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Abstract 
This paper presents an overview of an ongoing research 

and development effort at the NASA Ames Research 
Center to create an autonomous control system for an 
internal spacecraft autonomous mobile monitor. It primary 
functions are to provide crew support and perform intra- 
vehicular sensing activities by autonomously navigating 
onboard the International Space Station. We describe the 
-niission roles %id- l i igh~iekThction-d requirements for 
an autonomous mobile monitor. The mobile monitor 
prototypes, of which two are operational and one is 
actively being designed, physical test facilities used to 
perform ground testing, including a 3D micro-gravity test 
facility, and simulators are briefly described. We provide 
an overview of the autonomy framework and describe 
each of its components, including those used for 
automated planning, goal-oriented task execution, 
diagnosis, and fault recovery. A sample mission test 
scenario is also described. 

1. Introduction 
The Personal Satellite Assistant (PSA) project is a 

NASA research and development activity to design an 
intelligent, small, free-flying, remote-sensing vehicle [ 11. 
It is designed to autonomously navigating in 3-dimensions 
within a pressurized, micro-gravity environment, 
diagnosing systems in its environment, and interacting 
with people such that it is useful, easily understood, and 
easily commanded in a time-efficient manner. The primary 
operating environment target is the International Space 
Station (ISS), but other environments include the Space 
Shuttle and future manned spacecraft, such as one 
designed to carry a crew to the Moon or Mars. The PSA 
has various environmental sensors as well as audiohide0 
human-interface devices. It can be remotely commanded 
at various levels of autonomy and can be commanded 
locally by simple speech commands and human gestures. 

Mission Roles 
The two primary mission roles for the PSA are to 

improve spacecraft crew productivity and to decrease 
mission risk by serving as part of an integrated spacecraft 
health management system. 

Spacecraft health-management support role-the PSA 
will provide mobile monitoring, diagnosis, and 
communication capabilities. The PSA is being designed to 
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supplement the spacecraft’s Environmental Control Life 
and Support System (ECLSS) by measuring temperature, 
pressure, humidity, and various gas levels (e.g., oxygen, 
COJ and recording a visuai log as it traverses the 
spacecraft. The PSA will help diagnose and calibrate 
spacecraft sensors, temporarily replace faulty 
environmental sensors, generate acoustic, temperature, 
and gas concentration maps, locate gas and fluid leaks, 
filter atmospheric particles, as well as characterize heat 
sources with its infrared camera. 

Crew productivity role-the PSA will provide several 
s~pport  Capabilities inclus!iing: Temote visual monitoring 
and task recording, video and data display, payload & 
core system knowledge management, inventory tracking, 
just-in-time training, and standard PDA functions 
(schedule, notes, activity lists, calculations, etc.). These 
capabilities will directly support flight crews in the daily 
execution of payload experiment and core system tasks. 

To support the flight crews, ground crews, and payload 
scientists, the PSA can be used for monitoring and 
communication using its audio and video sensors as well 
as perform videoconferencing and display a variety data 
on its LCD screen. The PSA will allow ground crews and 
scientists to be virtually located inside the spacecraft. 
Moreover, the PSA’s autonomy capabilities will allow 
remote users to interact with the crew and spacecraft in a 
human-centered way while providing real-time data 
collection and communication. 

The ISS, for example, is an extremely ambitious 
operational environment for the crew (3-6 members) with 
tens of thousands of inventory items to track and hundreds 
of experiments to manage covering a wide spectrum of 
science disciplines. A PSA could be used to increase the 
productivity of the ISS by automating or otherwise 
reducing the crew time required to perform tasks as well 
as by enhancing or enabling science activities that would 
otherwise not be performed due to insufficient crew time. 

This paper describes select PSA high-level functional 
requirements, prototypes and their test facilities, autonomy 
technology components, and a test mission scenario. 

2. Functional Requirements 

requirements that may be of particular interest. 

~ 

The following are a few of the higher-level functional 

Requirement I-create a self-contained portable device 
with environmental sensors, computational capabilities to 
analyze the sensor data and perform diagnoses, and a 
video display. The sensors are to function inside the ISS 
and similar operating environments. The high priority 
sensors include those that measure local temperature, 
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atmospheric pressure, humidity, and gas concentrations 
including 0, and CO,. Lower priority sensors include 
visible-light still and motion cameras, thermal imager, 
Geiger counter, hiIR spectrometer, electromagnetic 
detector, RFID tag detector for inventory management, 
microphone, and a directional acoustic detector array for 
localizing emissions. 

Requirement 2-stamp the sensor data with the time and 
a 6-DOF position of the sensors relative to the 
environment. The 6 degrees-of-freedom (DOF) 
correspond to X, Y, Z translations and yaw, pitch, roll 
orientations relative to a global origin. Satisfying the 
position element is of this requirement is challenging 
retrofitting the ISS with active beacons to create a local 
GPS system is strongly discouraged except for special 
cases. Our current approach is to develop a system that 
can do self-localization using a combination of stereo- 
cameras to build depth maps and sense motion by means 
of optic flow algorithms and fuse this with data from a 6- 
DOF incrtial ineasurement unit (gyms and 
accelerometers), and proximity sensors. As necessary, we 
can mitigate risk by engineering the environment with 
passive fiducial marks as needed. 

Requirement 3-“station-keep” on command by 
maintaining a futed position and orientation relative to its 
environment. This capability is particularly important 
since the system has no “brakes.” Moreover, many tasks 
require maintaining a fvred position for a period of time. 
Note that the environment, i.e., the ISS, is continually in 
motion as it orbits the Earth and performs minor attitude 
adjustments. 

Requirement 4-navigate to various positions on 
command, avoiding static and dynamic obstacles. This 
requirement can be viewed as a corollary of requirements 
2 and 3. If the system already has the sensors, controllers, 
and actuators to determine its absolute position and 
maintain it, enabling it to navigate requires no additional 
hardware. Allowing the system to navigate to various 
positions again increases the flexibility of the system while 
decreasing the crew time required to perform a task. For 
example, searching for a leak or a measuring gas 
concentrations throughout a module can be quite time- 
consuming. The task is more efficient if it doesn’t require 
a crewmember to be present even if the task takes longer. 

Requirement 5-minimize the time required by the crew 
to operate the system while enabling crewmembers to 
command the system at the level of autonomy they desire. 
This requirement is in keeping with the general principle 
that crew time is extremely valuable. In some cases, this 
means that totally autonomous systems are preferable to 
manual systems. However, there are cases where 
autonomous systems require more crew time because the 
overhead in figuring out how to command the system to 
perform a task autonomously is greater than doing the task 
manually. Consequentially, the requirement is essentially 
for the system to be adjustably autonomous. If necessary, 
another system, such as the environmental life support 
system can command it to localize a heat source without 
requiring any crew intervention. In another task, a 
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crewmember can command it to go to a certain location 
and notify him upon arrival, at which time the 
crewmember teleoperates the system as desired. in order 
to achieve this requirement, the system must have mixed- 
initiative planning, scheduling, and execution capabilities, 
and the ability to effectively communicate with the human 
operator so the operator understands what the system is 
doing and why it is doing it, and the system can interpret 
what the operator wants and can translate it into 
commands it can execute. 

Requirement 6-perform continuous active hybrid 
temporal-variable diagnostics on its environment and 
equipment in it. We define a diagnostic system here to be 
one that determines the sets of likely system states that are 
consistent with the observations and the model of the 
system. A temporal-variable diagnostic system can use 
observations that change over time, e.g., recognize trends. 
A hybrid diagnostic system is one that can reason given 
both continuous-valued and discrete-valued observations. 
Typically, diffeiec: approaches are used fm c o i ~ t i r ~ ~ u s  
and discrete-valued observations, but many systems 
require that both be reasoned about simultaneously. An 
active diagnostic system is one that determines what 
additional observations are needed to disambiguate the 
state of the system being diagnosed. For example, 
consider a system with a HIGH-TEMPERATURE 
warning light that is on. Two possible diagnoses are that 
the system is indeed overheating or the temperature sensor 
is faulty. By verifying the temperature of the system with 
an independent measurement, such as can be provided by 
a mobile sensor, we can then determine more accurately 
which of these two diagnoses is more likely correct. One 
of the uses of this portable sensor device is as part of a 
larger Integrated Vehicle Health Management (IVHM) 
system so having this diagnostic capability can increase 
the likelihood of early detection and accurate diagnosis of 
problems without requiring crew time. 

Although there are several other requirements, these six 
functional requirements effectively constrain the space of 
possible solutions. Other notable requirements involve 
safety, reliability, and ease-of-use. In particular, a smaller 
overall size and longer operation between recharges is 
better. 

.3.BAPrstot~!ss_and Test F a m e s  _ _  - 

The PSA project is using an iterative, rapid prototyping 
approach for the development of the hardware. We began 
by developing a 4-fan prototype with a stereo camera pair 
that floats on a thin cushion of air over a granite table. 
This PSA Model 1 prototype was capable of navigating in 
three degrees of freedom @OF): X, Y, and yaw. The 
stereo camera were used to estimate position and 
velocities. 

PSA Model 2 

prototype was developed and is shown in Figure 1. 
While the Model 1 was being tested, a 6-DOF Model 2 
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Figure 1 - PSA Model 2 

The Model 2 is 12” in diameter (the targeted flight 
model diameter of 8”) and capable of position and 
velocity estimation and motion in 6-DOF (X, Y, Z, yaw, 
pitch, roll) 6-DOF position and velocity estimation is 
aZliievedusingiEstereo-pair  cameras (between I 4  
pairs). Propulsion and attitude control 6-DOF are achieved 
using 6 fan pairs located in 6 ducts. The Model 2 has a 
3.8” diag. LCD located at the center of its front lower 
hemisphere. The LCD can be used to display data 
generated locally as well as data received via its wireless 
network, e.g., text terminals, images, schematics, videos, 
and support teleconferencing. The location of these and 
additional components are depicted in Figure 2. 

- ._ - . ~- 
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Figure 2 - PSA Model 2 Annotated Drawing 

Micro-gravity Test Facility 
To test the Model 2 on Earth, a micro-gravity test 

facility was developed. The facility is roughly 36’ long, 
13’ wide, and 8’ high. This size is sufficient to contain the 
interior volume of any one ISS module. The facility 
consists of a 3-DOF (X,Y,Z) bridge-crane-like mechanism 
that supports a passive gimble that mounts the PSA, which 
permits free spinning in yaw and pitch. Currently, the 
facility supports 5-DOF motion (X, Y, Z, yaw, pitch). A 

gimbal, which permits yaw, pitch, and roll motion, will be 
mounted in the facility enabling 6-DOF motion in the near 
future. The bridge moves up and down the length of the 
facility. The trolley moves along the bridge permitting the 
trolley to move to any (X,Y) coordinate in the facility. A 
crane on the trolley raises and lowers the gimbal-mounted 
PSA. attached to it. The object to be tested is mounted in 
the gimbal and balanced so that it freely spins and doesn’t 
“wobble.” The micro-gravity test facility can be operated 
in the following four modes. The PSA Model 2 is shown 
in the facility in figure 3. 

Figure 3 - PSA Model 2 in Micro-gravity Test Facility 

The facility can be operated in several modes. The most 
significant mode enables us to simulate micro-gravity. 
Sensors located on the trolley and gimbal sense translation 
forces (X,Y,Z) acting on or generated by the gimbal 
payload. These sensor signals are intexpreted by the crane 
motors as force commands and move the payload 
accordingly. The Z-axis signal is offset to cancel the force 
of gravity. The result is that an impulse force acting on the 
payload will cause it to “float” within the facility at a 
constant velocity. When the PSA Model 2 is the payload, 
its fan power is sufficient to propel it throughout the 
facility as if it was in a micro-gravity environment. 

PSA Model 3and beyond 
While testing continues on the Model 2, the preliminary 

difference between the Models 2 and 3 is the use of two 
blowers and four reactions wheels for propulsion and 
attitude control in the Model 3. The two counter-rotating 
blowers, located at the top and bottom of the sphere, 
exhaust through actuated vents to propel the PSA and the 
reaction wheels control its orientation. Although it is 
possible to control yaw, pitch, and roll with only three 
reaction wheels, a fourth reaction wheel enables 
momentum to be shifted among the reaction wheels. 
Another difference in the Model 3 is that it will include 
additional environmental sensors, including a thermal 
imager. Though when completed the Model 3 will be 
oversized and not space qualified, it otherwise will have 
all of the capabilities planned for the flight model. 

The Model 3 design is a point design midway between 
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the Model 2 and the 8” dia. Model 4. A mockup of the 
Model 4 is shown in Figure 4. The 12” Model 3 will be 
similar in appearance and functionality to the Model 4, but 
will avoid the development of custom integrated circuits 
and other components required for the Model 4. 

Figure 4 - PSA Model 4 Concept Model Mockup 
~-~ 

Simulators 
A variety of software simulators have served a crucial 

role in the software development process. They permit 
unit testing of components being developed as well. as 
system integration tests when software changes are made. 
Our primary simulator is configurable so that it can 
replace various hardware and software components as 
needed for testing. 

the simultaneous operation of multiple PSAs. In the Figure 
5 simulator screenshot, a PSA is shown with a 
crewmember in the ISS U.S. Lab “Destiny” module. 

In addition, this simulator has a scripting language that 
can be used to control the simulation. We have added an 
environment simulator to it to simulate fires, pressure 
leaks, and other faults to test the diagnostic capabilities of 
the PSA and its autonomous control system. We use the 
same autonomy software, often executing similar 
scenarios, to control the physical PSA prototypes in the 
physical simulators. These scenarios are helpful in testing 
the fidelity of the software simulators as well as the PSA 
hardware and software. 

4. Autonomy Framework 
An autonomy framework designed to address the 

previously discussed operational requirements has been 
developed and is depicted in Figure 6. The same software 
is used to command the PSA Model 1 and Model 2 as well 
as the PSA in simulation. Care was taken to design and 
implement this framework so that it is applicable to a wide 
range of free-flying vehicles. 

The user can issue commarids to the PSA-througEthe 
Crew GUT. Also, the user can issue verbal commands to 
and receive spoken notifications generated by the PSA via 
a headset. Other external systems, including other PSA’s, 
can directly and simultaneously issue commands to the 
PSA, which will attempt to resolve any conflicts. Finally, 
the PSA itself can generate commands in keeping with its 
high-level goals and periodic task schedule. 

The PSA autonomy framework is comprised of a 
number of control elements, which are represented as 
boxes in Figure 6. The current implementation is 
distributed over three processors, as indicated by the 
dashed boxes, which are connected by wireless Ethernet. 
Each of these three subsystems and the control elements it 
contains is briefly discussed below. Note that the 
framework design and many of its elements draw their 
heritage from the model-based, goal-achieving, 
temporally-flexible NASA “Remote Agent” autonomy 
software flight-validated on the Deep Space One 
spacecraft in 1999 [21. 

__ ~~~~- _ ~ ~ _  

Figure 5 - 3D simulator screenshot of PSA in ISS 

We have recently integrated our PSA-specific simulator 
with a general-purpose 3D simulator, which provides 3D- 
rendered graphics and object dynamics. The current 
version is a synthesis of the graphics provided by the SGI 
Open Inventorm 3D toolkit built on top of Open GL@ and 
the CMLabs Vortex rigid-body physics simulator. By 
providing VRML and collision models of the ISS and 
objects within it including a PSA, we can navigate the 
PSA throughout the ISS and interact with simulated 
crewmembers, payloads, and objects that behave with 
realistic dynamics. The simulator is capable of supporting 

with crewmember 

Onboard Control System Elements 
The onboard control system is responsible for sensing, 

sensor analysis (e.g., object and fault recognition), state 
- -  

(e.g., motor currents), and real-time reactive control (e.g., 
obstacle avoidance), generally with sub-second latency. 
This system is designed to enable local operation of the 
PSA even when communication with the off-board system 
is lost, which may occur during a flight emergency. 

Local Path Planner-generates a trajectory between 
two waypoints that takes into account locally sensed 
obstacles When given a third waypoint, the trajectory 
passes through the second waypoint. The local path 
planner performs limited trajectory repair in case of a path 
plan failure, e.g., blocked path. 

High-level controllers-translates the trajectory into a 
sequence of 6-DOF (position, velocity, and acceleration) 
setpoints for the low-level controllers. 
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Figure 6 - PSA Autonomv Framework 

Low-level controllers-translates the setpoints into 
motor force commands to achieve the specified PSA 
motion. 

PSA Hardware-the sensors and actuators with their 
associated drivers. These include fan motor controllers, 
stereo cameras, environment sensors, proximity sensors, 
and an LCD. 

Monitors-signal processing loops that abstract the data 
generated by the sensors. They run from being as simple 
as indicating that a proximity sensor has triggered to 
continually calculating 6-DOF positions and velocities by 
fusing the stereo camera, 6-DOF inertial sensors, and 
proximity sensors. 

Communication Manager-responsible for managing 
message -trdfE m e x e c u t i n g  TppTopriate message 
handlers. Serves same role in both off-board systems. 

Off-board Autonomy System 
The off-board autonomy system is responsible for high- 

level autonomous control including inter-agent 
communication and coordination (including humans), goal 
management, decomposing high-level tasks (planning) 
into commands that can be executed by the onboard 
control system, e.g., waypoint commands, constraining 
task times (scheduling), command sequencing (plan 
execution), and reasoning about sensor data provided by 
the onboard control system, e.g., for diagnosis, and for 
plan repair, e.g., onboard control system is unable to 
achieve a waypoint. Architecturally, this system could be 
integrated onboard the PSA. It is off-board to permit 

increased computational power that is not constrained by 
onboard size, power, and communication constraints. The 
off-board processor also can be conveniently located in 
the PSA docking bay. 

Declarative Models-ontains the library of constraints 
used by the Plan Database that define a set of coordinated 
state machines. A constraint may simply specify that Task 
A must precede Task B by at least 10 seconds but not 
more than 20 seconds. The constraint may also 
functionally relate the parameters of tasks A and B as well 
as specify preconditions as to when it applies. 

Plan Database-ontains the plan being executed and 
is responsible for automated sub-goaling of tasks, Le., 
determining the set of sub-tasks required to achieve a task, 
and for maintaining flexible plans, i.e., the propagation of 

Tailid-task v a r i a ~ e - ~ o m a i n s - t h a t - ~ ~ m a l l y t . e s t r i c ~ d  
without violating a constraint. This has been implemented 
using the EUROPA plan database developed at the NASA 
Ames Research Center. EUROPA is a derivative of the 
model-based, temporally-flexible Remote Agent Plan 
Database described in [3], an earlier version of which was 
demonstrated on Deep Space One [2]. The plan database 
represents a temporal, constraint-based network of tokens 
that defines the past, the present, and flexibly-defined 
future states and actions of the system. Each token 
represents the “state” of a state variable for a period of 
time and the tasks that achieve or determine this state. 
Each token defies a start, end, and duration temporal 
variable, each with an upper and lower bound, as well as 
the procedure (predicate and arguments) invoked when the 
token is “executed.” The plan database supports multiple 
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timelines with constraints on and between tokens. If none 
of the constraints are violated for a given instantiation of 
the plan database, the database is defined to be consistent. 

Deliberative Planner-schedules outstanding tasks, and 
the related sub-tasks generated by the plan database, as 
well as makes decisions regarding constraining the 
domains of task variables to achieve specified goals 
during a specified period of time. This element is 
implemented by a variation of the Remote Agent Model- 
based Planner/Scheduler described in [3] and as specified 
by the Intelligent Distributed Execution Agent (IDEA) 
architecture [4]. More specifically, the Deliberative 
Planner @P) is responsible for generating a consistent, 
flexible plan in the plan database given a start and end 
horizon time bound, an initial state of the timelines at the 
start time, and a set of goals. A flexible plan is loosely 
defined as a set of timelines, each consisting of tokens on 
each timeline, token order constraints that prevent 
overlapping tokens on the same timeline, and token 
procedure variable constraints. Plan flexibility is 
characterized by the set of decisions yet to be made that 
result in a coosisteot plan. A plan identification function is 
used to determine which of the outstanding decisions must 
be made in order to have a valid plan. The search process 
and decision selection priorities are determined in part by 
user-defined heuristics. Complex plans can require 
considerable computation time. The proper set of 
heuristics can dramatically reduce the time required. The 
DP is called to initialize the plan database and also is 
called during plan execution as specified by the plan being 
executed. It is typically called to plan for a period of 
significant duration sufficiently in the future such that the 
DP will complete prior to the start time of this period, but 
not so far in the future that the initial state at the future 
start horizon is not known with high confidence. 

Reactive Planner-responsible for insuring that the Plan 
Database is in a state such that the tasks to be executed at 
a specified time are unambiguous. It has been 
implemented as described in [4]. In many respects, as 
implemented the Reactive Planner (RP) is very similar to 
the DP described above, although that not need be the 
case. The salient differences between the two planners are: 

the Rp reasons over a shorter, more immediate time 
horizon, typically ending just after the current execution 
time ~ 

the RP plan identification function is more restrictive so 
decisions that were postponed by the DP must now be 
made; the time allocated for planning is relatively very 
short, typically less than a few seconds, and cannot be 
exceeded without a fault 
in the event of a plan deliberation or execution failure, 
the RP repairs the plan locally or if necessary generates 
a standby plan to safe the PSA and calling the DP. Plan 
repair may be necessary for several reasons including 
tasks completing too late or too early, task return state 
variables posted to the Plan Database make it 
inconsistent, and new tasks have been added to the Plan 
Database for immediate execution that cause a conflict. 

Plan Experts-computational procedures, called by a 
planner, that return &formation-used by the planne; to 

make planning decisions, typically regarding token 
variable values. For example, a route planner expert is 
cailed by either the deiiberative or reactive pianner to 
determine the time, route, and energy required to move 
between two points in the environment or to cover a 
certain space. The route planner expert has access to a 
global map that can be updated with sensed obstacles. A 
route plan request is typically made by the deliberative 
planner as part of developing the initial plan, but may also 
be called by the reactive planner to develop an alternate 
route if necessary, e.g., the route is blocked or there is 
insufficient energy to complete the current plan. In 
addition, a user may initiate a request to answer a 
hypothetical question about a particular goal. 

Plan Runner (command sequencer)-executes tokens in 
the plan database at the appropriate time. Executing a 
token involves calling the procedure with its arguments 
defined by the token, updating the plan database with the 
token return values when the procedure terminates, 
constraining the plan database so that planners only have 
limited ability to change the past, and calling the Reactive 
Planner, as described above, as needed to update the plan 
database: The plan runner implemented is described in 
more depth in [4]. 

State Estimator-abstracts and infers a consistent set of 
state variables with respect to a system model given the 
discrete and continuous sensor data provided over time. 
Some of these state variables, such as the health of a 
sensor, may not be directly measurable. To accomplish 
this we are using the model-based L2 state estimation 
system, which is based on algorithms described in [5] and 
is an extension of the Livingstone system that was a 
component of the Remote Agent [2]. In certain instances it 
may be necessary to infer that a sensor is not healthy in 
order to achieve a set of state values that are consistent 
with the system model. In other cases it may be necessary 
to collect additional data to disambiguate between 
conflicting possible inferences for given sensor data. 

GoaUDialogue Manager-acts as an arbiter between the 
autonomous control system and other agents, including 
people. It retains state regarding its interaction with the 
other agents, e.g., recalls the subject of a previous 
sentence spoken by the user. As an arbiter, this element 
serves two roles: a goal manager and a dialogue manager. 
The goal manager essentially acts as a meta-planner for 
the deliberative planner. As stated above, the deliberative 
planner requires a start and end horizon time bounds,-a 
initial state of the timelines at the start time, and a set of 
goals. The goal manager interacts with the user to 
determine this information. This may include negotiation 
of goals when all goals are not achievable or supporting 
mixed-initiative planning for hypothetical situations. The 
dialogue manager is responsible for acting as an intelligent 
interface with other agents. When interacting with people, 
it can converse with a person speaking a restricted natural 
language, responding as appropriate to spoken commands 
and queries. It inserts, changes or removes tokens in the 
Plan Database or responds to user queries by querying the 
planner experts and Plan Database. Currently, the 
integrated Dialogue Manager is simplistic. A more 
sophisticated dialogue manager tested on a stand-alone 
simulator is presented in [6]. The integration of such a 
dialogue manager remains as future work. 
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Figure 7 - Sample PSA Test Mission Scenario 

Off-board User In t e~ace  System 
The user-interface system enables the user to interact 

with the PSA by commanding and displaying information. 
It provides situational awareness, sensor-data views, plan 
views, and commanding capabilities. This includes 
interfaces for interactively creating and modifying the plan 
as well as teleoperation. Our intent is for this interface to 
support operation at various autonomy levels that can be 
dynamically changed and range from teleoperation to 
high-level autonomous control. 

Voice Recognition and Synthesis-provides speech-to- 
text and text-to-speech conversions. The voice recognition 
subsystem essentially converts an audio signal into a 
parsed text stream. Conversely, the voice synthesis 
subsystem essentially converts text commanded by the 
Dialogue Manager or the Plan Runner into speech via the 
user headset or remote speakers. We use commercial 
products to accomplish these tasks and plan to upgrade 
them as improvements are made. 

Teleoperation Manager-zxecutes supported user 
commands and coverts GUI-generated commands into 
commands executable by the Autonomy system, e.g., plan 

Xiting. -.XISO,- it s p p o r t s  two force-feedback 3-DOF 
joysticks or one 6-DOF joystick for teleoperation in 
position, velocity, or acceleration modes. 

Crew GUI-displays the sensor data, renders the PSA 
in a 3D model of its environment, displays plans, provides 
plan editors for both PSA task and path plans, and 
provides for direct commanding of the PSA. Included in 
the displayed sensor data is the real-time video stream 
generated by the PSA. In addition, by using a camera 
mounted on the Crew GUI display, the Crew GUI 
supports teleconferencing. 

5. Sample Mission Test Scenario 
In order to measure the system capabilities with respect 

to the operational requirements and to identify the 
challenging problems, several scenarios have been 

developed. These scenarios are designed to execute in 
simulation as well as with the physical prototypes in the 
test facilities. These scenarios perform a valuable role in 
measuring our current capability levels and are also useful 
for regression testing. As the capabilities of the PSA 
including its autonomous control system improve, the 
complexity scenarios are increased effectively raising the 
performance bar. 

In this section we discuss a scenario, summarized in 
Figure 7, in which the PSA, an autonomous 
Environmental Control Life Support System agent, 
ECLSS, and a crewmember participate in the diagnosis of 
and recovery from an ISS module fault. In this scenario, 
ECLSS is autonomously controlled by a high-level 
autonomous system similar to the one used by the PSA as 
shown in Figure 6 (the main difference is that ECLSS 
does not use a path planner). The scenario has two 
variations depending on the cause of the initially sensed 
anomaly. This scenario is used to demonstrate: 

Integrated Vehicle Health Management 
Cooperative multi-agent planning and execution 
Generation and execution of a near-optimal 6-DOF 

Stereo vision-hed 6-DQF lacalizatian and map - . . 

route plans 

registration 

The scenario begins with the PSA station keeping at its 
dock when a fixed temperature sensor at rack 5, locker 1 
in the ISS U.S. Lab module signals a high temperature to 
the ECLSS. The ECLSS attempts to diagnose the problem 
and is not able to determine whether the sensor is 
defective or if the station system is actually overheating 
without additional information. In our case, we have 
specified that each case is equally likely. So in order to 
disambiguate the system state, ECLSS commands the PSA 
agent to go to the fixed sensor location and verify the 
temperature at that location by sending the PSA agent a 
sense-at-location goal. The PSA agent then reactively 
deliberates (Le., the reactive planner calls the deliberative 
planner in response to the new goal). The deliberative 
planner decomposes the goal into a move-to subgoal 
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followed by a subgoal to maintain position while the 
temperature is sensed. The move-to subgoal then 
decomposes into a path-pianning subgoai foiiowed by an 
execute path subgoal. All of these goals are flexibly 
scheduled. When the path-planning goal is executed, a 
path from the current location to the desired location is 
generated, where a path consists of a sequence of 
waypoints that avoids known obstacles and no-fly zones. 
When the path is scheduled to execute, the PSA agent 
sends it to the PSA subsystem, which executes each 
waypoint. As needed, the trajectory between waypoints is 
dynamically changed to avoid obstacles detected en route. 
When it arrives at the destination, the PSA subsystem 
c o n f i i s  that the path was completed, or in a failure case 
it  cannot be achieved, with the PSA agent. ?SA agent then 
commands the PSA subsystem to station keep for a period 
while the PSA measures the temperature. After that 
period, the top-level PSA agent sense-at-location goal 
completes by returning the sensed temperature to ECLSS. 
ECLSS then compares the two sensor readings. The two 
cases where they agree or disagree are listed below. The 
preceding activity is summarized by steps 1-5 in Figure 7. 

If the PSA and ECLSS temperature sensors disagree, 
the ECLSS sbte esthatcr iders that the fixed 
temperature sensor has failed and requests that a 
crewmember repair it by sending a message to the ECLSS 
operator user interface requesting the repair and waits for 
confirmation that the crewmember has repaired the sensor. 
When the crewmember conf i i s ,  the fixed sensor value 
returns to nominal. Meanwhile, ECLSS tells PSA to 
measure the temperature again at the same location and 
compares the return value to the value read from the fixed 
sensor. Since they now agree, the ECLSS state estimator 
infers that the fned  sensor is healthy and the PSA is 
commanded to its dock completing the scenario (steps 6a- 
1 la). 

However, if the PSA and ECLSS temperature sensors 
agree, then the ECLSS state estimator infers that a nearby 
locker is overheating, but which one is unknown. ECLSS 
gives a goal to the PSA agent to direct it to locate the 
source of the heat. The PSA agent decomposes this goal to 
send a command to the PSA subsystem that causes it to 
execute its heat source seeking behavior. This behavior 
has the PSA fust spin fully around, scanning the 
environment with its thermal imager. Once the scan is 
complete, the PSA points to the largest magnitude heat 
source and moves toward it. When the PSA gets as close 
as it can to the heat source, the PSA agent goal returns the 

+cation and-temperature measuremen& to -ECLSS.-€n eur 
case, the heat source is actually in a neighboring rack: rack 
4, locker 3, which the ECLSS state estimator infers. 
ECLSS then commands the system operating in the locker 
to power-off, which reduces the (simulated) heat in the 
area. The ECLSS fixed sensor then reads a nominal 
temperature. ECLSS sends the PSA agent a goal to 
measure the temperature again to verify the temperature is 
nominal. The PSA measures the temperature and returns 
the temperature to ECLSS. ECLSS infers that the locker 
temperature is nominal and releases the PSA from further 
requests. The PSA then returns to its dock completing the 
scenario (steps 6b-14b). 

6. Future Work 
Future research and development efforts will focus on 

system-level active hybrid diagnosis, fleet operahons 

(several PSAs working together to handle environmental 
problems) as well as autonomous operations with 
spacecraft command and control systems (instead of 
human commanding/teleoperating). Long-term functional 
upgrades may include adding effectors, e.g., arms, capable 
of control panel operation, payload maintenance, re- 
supply, and repair. Consider a mission where a spacecraft 
is in orbit unoccupied. A larger, 4-armed PSA could be 
used to monitor and maintain the flight worthiness of the 
spacecraft and reduce mission risk. 

7. summary 
We presented the ongoing research and development 

effort to design the autonomous control software for an 
internal spacecraft autonomous mobile monitor, which is 
also applicable to a wide range of free-flying vehicles. We 
discussed the high-level functional requirements of the 
project followed by a description of the PSA prototypes of 
increasing complexity and fidelity, as well as the micro- 
gravity test facility, which allows us to fly the PSA 
prototypes on the ground as if they were onboard the ISS. 
The autonomy framework for intelligent flight vehicle 
control being developed and tested as partof this project 
was then presented and its components detailed. A sample 
mission scenario being used to test the prototypes and the 
autonomous control system was also outlined. We 
concluded with a brief discussion of the future work. 
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