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DAMAGE DETECTION USING HOLOGRAPHY 
AND INTERFEROMETRY 

Arthur J. Decker 
National Aeronautics and Space Administration 

 Glenn Research Center 
Cleveland, Ohio 44135 

1. INTRODUCTION 

Some major goals of structural testing are the detection of local damage 
and, more recently, the general evaluation of structural health. Detection of 
local damage calls to mind several specialized practices. The most direct is 
simple visual inspection for cracks or visual inspection perhaps enhanced by 
dye penetration. This simplest of approaches is augmented by a variety of 
visualization techniques. These include,1 for example, X-ray radiography; 
neutron radiography; ultrasonic techniques including C-scan imaging; 
optical, electron and scanning probe microscopy; eddy currents; both optical 
and non-optical thermography and the interferometric methods to be 
discussed in this chapter. 

The evaluation of the general health of structures depends on the 
detection and possibly sophisticated analysis of non-locally generated 
signatures. A very simple example to be discussed in this chapter is the 
measurement of the change in frequency of a resonant vibration mode of a 
structure that sometimes accompanies damage or cracking. A more 
sophisticated method is the detection of subtle changes in the vibration mode 
shape itself.  

The minimum objective for all these technologies is to detect possibly 
injurious structural changes or structural damage. A more advanced 
objective is to quantify the magnitude of the structural changes or damage.  
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In any case, the technologies often have little in common except for the 
objectives. This chapter will discuss specific optical techniques based on 
interferometry and holography. But the approach to be discussed for using 
neural networks to interpret interference patterns should be applicable to 
processing multiple channels of data from some of the other technologies. 

2. SURVEY OF HOLOGRAPHY AND 
INTERFEROMETRY FOR DAMAGE 
DETECTION 

2.1 Principle of Operation 

Laser holography and interferometry have been used to detect structural 
damage nearly from the time of their discovery in the early 1960’s. The 
approach to damage detection has not changed much since that time. An 
interference pattern or “fringe pattern” is created and monitored for the 
object of interest. Visual clues about changes in the structural integrity of the 
object are sought from variations in the interference pattern. Silver-halide-
emulsion holograms were used extensively for these inspections during the 
first twenty-five years of laser holography. Real-time, double-exposure and 
time-average holographic interferometry, as well as speckle interferometry, 
were used to generate the interference patterns.2 The important feature of the 
silver-halide emulsion was that it could store multiple holograms or speckle 
photographs of the surface of an object recorded at different times.3 The 
reconstructions from the different holographic snapshots of the time varying 
surface could then be accomplished at the same time. The reconstructed 
beams interfered, and non-uniformities or anomalies in the interference 
patterns were identified with damage. Holographic techniques are primarily 
sensitive to out-of-plane motions of the surface of an object, whereas speckle 
techniques are primarily sensitive to in-plane motions. Another optical 
method called moiré deflectometry could be used to detect local changes in 
the orientation of the surface of an object.4  

The silver-halide emulsion has largely been replaced with electronic 
recording in the past fifteen years.5 Combination of the CCD camera with 
phase shifting interferometry offers most of the practical damage-inspection 
benefits of silver-halide-emulsion holography plus the ease of digital data 
acquisition and processing. The CCD camera has sufficient resolution to 
record image-plane holograms whose maximum spatial frequencies are set 
by  low-pass filtering property of the camera lens and the accompanying 
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pixel size. Unrestricted three-dimensional viewing still requires the silver-
halide emulsion, but stereoscopic viewing can capture two perspectives from 
two electronic cameras. Electronic recordings of holograms and speckle 
patterns permit all the sophisticated tools of image processing and 
computing to be applied. But the user is still confronted with the challenges 
of detecting changes in fringe patterns and associating them with structural 
changes and damage. 

2.2 Classical Approaches 

Both early and more recent demonstrations of damage detection have 
often depended on rather dramatic structural failures such as severe cracks 
and de-bonding to generate spectacular local variations in the interference 
patterns. Figure 1 shows the rather obvious effect on a double-exposure 
fringe pattern of a de-bond defect in a flat-plate structure. Double exposures 
have been used dramatically to show separations in automobile tires,6 for 
instance. Various enhancements have been used to visualize less dramatic 
damage. One approach uses continuous phase shifting of the fringe pattern, 
and the accompanying local time variation in contrast, to call attention to a 
crack. Another approach is to visualize measured or computed patterns that 
map differences or derivatives of displacement rather than the surface 
displacements directly.7  

 

Figure 1. Defect shown by double-exposure fringe pattern 

Figure 2 shows a fringe pattern from a time-average hologram of a 
simple mode of a cantilever, and the corresponding maps of the second 
derivatives of the interference phases for cracked and undamaged versions of 
that cantilever. The patterns in figure 2(b) and (c) were generated by an 
artificial neural network in response to the mode shape in figure 2(a). The 
second derivative mapped in figure 2(c) clearly shows the effect of a crack. 
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The bending induced strain at the surface can, in fact, be calculated from the 
second spatial derivatives of displacement evaluated in the local tangent 
planes at the surface.8 The measured interference phase really maps the dot 
product of displacement and a sensitivity vector, thereby complicating the 
interpretation somewhat. But the sensitivity vector often varies slowly 
enough that the second derivatives approximately map bending induced 
strain. Regardless, the second derivatives of interference phase sometimes 
provide a way to visualize damage.  

Optical inspections of solid surfaces for structural damage suffer from 
two major defects. First, inspections depend on human interpretation of 
visualizations and are observer dependent. A more serious defect is that 
optical patterns may not change dramatically in the presence of significant 
structural damage or changes. 

 a                      b                     c       

 

Figure 2. Fringe pattern (a) and second derivatives of interference phase  
from undamaged (b) and cracked (c) cantilevers. 

As stated above, most demonstrations of holographic and interferometric 
techniques have depended on dramatic changes such as manifested by cracks 
and de-bonding. But structures can change substantially as measured by non-
optical methods without affecting the interference patterns recorded by using 
electronic holography. For example, a flat plate held on two sides by vise-
grips was vibrated in its fifth mode of bending, and electronic holography 
recorded the interference pattern of this mode (fig. 3). Each vise-grip was 
attached with four screws. The torque of one of these screws was adjusted 
back and forth from 0 to 70 inch-pounds, and the resonant frequency was 
recorded at 6 torque settings, with 10 measurements per setting. 

Figure 4 shows that the resonant frequency of this vibration mode clearly 
changes with torque. But a visual examination of the associated vibration 
mode shapes shows no discernable variation. Two of these patterns are shown 
in figure 5. In other cases, mode shapes change when frequencies do not. 
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Figure 3. Fifth vibration mode of optical strain-gauge plate 
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Figure 4. Holography-measured decrease in resonant frequency with increasing screw torque 

 

Figure 5. Mode at screw torques of 25 and 70 in. lb 
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This example shows both the strengths and weaknesses of using whole-
field interferometry for damage detection. Electronic time-average holography 
is easy to use to identify a vibration mode and its resonant frequency.10 A 
change-in-frequency is a commonly used signature of structural changes and 
damage. Resonant frequencies and modal identification are important design 
parameters for components such as fan blades. But the interferometer-
visualized mode shape of a component of a structure is not necessarily a 
reliable signature of structural health. A crack, de-bond, or other defect 
appearing in the region being visualized may indeed display a dramatic local 
effect on the fringe pattern or its derivatives as exemplified by figures 1 and 2. 
Or it may not appear to change the pattern at all. 

2.3 Whole-Field Approaches 

Fortunately, electronic recording and computing enable another approach 
to damage detection from whole-field interference patterns. The entire 
pattern can be compared somehow with a pattern from the undamaged 
component11–13 or even with a design-model-generated pattern.14–16 This 
approach does not depend on the presence of dramatic local structural effects 
such as cracks. A slight change in mode shape caused by a remote event, 
such as the change in screw torques associated with figures 3 through 5, can 
be detected.  

Artificial neural networks are one tool for parallel processing of whole-
field interference patterns. A neural net can be trained to respond to very 
small changes in the total interference pattern. The simplest approach 
involves electronic time-average holograms. There is a technique for training 
neural networks to respond to very small changes in the shape of a vibration 
mode where the vibration mode is visualized using electronic holography. 
The technique assumes nothing about the nature or cause of the change in 
mode shape and uses modes of the undamaged structure for training.  

Neural nets are used to automate the damage detection process and do 
not require visualization enhancements for human intervention. In that sense, 
they are consistent with the expectations for machine vision. The neural-net 
inspection technique is discussed in some detail next. 
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3. NEURAL-NET DETECTION OF DAMAGE 

3.1 Neural-Net Essentials 

Artificial neural networks were rediscovered and started to assume some 
popularity about 15 to 20 years ago.17 It turns out that it is not especially 
straightforward to get good computing performance from neural networks. 
In fact it is not particularly easy to define an artificial neural network; since 
the number of different neural-net architectures is large. The principal 
requirements for getting good performance are to understand the intended 
application thoroughly and to select an appropriate architecture. Even then 
there is a confusing array of competing parallel processing methods with 
names such as fuzzy logic, expert systems and data mining. A single neural-
net architecture might have several training procedures. 

Fortunately certain kinds of artificial neural networks handle the patterns 
generated from electronic holograms very well and can be trained to detect 
damage from these patterns. The so-called feed-forward artificial neural 
networks are especially well suited for training for damage detection from 
mode-shape patterns such as shown in figure 3. The feed-forward neural net 
embodies most of the key concepts of an elementary neural network; can be 
trained by executing a formula procedure such as the back- propagation 
technique;18 and tolerates the laser speckle effect exhibited by electronic 
holograms of diffusely reflecting structures. In fact the feed-forward net 
handles noise very well and conceivably could be trained to distinguish 
damage from random, but normal, structure-to-structure variations. The feed-
forward net is not the only architecture for interpreting fringe patterns, but 
actually is quite compact in software when compared with other architectures. 
The feed-forward net is completely adequate for the damage-detection 
application and is discussed exclusively in the following paragraphs. 

Figure 6 shows schematically a feed-forward net, sometimes called a 
multi-layer perceptron for historical reasons. The architecture consists of 
processing nodes or neurons represented by circles. The nodes are arranged in 
layers. Most often information is transmitted in one direction only from left to 
right; hence, the net is called a feed-forward net. The nodes in one layer are 
connected to the nodes in the previous layer via weighted connections. These 
weighted connections are sometimes identified loosely with biological 
synapses. Typically the weighted inputs are summed and then transformed 
with a non-linear transfer function. Sigmoid and hyperbolic tangent functions 
are typically used for the transformation. The transformed output is then 
transmitted to the next layer of nodes for similar processing. The single output 
of a node is sometimes loosely identified with a biological axon. 
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Figure 6. Example of feed-forward neural network 

The nodes in the leftmost layer in figure 6 have single inputs to receive, 
for example, the pixel values from a fringe pattern. The outputs of the 
rightmost nodes are the outputs of the neural network. The layers in between 
are sometimes called hidden layers. A single hidden layer is most common. 
Occasionally a net will perform better with two hidden layers. The neural net 
can be trained to respond to specific inputs by outputting specific outputs. A 
set of records consisting of input-output pairs is used to train the neural 
network. Training is accomplished by adjusting the weights of the weighted 
connections to the nodes. One training criterion is that the sum of the squares 
of the differences between the actual neural-net outputs and the training 
outputs be minimized for all the training records. Training typically occurs 
in steps. A training step may involve all, a subset, or one of the training 
records. The best-known procedure is the so-called back-propagation 
algorithm. That procedure is essentially a steepest descent search in weight 
space to minimize the sum-of-squares mentioned above. 

There is a vast literature on the details and vagaries of the various neural-
net architectures and training procedures. Ripley presents an exhaustive 
treatment of the mathematical subtleties.19 Unfortunately it is possible to 
read much of that literature without learning how to use nets to handle 
particular kinds of data. Fortunately there are free and commercial software 
packages for creating and training neural networks20 and ample opportunity 
to discover by experience which procedures work. The next section 
discusses the essentials for using the feed-forward net to recognize fringe 
patterns. 
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3.2 Design of Neural Nets and Training Sets for Damage 
Detection 

The rules for designing both neural nets and training sets for fringe-
pattern recognition were evolved originally from computer experiments. The 
experiments were conducted using model-generated fringe patterns that 
included a model-generated speckle effect.14–16 The modeled object was 
initially a simple ideal cantilever, and the displacement distributions of the 
vibration modes were computed from a finite-element model. Modes were 
generated for cracked and undamaged versions of the cantilever, and 
multiple uncorrelated speckle patterns were calculated for each mode. The 
early experiments actually used as outputs the computed second derivatives 
of the model-generated dot product of displacement and the interferometric 
sensitivity vector. This choice of output specifically recognized that bending 
induced surface strain is proportional to the local second derivatives of 
displacement.8 The latest examples simply use a mode-identifying index 
called the degradable classification index (DCI) as the neural net output. 

In any case, the current objective is that a neural net be trained to 
recognize a vibration mode of an undamaged structure in the presence of the 
laser speckle effect, and that the net respond to any changes in the mode 
shape. A property of neural networks called graceful degradation makes 
them useful for characterizing changes in the mode shape. Specifically, the 
proper design of the net and the training set will lead to a gradual and 
possibly controllable change in the DCI as the mode shape changes. Mode 
shapes21 depend on boundary conditions, distributions of material properties, 
excitation levels and damage.  

The proper design techniques were deduced from the model-generated 
data using statistical analysis. Figure 7 shows some examples of measured 
and model-generated data from the first chord-wise mode or lyre mode of a 
flat blade. Figure 7(a) was photographed from the reconstruction from an old 
silver-halide time-average hologram of a vibrating blade. Figure 7(b) was 
obtained from electronic holograms of a flat blade. Note the reduced spatial 
resolution caused by the relatively large camera pixels. Figure 7(c) was 
calculated from a finite element model of the flat blade and a model of the 
laser speckle effect. Note that the mode shape or characteristic pattern is 
displayed only for each of the 903 finite-element nodes and is portrayed as 
large pixels. Finally, figure 7(d) shows a measured pattern, sub-sampled 
from electronic holograms, at the same amplitude and with the same number 
of pixels used to generate figure 7(c). 
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Figure 7. Measured and model generated chord-wise modes. (a), (b), and (d) are measured 
and (c) is model generated. Both (c) and (d) are sub-sampled. 

The first thing to note is that the input data for the neural net is supplied 
at less than CCD-camera resolution and, in fact, at finite-element-model 
resolution. A few hundred to a few thousand finite elements are typically 
used for a compressor blade design. The second thing to note is that the 
patterns in figures 7(c) and 7(d) look quite similar. In fact, the performances 
of the neural networks have been quite comparable for model-generated and 
experimental data. The author is quite confident in changing from one kind 
of data to the other in testing neural-net behavior. But the fringe patterns 
predicted from finite-element models are not necessarily accurate 
themselves. Considerable work in the development of these finite-element 
models needs to be done, if neural nets are to be used to compare finite-
element structural designs with measured mode shapes.  

Most often the patterns modeled or measured have been the characteristic 
patterns of classical time-average holography. The hologram is recorded, in 
principle, during at least one cycle and, in practice, over several cycles of 
vibration. Most simply subtracting two identical holograms whose reference 
beams differ only by a phase shift of π generates the characteristic pattern. 
The mathematical form of the model-generated patterns, and ostensibly the 
measured patterns, is given by 

 )2(Pattern) ( 0 δπ •∗ KJSpeckle  (1) 

Here, K is the sensitivity vector or the difference between the incident-
light-ray vector and the reflected-light-ray vector, all divided by the 
wavelength. The vibration displacement amplitude is denoted by δ. The 
symbol J denotes a Bessel function. The speckle pattern is generated from a 



 

NASA/TM—2003-212078 11 

model of the speckle effect by using the random number generators of the 
software package. The pattern represented by equation (1) can be signed or 
unsigned, but selecting the absolute value is convenient for visualization. For 
model-generated patterns, the displacement is computed at each node of the 
finite-element model. 

A measured pattern is likely to be corrupted by a number of additional 
effects. These include electrical pattern noise, non-uniformities in 
illumination, pixel saturation and differences in the two holograms used to 
calculate the patterns. In practice, the net has proven to be reasonably 
immune to these effects. The feed-forward net is quite effective at handling 
Gaussian noise sources. The patterns can be averaged to improve the signal-
to-noise ratio for speckle-effect and electrical noise, but the objective has 
been to use two holograms per pattern when possible. Processing is done 
with software, and the combination of 2-hologram patterns and finite-
element resolution has permitted 30-frame-per-second visualization. 

The rules to be stated for the net and training-set designs also apply to 
double-exposure electronic holograms. An additional complication in 
double-exposure holography is synchronization or the point in the vibration 
cycle where the two exposures are recorded. Fluctuations constitute an 
additional noise source. The remainder of this chapter discusses time-
average holography exclusively. 

The design rules are based on results of statistical design-of-experiments 
and response-surface methods22 as well as experience. In effect, the neural 
network is treated as a black box, and its response is measured 
experimentally. Among the factors that could be considered are: the number 
of independent or uncorrelated speckle patterns per mode, the number of 
distinct vibration modes or classes of modes, the number of input nodes, the 
intensity range of the test patterns, the accompanying pixel saturation 
effects, the vibration amplitude and number of characteristic fringes, the 
transfer functions of the neurons, additive electrical noise, the nature of the 
output code, the number of hidden layers, the number of hidden layer nodes, 
and the coding, conditioning and transformation of the input patterns. 

Early experiments measured performance as a function of the number of 
speckle patterns per mode, the number of hidden layer nodes, pixel 
saturation, and the size of a modeled crack.14 A later study showed that the 
coding, conditioning and transformations of the input patterns affected 
significantly the magnitude of the minimum detectable change in the 
vibration amplitude distribution.13 The results of these studies have proven to 
be effective for both model and experimental data. The design rules listed 
next were developed for feed-forward nets that contain one hidden layer.14 
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First, the neural nets are called sparse, in that they contain few hidden 
layer nodes. In general, 3 hidden-layer nodes are used for each distinct mode 
or class of modes to be learned. For example, a net can be trained to learn a 
particular mode for both cracked and uncracked versions of a cantilever by 
using a net with 6 hidden-layer nodes. The vibration level at the tip is the 
same for both the cracked and uncracked versions. Or a net can learn to 
assign one mode to a single class and several other modes to another class, if 
that net has 6 hidden-layer nodes (3 for each class). The class codes, in this 
case, are called degradable classification indices (DCI). The reason for this 
terminology is that a change in the mode shape of the mode in a class by 
itself decreases the corresponding node output. Typically each class has its 
own output node. This property is used to implement the whole-field 
damage-detection technique. The rule for the number of hidden-layer nodes 
is not exact. In some cases, fewer than 3 hidden-layer nodes per class are 
effective. The use of more hidden-layer nodes has little effect. A sparse net 
can have large numbers of input and output nodes without taxing the 
software; hence, sparse nets are convenient for processing images and fringe 
patterns with large numbers of pixels. Real-time (30-frame-per-second) 
processing can be maintained. 

Second, there must be enough uncorrelated speckle patterns per mode for 
the net to learn to ignore the speckle effect. In effect, the net has to see 
enough independent noise samples to learn to treat speckle-effect noise as 
irrelevant. An effective rule is to select uncorrelated speckle patterns equal 
in number to 10 percent of the number of input pixels. A typical pattern, for 
example, would contain 2000 sub-samples. A training set would then contain 
200 uncorrelated speckle patterns per mode.  

Third, the net can tolerate some saturated inputs. Unsigned inputs 
typically occupy the range 0 to 1 for the feed-forward nets. By contrast, the 
hidden-layer and output-layer nodes typically use the S-shaped sigmoid 
transfer function. The sigmoid function approximates the unit step function. 
Output codes are normally chosen to be [0.2, 0.8] instead of [0, 1]; since the 
latter values would require sigmoid-transfer-function arguments of minus 
and plus infinity.  

The tolerance of input-pattern saturation was proven by multiplying the 
inputs by constant saturation factors and clipping the inputs greater than 1. 
The results were not affected even when the saturation parameter was as 
large as 4. No doubt, the large number of unclipped darker speckles was the 
reason that such a large saturation factor could be tolerated. 
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Fourth, the preparation and conditioning of input patterns can have a 
significant effect on the ability of the net to learn to distinguish patterns.13 
Early experiments with the raw absolute value patterns represented by 
equation (1) had difficulty distinguishing the model-generated cracked and 
uncracked cantilever modes. It was necessary to amplify the difference in 
displacement distributions, before the net would learn the difference. A data 
transformation technique called folding13 changed that result significantly. 
Following folding, the crack could be de-amplified, and the net would learn 
to detect it.  

Folding is an intensity dependent transformation of the raw input data. 
Consider the signed characteristic pattern, generated from one model of the 
speckle effect, given by: 

 ( ) ( )δπ •Θ= K2J cosA   mode 0  (2) 

In equation (2), A is a positive random quantity, and Θ is a random 
number uniformly distributed between 0 and 2π. The sub-sampled signed 
quantity can be used to train the net, or the data can be folded before 
training. The folding transformation is shown in figures 8 and 9 for one and 
3 folds, respectively. Signed input data are normalized in the range [–1, 1] 
and unsigned input data are normalized in the range [0, 1]. One fold is 
equivalent to taking the absolute value of the pattern in equation (2). The 
contrast of the transformation can be reversed as well. 

 

 

Figure 8. Intensity data folded once. Equivalent to absolute value. 
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Figure 9. Intensity data folded three times.  

 
The effectiveness of folding is proven for the blade and finite-element 

node- pattern shown in figure 10. Three copies of the blade shown in the 
upper right of figure were manufactured. One of the blades had a small crack 
in its base. Finite-element models were created for both the cracked and 
undamaged blades. A neural net was trained using the mode shapes 
computed from the finite-element models, using various numbers of folds. 
The training errors are shown to decrease as the number of folds increases 
up to 8. Folding increases the sensitivity of the neural-net inspection process 
for identifying cracks. The crack amplitude difference was actually de-
amplified by a factor of 10 for this demonstration. A training error, a test 
error (obtained from different speckle patterns than used for training) and a 
test percent-error-rate are shown as a function of the number of folds.  

Other kinds of data transformations and preparation have been used to 
improve learning. Stretching individual pixel intensity distributions into the 
same intensity range is sometimes used, but leads to over fitting and the 
tendency to learn the noise rather than to learn to ignore it. A net that uses 
more general transformations of input data is the Functional Link Net.18 But 
folding handles the damage detection application very effectively and in a 
most simple manner. Nets have been trained using folding to detect changes 
in displacement distributions, where the maximum displacement change was 
as little as 10 nanometers. 

The suggested net and training-set design rules can be verified using 
model-generated data. The next section discusses briefly how to record 
experimental speckle patterns for training. Experimental training records are 
required for the damage detection method to be discussed shortly. 
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Figure 10. Training error, test error and error rate versus number of folds for  
finite-element-model data generated for the blade and node pattern shown 

3.3 Experimental Training Sets 

The recording of experimental patterns for training a neural net to detect 
structural damage and changes, or to compare with computationally 
generated patterns, is especially advantageous. Experimental recording of 
sub-sampled patterns automatically encompasses the vagaries of the 
holography rig, including beam fluctuations and non-uniformities, electrical 
noise, illumination and reflection variations, difficult-to-model artifacts, 
random material and geometrical effects, ill-defined boundary conditions, 
and any of the hidden effects that are easily overlooked in modeling.  

The major requirement is to record enough uncorrelated speckle patterns 
according to the second rule in section 3.2. Physically, speckle patterns do 
not change rapidly enough, without external inducement, to accomplish this 
efficiently, although they do vary with vibration-induced beam changes and 
the like. Fortunately, the large pixels solve that problem. Measurements are 
made at random positions within the large pixels, such as make up 
figure 7(c), to build up the sub-sampled input array. A single full-resolution 
characteristic pattern could, in principle, be used to generate an entire 
training set of sub-sampled patterns. But selecting a new characteristic 
pattern each time a training record is assembled allows the other vagaries to 
manifest themselves. In any case, nets trained in this manner tolerate 
variations in the speckle effect as well as do model-trained nets. 
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It should be noted that data acquired to compare with finite-element 
models will need to be consistent with the positional variations of the 
element size. Figure 10 shows how the spacing of the nodes in a finite-
element pattern can vary.  

The next section discusses how to use the material of sections 3.2 and 3.3 
to train a neural net to detect structural damage or structural changes. 

3.4 Training Neural Nets to Detect Structural Damage 
by Using the Mode Shapes of the Undamaged 
Structure 

The following procedure is designed to accompany a possibly destructive 
test of a structure or a test where structural changes might occur. Examples 
include, but certainly are not limited to, pressure-cycle-induced damage, 
fatigue failure, de-bonding in composite structures, loose fasteners, and 
bearing changes. The assumption is that the structure is available for 
holographic vibration-mode analysis before conducting the possibly 
destructive test. The procedure uses only the vibration modes of the 
unchanged or undamaged structure for training.11,12 

First, use electronic holography to identify about 5 vibration modes of 
the structure to be inspected. 

Second, establish that parameters such as fastener torques, object 
alignment, excitation, and amplitude measurement are under control. The net 
will detect effects of boundary conditions, for example, resulting from 
changes in fastener torques. The holographic inspection is most easily done 
on a vibration-isolation table. It may be convenient to conduct both the 
inspection and the possibly destructive test on the same table. Otherwise, 
attention must be paid to realigning the object accurately relative to the 
holocamera for each inspection. Random alignment errors are a noise source, 
and feed-forward nets can learn to tolerate them to some extent. Field 
inspections are possible, and inspections have been performed using fiber-
bundle holocameras for remote access to an object. But it is still best and 
easiest to use the optical table. 

Third, establish the sampling grid for the large pixels. Non-rectangular 
and curved objects may require large pixels that vary in size. For the sample 
applications discussed in section 4, the pixel coordinates of the edges of the 
object were measured through the holocamera and supplied as inputs to a 
grid-calculating software package. Typically 1,000 to 2,000 nodes and the 
associated large pixels are used. 



 

NASA/TM—2003-212078 17 

Fourth, select three vibration modes, and choose one of these modes as 
the mode to be monitored for structural changes and damage. This process 
might require some trial and error. The mode mix will determine the 
sensitivity of the process to some extent, and affords some choice, for 
example, in calibrating or quantifying the inspection. 

Fifth, excite the vibration mode to be monitored for damage. The 
excitation level must be controlled. Fluctuations in the amplitude constitute a 
noise source. It is convenient to monitor a point on the object using a laser 
interferometer to assure that the vibration amplitude is controlled. An expert 
operator may also be able to set the amplitude adequately by viewing the 
characteristic pattern. Typically, the maximum excitation amplitude will not 
exceed one wavelength of light.  

Sixth, record the required number of speckle patterns as discussed in 
section 3.2, and assign an output code for the mode to be monitored. For 
example, two output nodes might be employed. The output code might be 
[0.8, 0.2] for feed-forward nets as already discussed. The first number is the 
DCI of the pattern to be monitored. The other vagaries in the set-up and 
procedure automatically will be incorporated in setting the code. 

Seventh, record the required number of speckle patterns as discussed in 
section 3.2 for the other two modes and for the zero-amplitude condition. 
Use another code for these patterns that places them in the same class. The 
output code might be [0.2, 0.8]. In effect, these patterns are examples of 
patterns that differ from the pattern-to-be-monitored. Changes in the mode 
shape of the pattern being monitored will then result in a decrease in the DCI 
generated by the trained net. 

Eighth, construct a feed-forward net with 6 hidden-layer nodes as 
discussed in section 3.2, and train the net to an RMS error of 0.01 or less. 
The 6 hidden layers support 2 classes. The RMS error is computed from the 
squares of the differences between the training outputs and measured outputs 
for all training records. 

Ninth, test the net for sensitivity. Ideally, the net is calibrated or at least 
quantified to be consistent with certain structural test criteria. One approach 
is to make the neural-net test consistent with NASA vibration handbook 
standards.23 In the absences of calibration or quantification, simple judgment 
may be the only alternative. For example, light point loads can be applied at 
critical locations to test the neural net response, or fastener torques can be 
varied. 

Tenth, change the vibration-mode mix, if the sensitivity is not correct, 
and repeat the above steps. The vibration-mode-to-be-monitored is the most 
critical. 
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Eleventh, establish criteria for interpreting the results of the test. For 
example, a change in the DCI from 0.8 to 0.7 might be declared to be an 
indicator of damage. At 0.7, an alarm can be triggered. One approach is to 
color the fringe pattern differently, when the DCI decreases below 0.7. A 
change of the fringe color from green to yellow or red can be used as an 
indicator. This is decidedly an ANOVA viewpoint. For noisy data, a 
regression of the DCI against some test parameter such as time or the 
number of vibration cycles or the number of pressure cycles might be more 
appropriate. A trend can be established and its significance measured. 
Interpretation will be discussed in more detail together with the applications. 
Experience has shown that these steps can be executed very quickly. The 
time required to record a training set, train the net, and link the net with 
other software was typically twenty minutes for the two sample applications 
to be discussed. 

The first application of neural-net detection of damage demonstrates some 
of the statistical considerations involved in interpreting results and applying 
quantification or calibration techniques. The second application discusses an 
early use of unfolded neural-net technology to detect pressure-cycle-induced 
damage in an International Space Station instrumentation cold plate. 

4. SAMPLE APPLICATIONS 

4.1 Optical Strain Gauge Mounting Plate 

This application demonstrates the ability of the neural networks to detect 
changes in a vibration mode shape in a region remote from the cause. In that 
sense, the application is a health monitoring application. The object is a plate 
used to mount and test optical strain gauges,9 and was discussed in 
section 2.2 in connection with changes in frequencies of vibration-modes. 
The frequency changes, in turn, were caused by a change in the torque of a 
mounting screw. Figure 3 showed a vibration mode of the plate mounted 
between two vise-grip mounts. Figure 11 shows the plate in one of the 
electronic holography arrangements used to measure it. As already stated, 
frequency changes were induced by adjusting the torque of the second screw 
from the top on the left. 

The plate itself was rather thin at 813 µm, and was 152.4 mm wide and 
101.6 mm high. Optical strain gauges typically are to be mounted along the 
center line, when the plate is to be used for that purpose.  
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The key point is that only the plate itself, and not the vise-grips and 
screws, were visible to the neural nets. Hence, only the mode-shape change 
on the plate itself was relevant. Figure 12 shows the mode shapes as well as 
part of the mounting hardware. Screw torques were initially set to 70 in. lb. 
The torque of the second screw from the top on the left was then backed off 
fully and set to 25 in. lb for training. The training sets, subsequently 
recorded, remained valid for weeks, provided that the torques were 
periodically re-adjusted to the initial values. 

 

Figure 11. Optical strain-gauge plate in an electronic holography arrangement 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Figure 12. Mode shapes for optical-strain-gauge mounting plate.  
Resonant frequency increases left to right and top to bottom. 
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The sampling grid was almost uniform, and was 42 nodes wide and 
28 nodes high for a total of 1176 nodes. Hence, the neural net had 
1176 input nodes. The full resolution of the image that was used for the 
inspections was 537 pixels wide and 395 pixels high. The software 
automatically adjusted the large pixels at the end of a row and the bottom to 
handle round off. The average large pixel then contained about 180 speckles 
from which the random patterns were generated. 

The fifth mode at about 473 Hz was placed in a class by itself for 
monitoring; since the frequency changes of that mode were found to vary 
most strongly with changes in the mounting screw torque. The first mode, 
the second mode and the zero-amplitude condition were all selected as 
members of the second or comparison class. Each comparison mode was 
assigned the same output code. 

A single point of the plate was monitored with a laser interferometer, so 
that the vibration amplitude at that point could be set and maintained at the 
same value. The point was located on the rear of the plate, 19 mm from the 
bottom and 29 mm from the edge of the left vise-grip as viewed from the 
holocamera side. The peak-to-peak amplitude was set and maintained at 
0.32 µm for the fifth mode at the laser-interferometer detection point. The 
fluctuation in the amplitude, due to various noise sources, was about 
0.025 µm. That fluctuation consisted primarily of a superimposed first mode, 
and constitutes one of the vagaries of the training procedure. It can lead to a 
rather substantial variation in the monitored DCI; since the first mode was 
already assigned to the comparison class. Perhaps the first mode should be 
avoided as a member of the training set; since it is so easily excited. But the 
first mode was in fact included in the training set for this sample application.  

Ten percent of the number of large pixels or input nodes is equal to 118. 
Hence, in accordance with section 3.2, 118 sampled uncorrelated speckle 
patterns were recorded for the first, second, and fifth modes and the zero-
amplitude condition. Needless to say the zero-amplitude condition contained 
a small amount of environmentally excited first mode, as did the other 
modes. The software automatically performed random selection of the 
speckles from one pattern to the next. The fifth mode was assigned the 
output [0.8, 0.2], and the other modes together were assigned the output 
[0.2, 0.8]. For those cases where folding was employed, the input data were 
also subjected to a 5-fold folding transformation as discussed in connection 
with figures 8 and 9. 

A feed-forward net was then constructed in software. It consisted of 
1176 input nodes, 6 hidden-layer nodes with sigmoid transfer functions, and 
2 output nodes with sigmoid transfer functions. The net was then trained to 
an RMS error less than 0.01. 
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The trained net was converted into C-language code and compiled and 
linked to the software of the electronic-holography inspection system. As 
mentioned before, the entire process requires about 20 minutes. 

4.2 Statistical Results  

Tests variously involved recording 10 uncorrelated speckle patterns per 
torque setting and recording 100 uncorrelated speckle patterns per torque 
setting, each averaged 10 times for electrical noise.  

The net had no trouble detecting changes, even in a 10 in. lb interval, 
when the amplitude was not reset to its constant value of 0.32 µm. But the 
mode shape does not change much, as stated before, at a constant amplitude 
setting. Nevertheless, the neural nets did detect these mode-shape changes. 
Figure 13 shows the results of an ANOVA performed on 100 uncorrelated 
speckle patterns per torque setting. Each of these patterns was averaged 
10 times for electrical noise, random first-mode vibration noise and other 
noise sources. The DCI can be observed to decline as the screw torque is 
increased from the training value of 25 to 70 in. lb. The Bonferroni 
simultaneous confidence intervals are clearly separated. The most important 
point is that this test was repeated several times over a 2-week period using 
the same training set. The DCI decreased significantly in all cases. Hence 
optical alignment effects, and other systematic and random effects, were not 
critical. An F Value test of significance indicated that the probability of the 
observed variation being due to random chance was less the 0.001.  
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Figure 13. Neural-net response to change in mode shape induced by a change in screw torque. 
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The above data were also tested with a linear regression using the screw 
torque as the only factor. This test provides a better measure of the scatter of 
the data and goodness of fit. The R2 value was 0.75 indicating quite a bit of 
scatter. But the T-value for the slope was almost –30 indicating that the 
significance of the slope was much better than 0.001. The slope is given by  
–0.008202 (in. lb)–1. 

Regression also allows the lower detection limit to be quantified. For that 
purpose, a trend was sought over a 10 in. lb range only from 25 to 35 in. lb. 
Ten patterns were recorded at each station without averaging, and there were 
stations at 25, 31, 34, and 35 in. lb. The input data were folded 5 times in the 
manner of figures 8 and 9. The slope obtained from these measurements was 
–0.008636 (in. lb)–1, but R2 was only 0.085, and the significance of 0.069 
was poorer than the old industrial standard for significance in statistical 
testing (0.05). 
 For this application, crisp red-lining of changes in the mode shape 
induced by changes in the screw torque required more than 10 patterns per 
station with station separations of 10 in. lb or more. Crisp results required 
100 patterns per torque value. Trends could be established with less data by 
using regression. But both regression and ANOVA require repeat 
measurements because of noise. Hence, visualization needs to proceed much 
more slowly than 30 frames per second. An application that was 
accomplished at the full visualization rate with unfolded training data is 
discussed next.  

4.3  Inspection of International Space Station Cold Plate  

This application11 was performed before the discovery of the folding 
technique; hence a more sensitive test might have been possible. 
Nevertheless, this application defines the kind of test that is intended for 
damage detection from neural-net inspection of fringe patterns. The 
application was conducted with real-time visualization as well as by 
examining repeat samples. The subject was an International Space Station 
(ISS) instrumentation cold plate shown in figure 14. The cold plate had holes 
for mounting instrumentation and internal cooling passages for cooling the 
instrumentation. It was suspected that the cooling passages might not 
withstand pressurization; hence it was decided to perform pressure cycling 
of the cold plate and inspect the cold plate for ensuing damage. The cold 
plate was in fact inspected with a variety of techniques including classical 
silver-halide-emulsion holography and ultrasonic C-scan imaging. Only the 
neural-net inspection is discussed. A key point is that the holographic non-
destructive inspection and the potentially destructive test were performed 
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simultaneously on the same vibration isolation table. Another point is that 
the decision of the net was crisply reported. That is, the DCI was noted only 
as being greater than or equal to a redline condition. The monitored fringe 
pattern was colored green for a DCI greater than or equal to 0.65 and yellow 
otherwise. 

The cold plate was bolted to a frame through several of the holes 
intended for mounting instrumentation. The cold plate was filled with water 
and connected to a pressure cycling source. Neural net inspections were 
performed before, during and after pressure cycling. Both the entire plate 
and a suspicious region between four boltholes were inspected. The method 
of 3.4 is discussed only for the inspection between the four boltholes. The 
boltholes are on 4 in centers. 

 

Figure 14. ISS cold plate from front 

Figure 15 shows five modes covering a region including the suspicious 
region between the four boltholes.  

Fasteners were set, and the cooling passages were connected to the 
pressure source at 120 psig. The source could be cycled at 0.2 Hz. 

The sampling grid consisted of 40 by 54 large pixels. Figure 16 shows 
the large-pixel pattern at zero amplitude.  

The selection of an adequate set of training modes actually required more 
than one attempt. The selection process involved applying slight point loads 
to the cold plate and observing the neural-net response. Clearly a statistical 
approach or a calibration would have been preferable. The mode at 2310 Hz 
was found to be most sensitive to perturbations, and that mode was selected 
for inspection. The modes at zero amplitude, 780 and 1597 Hz were used for 
the comparison class. A laser interferometer controlled the vibration 
amplitude. 
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Figure 15. Modes covering region between four bolt holes 

 

Figure 16. Large-pixel sampling pattern between four bolt holes 

 
There were 2160 large pixels covering a region of 314 by 423 small 

pixels. Hence the training set for each mode contained 216 uncorrelated 
speckle patterns.  

The feed-forward net contained one hidden layer and that layer contained 
6 hidden-layer nodes as discussed before. Training proceeded quickly. As 
stated the process of section 3.4 needed repeating before the most sensitive 
training set was found.  

The trained net was then used during a 1000 pressure-cycle test and 
inspection of the region between the boltholes. A 2000 pressure-cycle test 
had been conducted previously for the whole plate. The plate was 
continuously monitored during the test, even during pressure cycling. 
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Pressure cycling was interrupted every 250 cycles to record 20 neural-net-
processed characteristic patterns at the pressure-relaxed condition. 

The net flagged a significant change in mode shape at maximum 
pressure, but always flagged an insignificant change at the pressure-relaxed 
condition. Figure 17 shows the mode between the bolts for the pressure-
relaxed and pressurized conditions. Note that only part of the mode shown in 
figure 15 actually appears between the boltholes. 

The conclusion of this test was that the neural-net inspection of mode 
shapes did not show significant changes or damage from pressure cycling. 
This conclusion was in agreement with the conclusions reached using 
ultrasonic C-scan testing. 

 

Figure 17. Response of neural-net to pressure-relaxed and pressurized conditions.  
A DCI less than 0.65 is coded yellow in displaying the fringe pattern. 

5. SUMMARY AND FUTURE TRENDS 

Whole-field laser holography and interferometry are non-destructive-
evaluation (NDE) methods. They are used to determine whether a 
component, structure, or system changes from its design condition during 
normal operations or other testing. The NDE method is non-invasive and 
does not itself change the structure.  

Electronic recording of interference patterns makes the inspections much 
more efficient. The data are also available immediately for computer analysis. 

Neural-net processing allows the entire fringe pattern to be examined 
simultaneously and in parallel. The inspection process and ensuing decisions 
are automated. The approach reported in this chapter is essentially a formula 
procedure. It can be consistent from one application to another and from one 
laboratory to another. It is subject to calibration and quantification. It 
provides a solid answer to a question that has been asked since laser 
holography was discovered: “Now that we have all this data, how do we 
interpret and use it?” 
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The ultimate goal, and one of the original goals for the neural-net 
processing of fringe patterns, was to create an efficient interface between 
damage models and data. A computational model of a structure and an 
optical model of an inspection process can be used to generate training 
records. The trained net can be then be used to examine experimental 
patterns. The inverse process of using experimentally trained nets to 
examine model-generated patterns also is relevant. So far the structural 
models used have not been accurate enough, in general. But the noise 
immunity of the feed-forward net and the availability of probabilistic finite-
element models24 offer future hope for the model interface. 

 The technology of damage detection using neural-net inspection of 
fringe patterns is definitely good enough to be placed in the hands of 
designers and NDE specialists. The technology constitutes a standard that 
their models and procedures hopefully will meet, eventually. The most 
straightforward approach is to incorporate the neural-net procedure into 
existing standards for vibration testing.23 The response of the net and the 
responses of standard sensors such as strain gauges and displacement sensors 
can be correlated.  

Most of this chapter has discussed the fringe patterns from electronic 
time-average holography. But the general procedure of section 3.4 certainly 
can be adapted to other kinds of damage sensitive patterns. These patterns 
can be obtained variously from speckle photography and interferometry, 
moiré deflectometry, thermography, and temperature sensitive paints, large 
angle scattering, and any other image forming method that is affected by 
damage. The algorithmic approach of section 3.4 could be applied virtually 
unchanged.  

The technological limit of the neural-net inspection technique is that it is 
based in software and is limited to a few thousand sub-samples. An 
improvement would require efficient channels for direct neural-net 
processing of optical data. 
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