
1 --- - --- - ---

This report is a preprint of an article submitted to a journal for 
publication. Because of changes that may be made before formal 
publication, this preprint is made available with tbe understanding 
that it will not be cited or reproduced without the permission of the 
author. MATERIAlS 

SCIENCE &. 
EIIGIIIEERIIiG 

A 
ELSEVIER Materials Science and Engineering A338 (2002) 271-281 

www.elsevier.comllocate/msea 

3D finite element analysis of particle-reinforced aluminum 

H. Shen, C .l. Lissenden * 
Department oj Engineering Science and Mechanics, Penn State University, University Park, PA 16802, USA 

Received 25 July 2001 ; received in revised form 31 January 2002 

Abstract 

Deformation in particle-reinforced aluminum has been simulated using three distinct types of fInite element model: a three
dimensional repeating unit ceil, a three-dimensional multi-particle model, and two-dimensional multi-particle models. The repeating 
unit cell model represents a fictitious periodic cubic array of particles. The 3D multi-particle (3D-MP) model represents randomiy 
placed and oriented particles . The 2D generalized plane strain multi-particle models were obtained from planar sections through the 
3D-MP model. These models were used to study the tensile macroscopic stress- strain response and the associated stress and strain 
distributions in an elastoplastic matrix. The results indicate that the 2D model having a particle area fraction equal to the particle 
represnetative volume fraction of the 3D models predicted the same macroscopic stress-strain response as the 3D models. However, 
there are fluctuations in the particle area fraction in a representative volume element. As expected, predictions froin 2D models 
having different particle area fractions do not agree with predictions from 3D models . More importantly, it was found that the 
microscopic stress and strain distributions from the 2D models do not agree with those from the 3D-MP'mode!. SpecificalJy, the 
plastic strain distribution predicted by the 2D model is banded along lines inclined at 45° from the loading axis while the 3D model 
prediction is not. Additionally, the triaxial stress and maximum principal stress distributions predicted by 2D and 3D models do not 
agree. Thus, it appears necessary to use a multi-particle 3D model to accurately predict material responses that depend on local 
effects, such as strain-to-failure, fracture toughness, and fatigue life. © 2002 Elsevier Science B.V. All rights reserved. 
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1. Introduction 

Discontinuously reinforced aluminum (DRA) has 
been the subject of research and development for 
many years and is currently in service in select structural 
applications in the automotive, aerospace, and sporting 
goods indust..ries such as: drive shafts, engine blocks, 
brake systems, aircraft access doors and ventral fins, 
and bicycle frames . These are primarily stiffness or wear 
critical applications. Ceramic particles are the most 
widely used form of discontinuous reinforcement, in 
part due to their availability from the abrasives industry. 
DRA is not typically chosen for use in toughness critical 
applications because of its relatively poor fracture 
toughness and strain-to-failure. This is the subject of 
current research; how to engineer DRA with improved 
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fracture toughness_and strain-to-failure without sacrifi
cing strength. Since these material characteristics are 
determined by local events such as intense local slip 
bands in the matrix and particle cracking or particle 
deb on ding, it is necessary to be able to predict these 
types of local events with a model. Analytical models, 
such as the ones presented in [1 - 5], are capable of 
predicting the material response under greatly idealized 
conditions or rely on Simplifying assumptions. Thus, 
numerical models are needed to realistically represent 
particle reinforcement systems that are typically hetero
geneous. It is actually quite difficult to obtain a detailed 
description of most particle reinforcement systems 
because the particles can have different shapes, any 
orientation, a range of sizes, and ditJerent properties, as 
well as be distributed in a not entirely random fashion in 
that particle clustering is common. Clusters cause 
localized deformation to occur [6]. 

The range of numerical models that has been adopted 
to represent DRA and other particle-reinforced metal 
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1 
Strain - Deformation, Bij = '2 (F IJ kj - b ij) (2) 

(3) 

Plastic regime, d8~ = d}-sij (4) 

where repeated indices imply summation, b ij is the 
Kronecker delta, E is Young's modulus, v is Poisson's 
ratio, IJ'ij is the Cauchy stress tensor, sij is the deviatoric 

h · . E P part of the stress tensor, t e stram tensor IS 8ij = 8ij + B ij' 

and the deformation gradient is Fij = F~Ffj.Evolution 
due to isotropic hardening is defmed by 

3 d8P 
d A = -_c 

2 (Jo 

where 

IJ'c ~= J~ sijsij 

and 

. dB~ = 2 ·' 
3~, dB~dB~ 

(5) 

(6) 

(7) 

where IJ'c and d8~denote equivalent stress and equivalent 
plastic strain increment, respectively. Yielding is pre
dicted by the von Mises yield criterion, (Je = IJ' y(8~), 
where the yield strength depends on equivalent plastic 
strain. 

The overall stress and strain are calculated by using 
volume averages, 

(8) 

N 

(j .. = ~ f IJ' .. d V = ~ 2:= IJ'~rn) Vern) 
. Ij V Ij V m =1 

V 

(9) 

where V is volume, superscript m denotes the element 
number, and N is the total number of elements in the 
model. The boundary conditions for the 3D models are 
shown in Table 1. 

Table I 
Boundary conditions 

Model face 

Right 
Left 
Top 
Bottom 
Front 
Back 

Boundary conditions 

UI = constant 
3D-UC, Ul = 0, 3D-MP, Ul = constant 
U2 = 0.02a 
U2= 0 

U3 = constan t 
3D-UC, U3 = 0, 3D-MP, U3 = constant 

3D-UC, G= 7.70 Iffil; 3D-MP, a= 50.0 >UTI. 

Table 2 
Constituent properties 

SiC 
6061-T6 

3.10 
2.67 

E (GPa) 

450 
68.9 

v 

0.17 
0.33 

We model silicon carbide (SiC) particles in the 
aluminum alloy 6061-T6. The elastic properties for the 
isotropic constituents are given in Table 2. Rate
independent plasticity is applied to the 6061-T6 alumi
num. The yield strength of 6061-T6 is 276 MPa and the 
tangent modulus is constant, 200 MPa, thereafter (linear 
hardening). All simulations are at room temperature. 
Particles and matrix are well bonded and particle 
cracking is not considered. PartiCles take the form of 
24-faced solids as shown in Fig. 2. 

2.1. 3D unit cell finite element model 

The 3D unit cell (3D-UC) model shown in Fig. 3, 
which contains a single particle at the center and has a 
17.5% volume fraction, was created to compare with the 
results of the 3D-MP model that is discussed in the next 
section. The siZe of the cubic unit cell, a = 7.70 flm, is 
dictated by the symmetry conditions, the particle size, 
and the volume fraction. Periodicity in each of the three 
coordinate directions is assumed in the 3D-UC model. 
Thus, it is only necessary to analyze' a single repeating 
unit cell. Additionally, symmetry conditions are em
ployed such that only one eighth of the unit cell needs to 
be analyzed. The model "fas constructed and meshed 
with ten-node tetrahedral elements. ~ 

2.2. 3D multi-particle finite element model 

Recognizing that DRA has complex particle distribu
tions rather than periodic ones, we now describe a 3D
MP finite element model that is intended to be more 
realistic than the 3D-UC model. The size of the cubic 

I 'I~ ~==;:::;:::;~ 
1< 8 urn >1 

< 10~rn ) 

Fig. 2. Idealized particle shape (24 faces) and size. 
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2.3. 2D finite element models 

2D finite element models are often used since the size 
of 3D models (having multiple particles) is large, which 
causes long run times, if the correct solution can be 
found at all. 2D models have been constructed for the 
minimum area fraction (9% at z = -13 ~m), called 2D-
09; the area fraction matching the volume fraction 
(17.5% at z = 15 ~m), called 2D-18; and the maximum 
area fraction (26% at z = -21 ~m), called 2D-26. The 
microstructures of these three sections are shown in Fig. 
6. These sections were meshed with six node quadratic 
triangular elements. The boundary conditions are the 
same as those applied to the left, right, top, and bottom 
faces of the 3D-MP model (Table 1) . Plane stress, 
generalized plane strain, and plane strain analyses 

o · 

o 
o 

. ~ 

. l..J 

o 
Q 

F ig. 6. Geometry of 2D sections; (a) z = - 13 ~m-model 2D-09, (b) 
z = 15 fUll-model 2D-18, (c) z = - 21 fUll - model 2D-26. 

were conducted, but only generalized plane strain results 
are presented herein because these were found to be III 
the best agreement with the 3D results [29] . 

2.4. Software and hardware 

The geometry and mesh for the 3D-MP and 3D-UC 
models were created using the SDRC J-DEAS software 
[30]. The 3D-MP model was cut three times along planes 
parallel to the z-axis. Each section was discretized using 
SDRC I-DEAS. All the models are solved using the general 
purpose ABAQUS finite element code [31). SDRC I-DEAS 

was used for all post-processing. All analyses were run 
on an IBM SP, which is a network of RISC 6000 
processor nodes. Both single and mUlti CPU nodes are 
used with memory ranging from 128 to 4000 MB, clock 
speeds from 67 to 332 MHz, and performance ratings 
from 250 to 660 MFlops. 

3. Results 

3.1. Macroscopic response 

The macroscopic true stress-true strain responses 
predicted by the 3D-MP and 3D-UC.models are shown . 
in Fig. 7. Also shown in the figure ' are the constituent 
stress-strain responses for the SiC particles and the 
606l-T6 aluminum matrix. The 3D-MP predicted 
Young's modulus of 93 .6 GPa lies between the 
Hashin- Shtrikman bounds [32} of 90 and 112 GPa. 
The 3D-MP model predicted the 0.2% offset yield 
strength of approximately 314 MPa. For comparison, 
McDanels [33] reported Young's modulus and a range 
of 0.2% yield strengths of 87 GPa and 280-310 MPa, 
respectively, for a 15% particle volume fraction and 105 
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Fig. 7. Overall stress-strain response- 3D model predictions. 
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Table 3 
Convergence study results 

Model Number of elements Number of nodes 

3D-VC l 1046 2035 
3D-VC2 2391 4278 
3D-UC3 4597 7832 
3D-VC4 11 752 19056 
3D-MPI 5170 10796 
3D-MP2 19797 35775 
3D-MP3 44997 65495 
3D-MP4 63121 92975 
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Fig. 9. Equivalent plastic strain distribution at z = -1 3 !illl predicted 
by (a) tbe 2D-09 model and (b) the 3D-MP model. 

plastic strain distributions predicted by the 3D-UC and 
3D-MP models are much different. 

The triaxial stress contours, l/3(0'1l +0'22 + 0'33), for 
the z = -21 JlIll plane as predicted by the 2D-26 and 

Equivalent plastic strain (%) GEEN (%) CPV time (s) 

7.22 
8.35 
9.34 
9.15 
2.57 
3.28 
3.12 
3.18 

16.3 65 
14.6 213 
13.2 602 
11.7 6563 
31.5 638 
22.8 7095 
18.4 34552 
16.9 59521 

3D-MP models are shown in Fig. 13 and reveal that the 
triaxial stress is concentrated in the regions where 
particles are closely spaced along the loading direction, 
such as in the top right region of the model at z = -21 
11m. High triaxial stress in the matrix can lead to void 
nucleation. It is noteworthy that there are localized 
triaxial stresses that are compressive as well as tensile, 
even though the overall deformation is elongation. The 
triaxial stress distributions predicted by the two models 
are clearly different. The maximum triaxial stresses, 
2100 MFa for 2D-26 and 1600 MPa for 3D-MP, even 

. occur at different locations. Even though 2D-26 predicts 
a higher maximum triaxial stress, that' stress occurs in a i;, 
particle. 2D-26 does not predict' the highly concentrated '. 
triaxial stress in the matrix predicted 'by 3D-MP in 'the ' 
upper right comer of Fig. 13b. . 

The distribution of the maximum principal stress for 
the Z = ,-21 11m plane is shown in Fig. 14 for the 2D-26 
and 3D-MP models. Particle fracture is often attributed 
to large tensile principal stress. Thus, Fig. 14 can be used 
to predict which particles will fracture. Again, there are 
significant differences in where the 2D-26 model and the 
3D-MP model predict the large principal stresses to 
occur. The maximum principal stresses predicted by 2D-
26 and 3D-MP are 5800 and 3000 MPa, respectively, 
These stresses occur in the matrix. However, 2D-26 does 
not predict the principal stress in the particles to be as 
high as that predicted by 3D-MP. It is interesting that 
the maximum triaxial stress and the maximum principal 
stress occur at the same location for the 3D-MP model 
and that the same is true for the 2D-26 model. 

4, Discussion 

The 3D-DC model predicts that large plastic strains 
occur between particles in the loading direction and at 
the particle comer at ~ 45° as shown in Fig. 12a. 
Although not shown, it also predicts that the maximum 
triaxial stress occurs between particles in the loading 
direction. These results correspond very well with 
predictions for composites having spherical particles 
by Song et al. [34], who used a unit cell finite element 

_J 



I ., 

H. Shen, CJ. Lissenden / Materials Science and Engineering A338 (2002) 271-281 279 

1.Dffii 

1.0[-(1 

UHl 

~ . 2..t-.!! 

7,O[-ll 

D:or 

LDHl 

3.0[-1J 

l.a&,!! 

+ Loading Direction t Loading Direction 

1, OEtll 

1:5[-1J 

1.D[-Q 

U[-ll 

I.'OE-(I 

7.U[-ll 

! .OHl 

5.0[-(1 

1:0[-(1 

:;.o[-ll 

Z.OHl 

1.0~ 

O.OC-HI 

Fig. 12. Equivalenc plastic strain distribution predicted by the 3D-UC model at (a) z = 0, (b) = = I ~m, (c) z = 3.85 ~m, (d) z = 7.7 ~. 

models are necessary to understand the material re
sponse and improve it. Finite element models of 
particle-reinforced aluminum in 2D and 3D have been 
constructed and have lead us to the followi11g conclu
sIOns. 

Equivalent plastic strain distributions in the matrix 
predicted by 2D models are significantly different from 
those predicted for the same plane by a 3D modeL While 
both 2D and 3D models predict intense localized 
deformation, the 2D models predict much more net
worked banding than does the 3D modeL 

The triaxial stress distributions, which are important 
for void nucleation in the matrix, predicted by the 2D 
models do not agree with that predicted by the 3D 
model. These models suggest void nucleation will occur 
at different locations and the 2D models underestimate 
the triaxial stress concentration in the matrix. 

The distributions of maximum principal stress, which 
are i..'11portant for particle fracture, predicted by the 2D 
models do not agree with that predicted by the 3D 
modeL These models predict different particles will 
fracture fIrst and the 2D models underestimate the 
maximum principal stress concentration in the particles. 

2D models obtained from planar sections through the 
3D-MP model give macroscopic results that are not 
representative of the material if the particle area fraction 
of the plane analyzed is not equal to the particle volume 
fraction. The area fraction ranged from 9 to 26% for a 
volume containing 41 particles and a volume fraction of 
17.5%. While this range is expected to decrease for 
models containing more particles, analyzing larger 3D 
models is impractical at this time. 

3D-UC models containing a single particle and 2D 
generalized plane strain models containing many parti-
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