
Program Instrumentation and Trace Analysis 

Klaus Havelund 
Allen Goldberg 

Kestrel Technology 
NASA Ames Research Center 

California, USA 

Robert Filman 
Grigore Rosu 

RIACS 
NASA Ames Research Center 

California, USA 

Several attempts have been made recently to apply techniques such as model checking and theorem 
proving to the analysis of programs. This shall be seen as a current trend to analyze real software 
systems instead of just their designs. This includes our own effort to develop a model checker for 
Java, the Java PathFinder 1, one of the very first of its kind in 1998. However, model checking 
cannot handle very large programs without some kind of abstraction of the program. This paper 
describes a complementary scalable technique to handle such large programs. Our interest is turned 
on the observation part of the equation: 

How much information can be extracted about a program 
from observing a single execution trace? 

It is our intention to develop a technology that can be applied automatically and to large full-size 
applications, with minimal modification to the code. We present a tool, Java PathExplorer (JPaX), 
for exploring execution traces of Java programs. The tool prioritizes scalability for completeness, 
and is directed towards detecting errors in programs, not to prove correctness. One core element in 
JPaX is an instrumentation package that allows to instrument Java byte code files to log various 
events when executed. The instrumentation is driven by a user provided script that specifies what 
information to log. Examples of instructions that such a script can contain are: "report name and 
arguments of all called methods defined in class C, together with a timestamp"; "report all updates 
to all variables"; and "report all acquisitions and releases of locks". In more complex instructions 
one can specify that certain expressions should be evaluated and even that certain code should be 
executed under various conditions. The instrumentation package can hence be seen as implementing 
Aspect Oriented Programming for Java in the sense that one can add functionality to a Java program 
without explicitly changing the code of the original program, but one rather writes an aspect and 
compiles it into the original program using the instrumentation. 

Another core element of JPaX' is an observation package that supports the analysis of the generated 
event stream. Two kinds of analysis are currently supported. In temporal analysis the execution 
trace is evaluated against formulae written in temporal logic. We have implemented a temporal 
logic evaluator on finite traces using the Maude rewriting system from SRI International, USA. 
Temporal logic is defined in Maude by giving its syntax as a signature and its semantics as rewrite 



equations. The resulting semantics is extremely efficient and can handle event streams of hundreds 
of millions events in few minutes. Furthermore, the implementation is very succinct. The second 
form of even stream analysis supported is error pattern analysis where an execution trace is 
analyzed using various error detection algorithms that can identify error-prone programming 
practices that may potentially lead to errors in some different executions. Two such algorithms 
focusing on concurrency errors have been implemented in JPaX, one for deadlocks and the other for 
data races. It is important to note, that a deadlock or data race potential does not need to occur in 
order for its potential to be detected with these algorithms. This is what makes them very scalable in 
practice. The data race algorithm implemented is the Eraser algorithm from Compaq, however 
adopted to Java. The tool is currently being applied to a code base for controlling a space craft by 
the developers of that software in order to evaluate its applicability. 


