{Z,\delta_{lg}} = C_{Z,\delta_{lg}}(\alpha, \delta_{lg}) - C_{Z_0}(\alpha) \]

\[C_{l,\delta_{a}} = 2.538 \times 10^{-3} + 1.963 \times 10^{-5} \alpha - 3.725 \times 10^{-6} \alpha^2 + 3.539 \times 10^{-8} \alpha^3 - 1.778 \times 10^{-10} \alpha^4 \]

\[C_{l,\delta_{r}} = 2.26 \times 10^{-4} - 1.299 \times 10^{-5} \alpha + 5.565 \times 10^{-6} \alpha^2 - 3.382 \times 10^{-7} \alpha^3 + 6.461 \times 10^{-9} \alpha^4 \]

\[C_{l,\delta_{df}} = -\left(7.453 \times 10^{-4} - 1.811 \times 10^{-5} \alpha - 1.264 \times 10^{-7} \alpha^2 + 9.972 \times 10^{-8} \alpha^3 - 2.684 \times 10^{-9} \alpha^4 \right) \]

\[C_{l, p} = -0.5261357 + 0.029749438 \alpha - 0.006960559 \alpha^2 + 0.00053564 \alpha^3 - 1.35043 \times 10^{-5} \alpha^4 \]

\[C_{l, r} = 0.497793859 - 0.028742272 \alpha + 0.016480243 \alpha^2 - 0.001439044 \alpha^3 + 3.56179 \times 10^{-5} \alpha^4 \]
\[C_{m_0} = 2.632 \times 10^{-2} - 2.226 \times 10^{-3} \alpha - 1.8594 \times 10^{-5} \alpha^2 + 6.001 \times 10^{-7} \alpha^3 + 1.828 \times 10^{-7} \alpha^4
- 9.733 \times 10^{-9} \alpha^5 + 1.71 \times 10^{-10} \alpha^6 - 5.233 \times 10^{-4} |\beta| + 6.795 \times 10^{-5} \beta^2
- 1.993 \times 10^{-5} |\beta^3| + 1.341 \times 10^{-6} \beta^4 + 6.061 \times 10^{-5} \alpha |\beta| \]

\[C_{m_{\delta e}} = -1.903 \times 10^{-3} - 1.593 \times 10^{-5} \alpha + 2.611 \times 10^{-6} \alpha^2 + 5.116 \times 10^{-8} \alpha^3 - 1.626 \times 10^{-9} \alpha^4 \]

\[C_{m_{\delta pf}} = -9.896 \times 10^{-4} - 1.494 \times 10^{-9} \alpha^2 + 6.303 \times 10^{-11} \alpha^4 \]

\[C_{m_{\delta nf}} = -1.086 \times 10^{-3} + 1.57 \times 10^{-5} \alpha + 4.174 \times 10^{-7} \alpha^2 - 1.133 \times 10^{-7} \alpha^3 + 2.723 \times 10^{-9} \alpha^4 \]

\[\Delta C_{m,\delta_{lg}} = C_{m,\delta_{lg}} (\alpha, \delta_{lg}) - C_{m_0} (\alpha) \]

\[C_{m_q} = -0.195552417 - 0.006776550 \alpha + 0.00285193 \alpha^2 - 0.000184146 \alpha^3
+ 2.45653 \times 10^{-6} \alpha^4 \]

\[C_{n_{\delta_a}} = -2.769 \times 10^{-3} - 4.377 \times 10^{-5} \alpha + 9.952 \times 10^{-6} \alpha^2 - 3.642 \times 10^{-7} \alpha^3 + 4.692 \times 10^{-9} \alpha^4 \]

\[C_{n_{\delta_r}} = -1.278 \times 10^{-3} + 1.32 \times 10^{-5} \alpha - 4.72 \times 10^{-6} \alpha^2 + 2.371 \times 10^{-7} \alpha^3 - 3.340 \times 10^{-9} \alpha^4 \]

\[C_{n_{\delta_{df}}} = -5.107 \times 10^{-5} + 1.108 \times 10^{-5} \alpha - 1.547 \times 10^{-8} \alpha^2 - 1.552 \times 10^{-8} \alpha^3 + 1.413 \times 10^{-10} \alpha^4 \]

\[C_{n_p} = 0.385147809 - 0.001356061 \alpha - 0.00209489 \alpha^2 + 8.52445 \times 10^{-5} \alpha^3 + 0.000151569 \alpha^4 \]

\[C_{n_r} = -0.790855552 - 0.010770449 \alpha - 0.00095452 \alpha^2 + 0.000151569 \alpha^3 - 5.13541 \times 10^{-6} \alpha^4 \]

Data tables required for the component functions of the non-dimensional coefficients are defined in the file HL20_aero_setup.m. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in HL20_aero.m. Linear interpolation is done in the functions cno.m, cmlgear.m, cxlgear.m, and czlgear.m.

Dynamic Equations
Thrust effects and the power level state derivative were removed from the dynamic equations for the HL-20 simulation.

Mass Properties
Aircraft mass properties are given in the module HL20_massprop.m. Table 6 lists the mass properties used in the HL-20 simulation.
Table 6. Mass Properties of the Simulated HL-20

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>I_X (slug-ft2)</th>
<th>I_Y (slug-ft2)</th>
<th>I_Z (slug-ft2)</th>
<th>I_{XZ} (slug-ft2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>19,100</td>
<td>7,512</td>
<td>33,594</td>
<td>35,644</td>
<td>0</td>
</tr>
</tbody>
</table>

X-31 SIMULATION

The NASA / DARPA X-31 is a thrust-vectored, single-seat research aircraft designed to explore highly maneuverable flight. The aircraft has a cranked delta-wing planform, all-moving canard surfaces mounted near the nose, and a single vertical tail. The wing houses leading and trailing edge flaps. Trailing edge flaps act as elevon control surfaces, which function as separate elevator and aileron control surfaces within the simulation. Speed brakes are attached to the rear section of the fuselage and deflect symmetrically outward when actuated. A single General Electric F404-GE-400 non-afterburning turbofan engine provides thrust for the aircraft. Three paddles are symmetrically attached at the rear exit of the engine nozzle to provide thrust-vectoring capabilities. However, thrust vectoring is not implemented in this simulation. The effect of symmetric outboard deflection of the three thrust-vectoring paddles is modeled as an additional speed-braking device.

The aircraft was modeled with controls for δ_{th}, δ_e, δ_a, δ_r, δ_c, δ_{sb}, and δ_{tv}. Low-speed static wind tunnel tests provided force and moment aerodynamic data for a 19% scale model of the aircraft18. Tests were conducted in the Langley 14- by 22-foot subsonic tunnel with the model flown out of ground effect, with landing gear retracted, and no external stores. Dynamic data were obtained from forced oscillation wind tunnel testing19. Static aerodynamic data are in tabular form as a function of angle of attack and sideslip angle over the ranges $-5^\circ \leq \alpha \leq 55^\circ$ and $-18^\circ \leq \beta \leq 18^\circ$. Each non-dimensional aerodynamic force and moment coefficient is built up from component functions. Aerodynamic coefficients are referenced to a center of gravity location at 0.5286σ, and corrected to the flight center of gravity position in the coefficient build-up equations.

Throttle deflection is limited to the range $0 \leq \delta_{th} \leq 1$, elevator deflection is limited to $-40^\circ \leq \delta_e \leq 30^\circ$, aileron deflection is limited to $-30^\circ \leq \delta_a \leq 30^\circ$, rudder deflection is limited to $-30^\circ \leq \delta_r \leq 30^\circ$, canard deflection is limited to $-20^\circ \leq \delta_c \leq 60^\circ$, speed brake deflection is limited to $0^\circ \leq \delta_{sb} \leq 50^\circ$, and thrust vectoring paddle deflection is limited to $0^\circ \leq \delta_{tv} \leq 50^\circ$. Data from the F-16 engine model was scaled using the maximum thrust values for the X-31 engine. Throttle gearing and engine power level dynamics were carried over from the F-16 engine model; however, engine angular momentum was ignored. Figure 13 shows a three-view of the X-31.
Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the X-31 model vary nonlinearly with flow angles (α, β), aircraft angular velocities (p, q, r), and control surface deflections (δ_e, δ_a, δ_r, δ_{sb}, δ_v). Moment coefficients C_n and C_m include a correction for center of gravity position. The coefficients are computed as follows:

\[
C_X = - \left[C_{A0} (\alpha, \delta_e) + C_{Ae} (\alpha, \delta_e) \delta_e + \Delta C_{Ae} \left(\frac{\delta_{sb}}{50} \right) + \Delta C_{A} \left(\frac{\delta_{nv}}{50} \right) \right]
\]

\[
C_Y = C_{Y0} (\beta) + \Delta C_{Y} \left(\frac{\delta_{r}}{30} \right) + \Delta C_{Y} \left(\frac{\delta_{a}}{30} \right) + \Delta C_{Y} \left(\frac{\delta_{sb}}{50} \right) + \Delta C_{Y} \left(\frac{\delta_{nv}}{50} \right)
\]

\[
C_Z = \left[C_{N0} (\alpha, \delta_e) + C_{Ne} (\alpha, \delta_e) \delta_e + \Delta C_{N} \left(\frac{\delta_{sb}}{50} \right) + \Delta C_{N} \left(\frac{\delta_{nv}}{50} \right) \right] - \left(\frac{q \bar{c}}{2 V_t} \right) C_{Nq} (\alpha)
\]
\[C_l = C_{l_0}(\beta) + \Delta C_{l, \delta_r=30^\circ} \left(\frac{\delta_r}{30} \right) + \Delta C_{l, \delta_a=30^\circ} \left(\frac{\delta_a}{30} \right) + \Delta C_{l, \delta_{sb}=50^\circ} \left(\frac{\delta_{sb}}{50} \right) + \Delta C_{l, \delta_{tv}=50^\circ} \left(\frac{\delta_{tv}}{50} \right) + \left(\frac{b}{2V_l} \right) \left(C_{l,p}(\alpha)p + C_{l,r}(\alpha)r \right) \]

\[C_m = C_{m_0}(\alpha, \delta_c) + C_{m\delta_c}(\alpha, \delta_c) \delta_c + \Delta C_{m, \delta_{sb}=50^\circ} \left(\frac{\delta_{sb}}{50} \right) + \Delta C_{m, \delta_{tv}=50^\circ} \left(\frac{\delta_{tv}}{50} \right) + \left(\frac{qC}{2V_l} \right) C_{m_q}(\alpha) + (x_{c.g..ref} - x_{c.g.}) C_Z \]

\[C_n = C_{n_0}(\beta) + \Delta C_{n, \delta_r=30^\circ} \left(\frac{\delta_r}{30} \right) + \Delta C_{n, \delta_a=30^\circ} \left(\frac{\delta_a}{30} \right) + \Delta C_{n, \delta_{sb}=50^\circ} \left(\frac{\delta_{sb}}{50} \right) + \Delta C_{n, \delta_{tv}=50^\circ} \left(\frac{\delta_{tv}}{50} \right) + \left(\frac{b}{2V_l} \right) \left(C_{n,p}(\alpha)p + C_{n,r}(\alpha)r \right) - \left(\frac{\bar{c}}{b} \right) (x_{c.g..ref} - x_{c.g.}) C_Y \]

where

\[\Delta C_{A, \delta_{sb}=50^\circ} = C_{A, \delta_{sb}=50^\circ}(\alpha) - C_{A_0}(\alpha, \delta_c) \]

\[\Delta C_{A, \delta_{tv}=50^\circ} = C_{A, \delta_{tv}=50^\circ}(\alpha) - C_{A_0}(\alpha, \delta_c) \]

\[\Delta C_{N, \delta_{sb}=50^\circ} = C_{N, \delta_{sb}=50^\circ}(\alpha) - C_{N_0}(\alpha, \delta_c) \]

\[\Delta C_{N, \delta_{tv}=50^\circ} = C_{N, \delta_{tv}=50^\circ}(\alpha) - C_{N_0}(\alpha, \delta_c) \]

\[\Delta C_{Y, \delta_r=30^\circ} = C_{Y, \delta_r=30^\circ}(\beta) - C_{Y_0}(\beta) \]

\[\Delta C_{Y, \delta_a=30^\circ} = C_{Y, \delta_a=30^\circ}(\beta) - C_{Y_0}(\beta) \]

\[\Delta C_{Y, \delta_{sb}=50^\circ} = C_{Y, \delta_{sb}=50^\circ}(\alpha) - C_{Y_0}(\beta) \]

\[\Delta C_{Y, \delta_{tv}=50^\circ} = C_{Y, \delta_{tv}=50^\circ}(\alpha) - C_{Y_0}(\beta) \]
\[\Delta C_{l, \delta_r=30^\circ} = C_{l, \delta_r=30^\circ}(\beta) - C_{l, \beta} \]

\[\Delta C_{l, \delta_a=30^\circ} = C_{l, \delta_a=30^\circ}(\beta) - C_{l, \beta} \]

\[\Delta C_{l, \delta_{sb}=50^\circ} = C_{l, \delta_{sb}=50^\circ}(\alpha) - C_{l, \beta} \]

\[\Delta C_{l, \delta_{tv}=50^\circ} = C_{l, \delta_{tv}=50^\circ}(\alpha) - C_{l, \beta} \]

\[\Delta C_{n, \delta_r=30^\circ} = C_{n, \delta_r=30^\circ}(\beta) - C_{n_0, \beta} \]

\[\Delta C_{n, \delta_a=30^\circ} = C_{n, \delta_a=30^\circ}(\beta) - C_{n_0, \beta} \]

\[\Delta C_{n, \delta_{sb}=50^\circ} = C_{n, \delta_{sb}=50^\circ}(\alpha) - C_{n_0, \beta} \]

\[\Delta C_{n, \delta_{tv}=50^\circ} = C_{n, \delta_{tv}=50^\circ}(\alpha) - C_{n_0, \beta} \]

\[\Delta C_{m, \delta_{sb}=50^\circ} = C_{m, \delta_{sb}=50^\circ}(\alpha) - C_{m_0}(\alpha, \delta_c) \]

\[\Delta C_{m, \delta_{tv}=50^\circ} = C_{m, \delta_{tv}=50^\circ}(\alpha) - C_{m_0}(\alpha, \delta_c) \]

Data tables for the component functions of the non-dimensional coefficients are defined in the file `X31_aero_setup.m`. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in `X31_aero.m`, using linear interpolation in the functions `ca_can.m`, `dca_dele.m`, `dca_dsb.m`, `dca_dtv.m`, `cnorm_can.m`, `dcnorm_dele.m`, `dcnorm_dsb.m`, `dcnorm_dtv.m`, `cy_beta.m`, `dcy_drdr.m`, `dcy_dail.m`, `dcy_dsb.m`, `dcy_dtv.m`, `cm_can.m`, `dcm_dele.m`, `dcm_dsb.m`, `dcm_dtv.m`, `cl_beta.m`, `dcl_drdr.m`, `dcl_dail.m`, `dcl_dsb.m`, `dcl_dtv.m`, `cn_beta.m`, `dcn_drdr.m`, `dcn_dail.m`, `dcn_dsb.m`, `dcn_dtv.m`, `caq.m`, `cyr.m`, `cyp.m`, `cnormq.m`, `clr.m`, `clp.m`, `cmq.m`, `cnr.m`, and `cnp.m`.

Engine Model and Database

Thrust scaling for the X-31 engine is applied in the function `X31_engine_setup.m`. Linear interpolation and thrust calculation is performed in the module `X31_engine.m`. Functions `tgear.m`, `pdot.m`, and `rtau.m` are unaltered from the F-16 engine simulation.

Mass Properties

Aircraft mass properties are given in the module `X31_massprop.m`. Table 7 lists the mass properties used in the X-31 simulation.
Table 7. Mass Properties of the Simulated X-31

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>I_X (slug-ft²)</th>
<th>I_Y (slug-ft²)</th>
<th>I_Z (slug-ft²)</th>
<th>I_{XZ} (slug-ft²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>16,000</td>
<td>3,553</td>
<td>50,645</td>
<td>49,367</td>
<td>-156</td>
</tr>
</tbody>
</table>

A-7 SIMULATION

The Vought A-7 Corsair II is a single-seat tactical attack fighter based on the F-8 Crusader platform. The aircraft is controlled with ailerons located on the trailing edge of the main wing, a rudder control surface located at the trailing edge of the vertical tail, and an all-moving horizontal stabilator located at the rear of the fuselage. Thrust is provided by a single non-afterburning Pratt & Whitney TF30-P-408 turbofan engine mounted in the rear fuselage.

Aircraft controls are provided for δ_h, δ_e, δ_a, and δ_r. Low-speed static wind tunnel tests and dynamic forced oscillation wind tunnel tests provided force and moment data for a scale model of the aircraft flown out of ground effect, with landing gear retracted, and no external stores\(^{20}\). Static and dynamic aerodynamic data are in tabular form as a function of angle of attack and sideslip over the ranges $0^\circ \leq \alpha \leq 90^\circ$ and $0^\circ \leq \beta \leq 90^\circ$. Each non-dimensional aerodynamic force and moment coefficient is built up from component functions. Aerodynamic coefficients are referenced to a center of gravity location at $0.35 \bar{c}$, and corrected to the flight center of gravity position in the coefficient build-up equations.

Throttle deflection is limited to the range $0 \leq \delta_h \leq 1$, elevator deflection is limited to $-25^\circ \leq \delta_e \leq 15^\circ$, aileron deflection is limited to $-25^\circ \leq \delta_a \leq 25^\circ$, and rudder deflection is limited to $-30^\circ \leq \delta_r \leq 30^\circ$. The A-7 engine has a maximum thrust of 13,400 lb. A scaled version of the F-16 engine model was used for this simulation. Idle and military power thrust data were scaled according to the maximum thrust for the A-7 engine. Throttle gearing, engine gyroscopic effects, and engine power level dynamics were carried over from the F-16 engine model. Figure 14 shows a three-view of the A-7 aircraft.
Aerodynamic Model and Database

The non-dimensional aerodynamic force and moment coefficients for the A-7 vary nonlinearly with flow angles (α, β), aircraft angular velocities (p, q, r), and control surface deflections (δ_e, δ_a, δ_r). Moment coefficients C_n and C_m include a correction for the center of gravity position. The coefficients are computed as follows:

\[
C_X = C_L \left(\alpha, \delta_e \right) \sin \left(\frac{\alpha \pi}{180} \right) - C_D \left(\alpha, \delta_e \right) \cos \left(\frac{\alpha \pi}{180} \right)
\]

\[
C_Y = C_{Y_0} \left(\alpha, |\beta| \right) \text{sign} \left(\beta \right) + C_{Y_{\delta_r}} \left(\alpha \right) \delta_r + C_{Y_{\delta_{a, right}}} \left(\alpha, \delta_{a, right} \right) \delta_{a, right} - C_{Y_{\delta_{a, left}}} \left(\alpha, \delta_{a, left} \right) \delta_{a, left}
\]

\[
C_Z = -C_L \cos \left(\frac{\alpha \pi}{180} \right) - C_D \sin \left(\frac{\alpha \pi}{180} \right)
\]
\[C_t = C_{0} (\alpha, |\beta|) \text{sign} (\beta) + C_{l,\delta_{a,\text{right}}} (\alpha, \delta_{a,\text{right}}) - C_{l,\delta_{a,\text{left}}} (\alpha, \delta_{a,\text{left}}) + C_{i,\delta_r} (\alpha) \delta_r \]

\[+ \left(\frac{b}{2V_r} \right) (C_{l_p} (\alpha) p + C_{l_r} (\alpha) r) \]

\[C_m = C_{m_0} (\alpha, \delta_t) + \left(\frac{qC}{2V_r} \right) \left[C_{m_q} (\alpha, \delta_t) + C_{m_\delta} (\alpha, \delta_{\text{right}}) \right] + C_{m,\delta_{a,\text{right}}} (\alpha, \delta_{a,\text{right}}) \]

\[+ C_{m,\delta_{a,\text{left}}} (\alpha, \delta_{a,\text{left}}) + (x_{c.g.-\text{ref}} - x_{c.g.}) C_z \]

\[C_n = C_{n_0} (\alpha, |\beta|) \text{sign} (\beta) + C_{n,\delta_{a,\text{right}}} (\alpha, \delta_{a,\text{right}}) - C_{n,\delta_{a,\text{left}}} (\alpha, \delta_{a,\text{left}}) + C_{n_\delta} (\alpha) \delta_r \]

\[+ \left(\frac{b}{2V_r} \right) (C_{n_p} (\alpha) p + C_{n_r} (\alpha) r) - \left(\frac{\bar{c}}{b} \right) (x_{c.g.-\text{ref}} - x_{c.g.}) C_Y \]

Data tables for the component functions of the non-dimensional coefficients are defined in the file `A7_aero_setup.m`. The non-dimensional aerodynamic force and moment coefficients are computed for this simulation in `A7_aero.m`, using linear interpolation in one- and two-dimensional interpolation functions `int1.m` and `int2.m`.

Engine Model and Database

Thrust scaling for the A-7 engine is applied in the function `A7_engine_setup.m` using the F-16 engine data, omitting afterburner data. Throttle gearing, implemented in `tgear.m`, outputs commanded engine power in percent of full power \([0,100]\) using throttle setting input \([0,1]\). Commanded power \(P_c\) is a linear function of \(\delta_{th}\), given by

\[P_c (\delta_{th}) = 100\delta_{th} \]

Functions `pdot.m` and `rtau.m` are unaltered from the F-16 engine simulation.

Linear interpolation and thrust calculation is performed in the module `A7_engine.m`, scaling F-16 engine data to the maximum thrust of the A-7 engine. Scaled thrust is computed from

\[T = \left(\frac{13,400}{12,680} \right) \left(T_{\text{idle}} + 0.01 (T_{\text{mil}} - T_{\text{idle}}) P_a \right) \]

Mass Properties

Aircraft mass properties are given in the module `A7_massprop.m`. Table 8 lists the mass properties used in the A-7 simulation.
<table>
<thead>
<tr>
<th>Parameter</th>
<th>Weight (lb)</th>
<th>I_X (slug-ft2)</th>
<th>I_Y (slug-ft2)</th>
<th>I_Z (slug-ft2)</th>
<th>I_{XZ} (slug-ft2)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Value</td>
<td>22,699</td>
<td>16,970</td>
<td>65,430</td>
<td>76,130</td>
<td>4,030</td>
</tr>
</tbody>
</table>
VI. GENERATING 3-D MODELS FOR AVDS

Three-dimensional aircraft models used within AVDS are constructed using a separate CAD drafting program. Models created with CAD are converted to an input format suitable for AVDS. AVDS supplies a utility that allows conversion of Drawing Interchange Format (DXF) 3-D aircraft models into AVDS format. The following sections provide a tutorial for creating and adding a 3-D aircraft model into AVDS for use in AVDS / MATLAB piloted simulations.

MODEL CONSTRUCTION REQUIREMENTS

Three-dimensional aircraft models must be constructed in AutoCAD® DXF format using surface modeling techniques. The AVDS conversion program does not recognize models created using solid modeling techniques. Surface models have exteriors composed of meshes made of three and four sided polygons whose vertices are located in three-dimensional space. The total number of polygons in a surface mesh determines model complexity. AVDS / MATLAB interactive simulations are computationally intensive; therefore, it is necessary to create 3-D models that are as simple as possible in order to minimize graphics rendering requirements. Complex models with dense surface meshes can slow AVDS / MATLAB interactive simulations considerably on less powerful computers.

Many 3-D CAD programs support both surface modeling and the DXF format. Ruled surfaces, tabulated surfaces, and edge surfaces are used extensively during surface model creation. A surface created using any of these tools is recognized by the AVDS conversion utility. However, revolved surfaces and two-dimensional lines are not recognized during conversion.

Aircraft 3-D models should be created using two-dimensional surfaces for the wings and horizontal / vertical tails. This reduces the complexity of the aircraft surface mesh while not excessively detracting from aircraft realism. The fuselage, canopy, and other significant aircraft structures should be created as simply as possible using low-density surface meshes. Following these guidelines will simplify model making as well as prevent any unnecessary slow-downs during piloted simulations run on less powerful computers.

MODELING EXAMPLE OF A SIMPLE 3-D AIRCRAFT

An example is given to illustrate the surface model creation of a simple 3-D aircraft, shown in figure 15. It is assumed that the reader has familiarity with using and drawing in AutoCAD Release 14 (or higher) or an equivalent 3-D CAD program. For more information on CAD design or surface modeling consult any AutoCAD Release 14 (or higher) reference book and surface-modeling tutorial such as Reference [21]. Aileron, rudder, and elevator control surfaces will be included in the model, while wheels and any external stores are ignored.
It is convenient to model aircraft using available three-views such as the one shown in figure 15. These drawings may be found on various internet sites, and in references such as [22]. Dimensions used during initial modeling of the aircraft should be those of the drawing rather than the actual airplane. This simplifies model-making by eliminating the need to scale the dimension of every point on the model. Once modeling is complete, the finished 3-D aircraft must be scaled to the dimensions of the actual aircraft. Dimensions must be in feet for proper implementation into AVDS. The scaling feature is available in most CAD programs. The scaled model must also be aligned along the world coordinate system (WCS), prior to conversion into the AVDS format, with the nose of the model pointing along the positive X-axis and positive Z-axis pointing out the top of the model. The origin of the WCS must be positioned at the location of the aircraft center of gravity. AVDS uses this origin location as placement for the body, earth, and stability axes on the model during interactive simulations.

The fuselage for this particular aircraft is a relatively simple shape and can be modeled as a cylinder with the front and back openings used as the intake and exhaust. Figure 16 shows the preliminary front and rear openings of the aircraft.
The AutoCAD command RULESURF is used to create a surface mesh between the intake and exhaust. The completed fuselage is shown in figure 17.

The wing, tail, and control surfaces of the aircraft are modeled using planar surfaces. This is accomplished using the AutoCAD command 3DFACE. Figure 18 shows the
aircraft with the various surfaces added. RULESURF was used to create surface meshes for the modeled intake and exhaust.

![Figure 18. 3-D Model with Wing, Tail, and Control Surfaces](image)

The canopy can be modeled as an elongated dome. A wire frame is constructed outlining the general shape of the canopy, shown in figure 19. Surface meshes are drawn over the wire frame using the RULESURF command.

![Figure 19. Model with Wire Frame Canopy](image)
The finished canopy is shown in Figure 20. The final drawing must be scaled (in feet) to the dimensions of the actual aircraft and aligned accordingly with the WCS specified previously.

![Completed 3-D MiG-15 Model](image)

Figure 20. Completed 3-D MiG-15 Model

IMPORTING A COMPLETED 3-D CAD MODEL INTO AVDS

A completed model saved in DXF format is converted to the AVDS format with the DXF to AVDS conversion utility. For usage instructions, refer to Appendix E of the AVDS User’s Manual. The box marked *Two sided polygons* should be checked in the interface window of the conversion utility prior to conversion, in order to create surface meshes composed of front and back sided polygons. If this option is not chosen, meshes composed of either front or back sided polygons will be shown in AVDS. This would cause surfaces to disappear unexpectedly when viewing the aircraft from certain angles.

The DXF to AVDS conversion utility has difficulty implementing entire aircraft models into the AVDS format. Therefore, it is necessary to separate each major model element (e.g., elements that will share the same color, control surfaces elements, canopy, etc.) into individually saved DXF files. These individual files are converted separately and assembled into a single AVDS craft file by the user. The user must identify section color, wing and tail ribbon location, pilot view, control surfaces, and control surface rotation axes for each newly compiled AVDS craft file, following the format given in Appendix A of the AVDS User’s Manual.

Control surfaces for new aircraft models must also be identified within the files `ACname.sim.ini` and `AVDS_Matlab_ACname.m`, where `ACname` is the aircraft name (e.g., `F16.sim.ini`, `AVDS_Matlab_F16`, etc.), using the same control surface category.
designations as were used in the AVDS craft file. Refer to Section 4.2 in the AVDS User’s Manual2 for instructions on creating / modifying ACname.sim.ini files. Figure 21 shows the input screen for files of this type. Within this configuration window, FCS must be set to Basic FCS, AIRCRAFT should be set to MATLAB AC, and Simulation Input Type should be set to Positions. Elements within the MATLAB vectors InputVector and OutputVector, which have been declared by the user in AVDS_Matlab_ACname.m, must also be declared to AVDS via the ACname.sim.ini file. The user must declare InputVector elements under the MATLAB AC sub-heading section of INPUTS, while OutputVector elements must be declared under the Environment sub-heading section under INPUTS. Control surfaces are identified in AVDS as sfc01 to sfc15 under the Environment sub-heading section under INPUTS.

Figure 21. Input Screen for ACname.sim.ini
VII. CONCLUDING REMARKS

Software has been developed in MATLAB for six-degree-of-freedom nonlinear simulations of various aircraft. Trim, linearization, numerical integration, batch simulation, 3-D visualization, and real-time piloted simulation software are included for all simulations.

Aerodynamic models were developed using data gathered from open literature reports documenting wind tunnel tests, flight tests, and analytic estimation techniques. Most of the engine models contained in the aircraft simulation packages were based on the F-16 engine model, using scaled values for thrust. Other models were used for aircraft engines when suitable data was available or when the jet engine model did not apply (e.g., FASER and the HL-20 aircraft).

Interactive piloted simulations can be run using the nonlinear aircraft simulation packages and visual flight simulator software. The nonlinear simulations described in this report can be used for education, control law development, dynamic analysis, and many other purposes.

The structure of the simulations was designed for easy use and to allow modifications with relatively little effort. The collection of aircraft simulations gives the user a range of aircraft dynamics to explore. This compilation is also a testament of the applicability of the basic simulation structure to a variety of aircraft.

Future improvements to this work, outside of adding more aircraft, could include such changes as adding landing gear dynamics, allowing for more general aircraft c.g. locations, including a more realistic gravitational model that accounts for earth geodesy, including a non-stationary atmosphere (e.g., turbulence, micro-bursts, winds, etc.), and adding aeroelastic effects. Since AVDS currently allows only four control inputs, an improvement that allows the user to command a larger number of controls would be desirable for interactive simulation. It is anticipated that network capability will be built into future editions of the simulations, allowing multiple users to fly interactively with (or against) one another in real time. Finally, an obvious improvement for nearly all the aircraft simulations would be the addition of a flight control system. This was intentionally omitted in the current work, to encourage the use of these aircraft nonlinear simulations for control system design and analysis.
VIII. ACKNOWLEDGEMENTS

The original versions of the aerodynamic and engine models for some of the aircraft simulations described in this report were developed by students in the George Washington University graduate course entitled Stability and Control of Aircraft, taught by the second author. The authors gratefully acknowledge the work of Javier Velez on the F-14, Bo Trieu on the F-4, Byron Monzón on the FASER, Pat Hinchy on the HL-20, Mike Lensi on the X-31, and Brian Stewart and Tony Tyler on the A-7. Thanks also to Steve Rasmussen for technical work on the MATLAB/AVDS interface software.
IX. APPENDIX

Table A-1. F-16 Simulation Package (Directory name: F-16)

<table>
<thead>
<tr>
<th>F-16 Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
</tr>
<tr>
<td>atm.m</td>
</tr>
<tr>
<td>AVDS_Matlab_F16.m</td>
</tr>
<tr>
<td>clo.m</td>
</tr>
<tr>
<td>cmo.m</td>
</tr>
<tr>
<td>cno.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
</tr>
<tr>
<td>cxo.m</td>
</tr>
<tr>
<td>czo.m</td>
</tr>
<tr>
<td>dampder.m</td>
</tr>
<tr>
<td>dlda.m</td>
</tr>
<tr>
<td>dldr.m</td>
</tr>
<tr>
<td>dnda.m</td>
</tr>
<tr>
<td>dndr.m</td>
</tr>
<tr>
<td>F16.m</td>
</tr>
<tr>
<td>F16.sim.ini</td>
</tr>
<tr>
<td>F16_aero.m</td>
</tr>
<tr>
<td>F16_aero_setup.m</td>
</tr>
<tr>
<td>F-106B Directory</td>
</tr>
<tr>
<td>------------------</td>
</tr>
<tr>
<td>ab3.m</td>
</tr>
<tr>
<td>atm.m</td>
</tr>
<tr>
<td>AVDS_Matlab_F106B.m</td>
</tr>
<tr>
<td>cdo.m</td>
</tr>
<tr>
<td>clo.m</td>
</tr>
<tr>
<td>cmo.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
</tr>
<tr>
<td>dampder.m</td>
</tr>
<tr>
<td>dlda.m</td>
</tr>
<tr>
<td>dldb.m</td>
</tr>
<tr>
<td>dldr.m</td>
</tr>
<tr>
<td>dnda.m</td>
</tr>
<tr>
<td>dndb.m</td>
</tr>
<tr>
<td>dndr.m</td>
</tr>
<tr>
<td>dydb.m</td>
</tr>
<tr>
<td>dydr.m</td>
</tr>
<tr>
<td>F106B.m</td>
</tr>
<tr>
<td>F106B.sim.ini</td>
</tr>
<tr>
<td>F106B.txt</td>
</tr>
</tbody>
</table>
Table A-3. F-14 Simulation Package (Directory name: F-14)

<table>
<thead>
<tr>
<th>F-14 Directory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
<td>dcmsp.m</td>
</tr>
<tr>
<td>atm.m</td>
<td>dcxds.m</td>
</tr>
<tr>
<td>AVDS_Matlab_F14.m</td>
<td>dcxsb.m</td>
</tr>
<tr>
<td>cldsp.m</td>
<td>dcxsp.m</td>
</tr>
<tr>
<td>clo.m</td>
<td>dczds.m</td>
</tr>
<tr>
<td>cmo.m</td>
<td>dczsb.m</td>
</tr>
<tr>
<td>cndsp.m</td>
<td>dczsp.m</td>
</tr>
<tr>
<td>cno.m</td>
<td>dlda.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
<td>dldr.m</td>
</tr>
<tr>
<td>cxo.m</td>
<td>dnda.m</td>
</tr>
<tr>
<td>cyda.m</td>
<td>dndr.m</td>
</tr>
<tr>
<td>cydr.m</td>
<td>etalsp.m</td>
</tr>
<tr>
<td>cydsp.m</td>
<td>etamsp.m</td>
</tr>
<tr>
<td>cyo.m</td>
<td>F14.m</td>
</tr>
<tr>
<td>czo.m</td>
<td>F14.sim.ini</td>
</tr>
<tr>
<td>damder.m</td>
<td>F14.txt</td>
</tr>
<tr>
<td>dcmds.m</td>
<td>F14_aero.m</td>
</tr>
<tr>
<td>dcmsb.m</td>
<td>F14_aero_setup.m</td>
</tr>
</tbody>
</table>

Table A-4. F-4 Simulation Package (Directory name: F-4)

<table>
<thead>
<tr>
<th>F-4 Directory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
<td>F4_trm.M</td>
</tr>
<tr>
<td>atm.m</td>
<td>gen_F4_model.m</td>
</tr>
<tr>
<td>AVDS_Matlab_F4.m</td>
<td>grad.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
<td>ic_ftrm.m</td>
</tr>
<tr>
<td>F4.m</td>
<td>lnze.m</td>
</tr>
<tr>
<td>F4.sim.ini</td>
<td>mksqw.m</td>
</tr>
<tr>
<td>F4.txt</td>
<td>pdot.m</td>
</tr>
<tr>
<td>F4_aero.m</td>
<td>rk2.m</td>
</tr>
<tr>
<td>F4_deq.m</td>
<td>rk4.m</td>
</tr>
<tr>
<td>F4_engine.m</td>
<td>rtau.m</td>
</tr>
<tr>
<td>F4_engine_setup.m</td>
<td>solve.m</td>
</tr>
<tr>
<td>F4_massprop.m</td>
<td>tgear.m</td>
</tr>
</tbody>
</table>
Table A-5. FASER Simulation Package (Directory name: FASER)

<table>
<thead>
<tr>
<th>FASER Directory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
<td>grad.m</td>
</tr>
<tr>
<td>atm.m</td>
<td>ic_ftrm.m</td>
</tr>
<tr>
<td>AVDS_Matlab_FASER.m</td>
<td>int1.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
<td>int2.m</td>
</tr>
<tr>
<td>FASER.m</td>
<td>int3.m</td>
</tr>
<tr>
<td>FASER.sim.ini</td>
<td>lat_aero_tables.mat</td>
</tr>
<tr>
<td>FASER_aero.m</td>
<td>lnze.m</td>
</tr>
<tr>
<td>FASER_aero_setup.m</td>
<td>lon_aero_tables.mat</td>
</tr>
<tr>
<td>FASER_deq.m</td>
<td>mksqw.m</td>
</tr>
<tr>
<td>FASER_engine.m</td>
<td>pdot.m</td>
</tr>
<tr>
<td>FASER_hires.txt</td>
<td>rk2.m</td>
</tr>
<tr>
<td>FASER_lores.txt</td>
<td>rk4.m</td>
</tr>
<tr>
<td>FASER_massprop.m</td>
<td>rtau.m</td>
</tr>
<tr>
<td>FASER_trm.m</td>
<td>solve.m</td>
</tr>
<tr>
<td>gen_FASER_model.m</td>
<td>tgear.m</td>
</tr>
</tbody>
</table>

Table A-6. HL-20 Simulation Package (Directory name: HL-20)

<table>
<thead>
<tr>
<th>HL-20 Directory</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
<td>HL20.txt</td>
</tr>
<tr>
<td>atm.m</td>
<td>HL20_aero.m</td>
</tr>
<tr>
<td>AVDS_Matlab_HL20.m</td>
<td>HL20_aero_setup.m</td>
</tr>
<tr>
<td>cmllgear.m</td>
<td>HL20_deq.m</td>
</tr>
<tr>
<td>cno.m</td>
<td>HL20_massprop.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
<td>HL20_trm.m</td>
</tr>
<tr>
<td>cxllgear.m</td>
<td>ic_ftrm.m</td>
</tr>
<tr>
<td>czllgear.m</td>
<td>lnze.m</td>
</tr>
<tr>
<td>gen_HL20_model.m</td>
<td>mksqw.m</td>
</tr>
<tr>
<td>grad.m</td>
<td>rk2.m</td>
</tr>
<tr>
<td>HL20.m</td>
<td>rk4.m</td>
</tr>
<tr>
<td>HL20.sim.ini</td>
<td>solve.m</td>
</tr>
</tbody>
</table>
Table A-7. X-31 Simulation Package (Directory name: X-31)

<table>
<thead>
<tr>
<th>X-31 Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
</tr>
<tr>
<td>atm.m</td>
</tr>
<tr>
<td>AVDS_Matlab_X31.m</td>
</tr>
<tr>
<td>caq.m</td>
</tr>
<tr>
<td>ca_can.m</td>
</tr>
<tr>
<td>clp.m</td>
</tr>
<tr>
<td>clr.m</td>
</tr>
<tr>
<td>cl_beta.m</td>
</tr>
<tr>
<td>cmq.m</td>
</tr>
<tr>
<td>cm_can.m</td>
</tr>
<tr>
<td>cnorm.m</td>
</tr>
<tr>
<td>cnorm_can.m</td>
</tr>
<tr>
<td>cnp.m</td>
</tr>
<tr>
<td>cnr.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
</tr>
<tr>
<td>cn_beta.m</td>
</tr>
<tr>
<td>cyp.m</td>
</tr>
<tr>
<td>cyr.m</td>
</tr>
<tr>
<td>cy_beta.m</td>
</tr>
<tr>
<td>dca_dele.m</td>
</tr>
<tr>
<td>dca_dsb.m</td>
</tr>
</tbody>
</table>

Table A-8. A-7 Simulation Package (Directory name: A-7)

<table>
<thead>
<tr>
<th>A-7 Directory</th>
</tr>
</thead>
<tbody>
<tr>
<td>ab3.m</td>
</tr>
<tr>
<td>atm.m</td>
</tr>
<tr>
<td>AVDS_Matlab_A7.m</td>
</tr>
<tr>
<td>A7.txt</td>
</tr>
<tr>
<td>A7.m</td>
</tr>
<tr>
<td>A7.sim.ini</td>
</tr>
<tr>
<td>A7_aero.m</td>
</tr>
<tr>
<td>A7_aero_setup.m</td>
</tr>
<tr>
<td>A7_deq.m</td>
</tr>
<tr>
<td>A7_engine.m</td>
</tr>
<tr>
<td>A7_engine_setup.m</td>
</tr>
<tr>
<td>A7_massprop.m</td>
</tr>
<tr>
<td>A7_trm.m</td>
</tr>
<tr>
<td>cnvrg.m</td>
</tr>
</tbody>
</table>
X. REFERENCES

F-16

F-106B

F-14

F-4

Nonlinear six degree-of-freedom simulations for a variety of aircraft were created using MATLAB. Data for aircraft geometry, aerodynamic characteristics, mass / inertia properties, and engine characteristics were obtained from open literature publications documenting wind tunnel experiments and flight tests. Each nonlinear simulation was implemented within a common framework in MATLAB, and includes an interface with another commercially-available program to read pilot inputs and produce a three-dimensional (3-D) display of the simulated airplane motion. Aircraft simulations include the General Dynamics F-16 Fighting Falcon, Convair F-106B Delta Dart, Grumman F-14 Tomcat, McDonnell Douglas F-4 Phantom, NASA Langley Free-Flying Aircraft for Sub-scale Experimental Research (FASER), NASA HL-20 Lifting Body, NASA / DARPA X-31 Enhanced Fighter Maneuverability Demonstrator, and the Vought A-7 Corsair II. All nonlinear simulations and 3-D displays run in real time in response to pilot inputs, using contemporary desktop personal computer hardware. The simulations can also be run in batch mode. Each nonlinear simulation includes the full nonlinear dynamics of the bare airframe, with a scaled direct connection from pilot inputs to control surface deflections to provide adequate pilot control. Since all the nonlinear simulations are implemented entirely in MATLAB, user-defined control laws can be added in a straightforward fashion, and the simulations are portable across various computing platforms. Routines for trim, linearization, and numerical integration are included. The general nonlinear simulation framework and the specifics for each particular aircraft are documented.