
An Autonomous Control System for an
Intra-Vehicular Spacecraft Mobile Monitor Prototype

Gregory A. Dorais, Salvatore D. Desiano’ Yuri Gawdiak, and Keith Nicewarner’
NASA Ames Research Center

MS 269-2, Moffett Field, CA, 94035, USA
gdorais@arc.nasa.gov, sdesiano@arc.nasa.gov, ygawdiak@hq.nasa.gov, hcewar@arc.nasa.gov

Keywords Artificial Intelligence, Space Autonomy, Space
Robotics, Planning, Diagnosis, International Space Station,

Integrated Vehicle Health Management

Abstract
This paper presents an overview of an ongoing research

and development effort at the NASA Ames Research
Center to create an autonomous control system for an
internal spacecraft autonomous mobile monitor. It primary
functions are to provide crew support and perform intra-
vehicular sensing activities by autonomously navigating
onboard the International Space Station. We describe the
-niission roles %id- l i igh~iekThction-d requirements for
an autonomous mobile monitor. The mobile monitor
prototypes, of which two are operational and one is
actively being designed, physical test facilities used to
perform ground testing, including a 3D micro-gravity test
facility, and simulators are briefly described. We provide
an overview of the autonomy framework and describe
each of its components, including those used for
automated planning, goal-oriented task execution,
diagnosis, and fault recovery. A sample mission test
scenario is also described.

1. Introduction
The Personal Satellite Assistant (PSA) project is a

NASA research and development activity to design an
intelligent, small, free-flying, remote-sensing vehicle [11.
It is designed to autonomously navigating in 3-dimensions
within a pressurized, micro-gravity environment,
diagnosing systems in its environment, and interacting
with people such that it is useful, easily understood, and
easily commanded in a time-efficient manner. The primary
operating environment target is the International Space
Station (ISS), but other environments include the Space
Shuttle and future manned spacecraft, such as one
designed to carry a crew to the Moon or Mars. The PSA
has various environmental sensors as well as audiohide0
human-interface devices. It can be remotely commanded
at various levels of autonomy and can be commanded
locally by simple speech commands and human gestures.

Mission Roles
The two primary mission roles for the PSA are to

improve spacecraft crew productivity and to decrease
mission risk by serving as part of an integrated spacecraft
health management system.

Spacecraft health-management support role-the PSA
will provide mobile monitoring, diagnosis, and
communication capabilities. The PSA is being designed to

~ -~ -

QSS Group, Inc. 1

supplement the spacecraft’s Environmental Control Life
and Support System (ECLSS) by measuring temperature,
pressure, humidity, and various gas levels (e.g., oxygen,
COJ and recording a visuai log as it traverses the
spacecraft. The PSA will help diagnose and calibrate
spacecraft sensors, temporarily replace faulty
environmental sensors, generate acoustic, temperature,
and gas concentration maps, locate gas and fluid leaks,
filter atmospheric particles, as well as characterize heat
sources with its infrared camera.

Crew productivity role-the PSA will provide several
s~pport Capabilities inclus!iing: Temote visual monitoring
and task recording, video and data display, payload &
core system knowledge management, inventory tracking,
just-in-time training, and standard PDA functions
(schedule, notes, activity lists, calculations, etc.). These
capabilities will directly support flight crews in the daily
execution of payload experiment and core system tasks.

To support the flight crews, ground crews, and payload
scientists, the PSA can be used for monitoring and
communication using its audio and video sensors as well
as perform videoconferencing and display a variety data
on its LCD screen. The PSA will allow ground crews and
scientists to be virtually located inside the spacecraft.
Moreover, the PSA’s autonomy capabilities will allow
remote users to interact with the crew and spacecraft in a
human-centered way while providing real-time data
collection and communication.

The ISS, for example, is an extremely ambitious
operational environment for the crew (3-6 members) with
tens of thousands of inventory items to track and hundreds
of experiments to manage covering a wide spectrum of
science disciplines. A PSA could be used to increase the
productivity of the ISS by automating or otherwise
reducing the crew time required to perform tasks as well
as by enhancing or enabling science activities that would
otherwise not be performed due to insufficient crew time.

This paper describes select PSA high-level functional
requirements, prototypes and their test facilities, autonomy
technology components, and a test mission scenario.

2. Functional Requirements

requirements that may be of particular interest.

~

The following are a few of the higher-level functional

Requirement I-create a self-contained portable device
with environmental sensors, computational capabilities to
analyze the sensor data and perform diagnoses, and a
video display. The sensors are to function inside the ISS
and similar operating environments. The high priority
sensors include those that measure local temperature,

I

atmospheric pressure, humidity, and gas concentrations
including 0, and CO,. Lower priority sensors include
visible-light still and motion cameras, thermal imager,
Geiger counter, hiIR spectrometer, electromagnetic
detector, RFID tag detector for inventory management,
microphone, and a directional acoustic detector array for
localizing emissions.

Requirement 2-stamp the sensor data with the time and
a 6-DOF position of the sensors relative to the
environment. The 6 degrees-of-freedom (DOF)
correspond to X, Y, Z translations and yaw, pitch, roll
orientations relative to a global origin. Satisfying the
position element is of this requirement is challenging
retrofitting the ISS with active beacons to create a local
GPS system is strongly discouraged except for special
cases. Our current approach is to develop a system that
can do self-localization using a combination of stereo-
cameras to build depth maps and sense motion by means
of optic flow algorithms and fuse this with data from a 6-
DOF incrtial ineasurement unit (gyms and
accelerometers), and proximity sensors. As necessary, we
can mitigate risk by engineering the environment with
passive fiducial marks as needed.

Requirement 3-“station-keep” on command by
maintaining a futed position and orientation relative to its
environment. This capability is particularly important
since the system has no “brakes.” Moreover, many tasks
require maintaining a fvred position for a period of time.
Note that the environment, i.e., the ISS, is continually in
motion as it orbits the Earth and performs minor attitude
adjustments.

Requirement 4-navigate to various positions on
command, avoiding static and dynamic obstacles. This
requirement can be viewed as a corollary of requirements
2 and 3. If the system already has the sensors, controllers,
and actuators to determine its absolute position and
maintain it, enabling it to navigate requires no additional
hardware. Allowing the system to navigate to various
positions again increases the flexibility of the system while
decreasing the crew time required to perform a task. For
example, searching for a leak or a measuring gas
concentrations throughout a module can be quite time-
consuming. The task is more efficient if it doesn’t require
a crewmember to be present even if the task takes longer.

Requirement 5-minimize the time required by the crew
to operate the system while enabling crewmembers to
command the system at the level of autonomy they desire.
This requirement is in keeping with the general principle
that crew time is extremely valuable. In some cases, this
means that totally autonomous systems are preferable to
manual systems. However, there are cases where
autonomous systems require more crew time because the
overhead in figuring out how to command the system to
perform a task autonomously is greater than doing the task
manually. Consequentially, the requirement is essentially
for the system to be adjustably autonomous. If necessary,
another system, such as the environmental life support
system can command it to localize a heat source without
requiring any crew intervention. In another task, a

-- -

crewmember can command it to go to a certain location
and notify him upon arrival, at which time the
crewmember teleoperates the system as desired. in order
to achieve this requirement, the system must have mixed-
initiative planning, scheduling, and execution capabilities,
and the ability to effectively communicate with the human
operator so the operator understands what the system is
doing and why it is doing it, and the system can interpret
what the operator wants and can translate it into
commands it can execute.

Requirement 6-perform continuous active hybrid
temporal-variable diagnostics on its environment and
equipment in it. We define a diagnostic system here to be
one that determines the sets of likely system states that are
consistent with the observations and the model of the
system. A temporal-variable diagnostic system can use
observations that change over time, e.g., recognize trends.
A hybrid diagnostic system is one that can reason given
both continuous-valued and discrete-valued observations.
Typically, diffeiec: approaches are used fm c o i ~ t i r ~ ~ u s
and discrete-valued observations, but many systems
require that both be reasoned about simultaneously. An
active diagnostic system is one that determines what
additional observations are needed to disambiguate the
state of the system being diagnosed. For example,
consider a system with a HIGH-TEMPERATURE
warning light that is on. Two possible diagnoses are that
the system is indeed overheating or the temperature sensor
is faulty. By verifying the temperature of the system with
an independent measurement, such as can be provided by
a mobile sensor, we can then determine more accurately
which of these two diagnoses is more likely correct. One
of the uses of this portable sensor device is as part of a
larger Integrated Vehicle Health Management (IVHM)
system so having this diagnostic capability can increase
the likelihood of early detection and accurate diagnosis of
problems without requiring crew time.

Although there are several other requirements, these six
functional requirements effectively constrain the space of
possible solutions. Other notable requirements involve
safety, reliability, and ease-of-use. In particular, a smaller
overall size and longer operation between recharges is
better.

.3.BAPrstot~!ss_and Test F a m e s _ _ -

The PSA project is using an iterative, rapid prototyping
approach for the development of the hardware. We began
by developing a 4-fan prototype with a stereo camera pair
that floats on a thin cushion of air over a granite table.
This PSA Model 1 prototype was capable of navigating in
three degrees of freedom @OF): X, Y, and yaw. The
stereo camera were used to estimate position and
velocities.

PSA Model 2

prototype was developed and is shown in Figure 1.
While the Model 1 was being tested, a 6-DOF Model 2

2

Figure 1 - PSA Model 2

The Model 2 is 12” in diameter (the targeted flight
model diameter of 8”) and capable of position and
velocity estimation and motion in 6-DOF (X, Y, Z, yaw,
pitch, roll) 6-DOF position and velocity estimation is
aZliievedusingiEstereo-pair cameras (between I 4
pairs). Propulsion and attitude control 6-DOF are achieved
using 6 fan pairs located in 6 ducts. The Model 2 has a
3.8” diag. LCD located at the center of its front lower
hemisphere. The LCD can be used to display data
generated locally as well as data received via its wireless
network, e.g., text terminals, images, schematics, videos,
and support teleconferencing. The location of these and
additional components are depicted in Figure 2.

- ._ - . ~-

Microphone
\

stereo
Camera

,Gimbal
Mount r

Sensor

Figure 2 - PSA Model 2 Annotated Drawing

Micro-gravity Test Facility
To test the Model 2 on Earth, a micro-gravity test

facility was developed. The facility is roughly 36’ long,
13’ wide, and 8’ high. This size is sufficient to contain the
interior volume of any one ISS module. The facility
consists of a 3-DOF (X,Y,Z) bridge-crane-like mechanism
that supports a passive gimble that mounts the PSA, which
permits free spinning in yaw and pitch. Currently, the
facility supports 5-DOF motion (X, Y, Z, yaw, pitch). A

gimbal, which permits yaw, pitch, and roll motion, will be
mounted in the facility enabling 6-DOF motion in the near
future. The bridge moves up and down the length of the
facility. The trolley moves along the bridge permitting the
trolley to move to any (X,Y) coordinate in the facility. A
crane on the trolley raises and lowers the gimbal-mounted
PSA. attached to it. The object to be tested is mounted in
the gimbal and balanced so that it freely spins and doesn’t
“wobble.” The micro-gravity test facility can be operated
in the following four modes. The PSA Model 2 is shown
in the facility in figure 3.

Figure 3 - PSA Model 2 in Micro-gravity Test Facility

The facility can be operated in several modes. The most
significant mode enables us to simulate micro-gravity.
Sensors located on the trolley and gimbal sense translation
forces (X,Y,Z) acting on or generated by the gimbal
payload. These sensor signals are intexpreted by the crane
motors as force commands and move the payload
accordingly. The Z-axis signal is offset to cancel the force
of gravity. The result is that an impulse force acting on the
payload will cause it to “float” within the facility at a
constant velocity. When the PSA Model 2 is the payload,
its fan power is sufficient to propel it throughout the
facility as if it was in a micro-gravity environment.

PSA Model 3and beyond
While testing continues on the Model 2, the preliminary

difference between the Models 2 and 3 is the use of two
blowers and four reactions wheels for propulsion and
attitude control in the Model 3. The two counter-rotating
blowers, located at the top and bottom of the sphere,
exhaust through actuated vents to propel the PSA and the
reaction wheels control its orientation. Although it is
possible to control yaw, pitch, and roll with only three
reaction wheels, a fourth reaction wheel enables
momentum to be shifted among the reaction wheels.
Another difference in the Model 3 is that it will include
additional environmental sensors, including a thermal
imager. Though when completed the Model 3 will be
oversized and not space qualified, it otherwise will have
all of the capabilities planned for the flight model.

The Model 3 design is a point design midway between

~ € - t h e - M d e 4 3 i s mxwingcentpletien.4ne Betable - - - - -- -- -

3

the Model 2 and the 8” dia. Model 4. A mockup of the
Model 4 is shown in Figure 4. The 12” Model 3 will be
similar in appearance and functionality to the Model 4, but
will avoid the development of custom integrated circuits
and other components required for the Model 4.

Figure 4 - PSA Model 4 Concept Model Mockup
~-~

Simulators
A variety of software simulators have served a crucial

role in the software development process. They permit
unit testing of components being developed as well. as
system integration tests when software changes are made.
Our primary simulator is configurable so that it can
replace various hardware and software components as
needed for testing.

the simultaneous operation of multiple PSAs. In the Figure
5 simulator screenshot, a PSA is shown with a
crewmember in the ISS U.S. Lab “Destiny” module.

In addition, this simulator has a scripting language that
can be used to control the simulation. We have added an
environment simulator to it to simulate fires, pressure
leaks, and other faults to test the diagnostic capabilities of
the PSA and its autonomous control system. We use the
same autonomy software, often executing similar
scenarios, to control the physical PSA prototypes in the
physical simulators. These scenarios are helpful in testing
the fidelity of the software simulators as well as the PSA
hardware and software.

4. Autonomy Framework
An autonomy framework designed to address the

previously discussed operational requirements has been
developed and is depicted in Figure 6. The same software
is used to command the PSA Model 1 and Model 2 as well
as the PSA in simulation. Care was taken to design and
implement this framework so that it is applicable to a wide
range of free-flying vehicles.

The user can issue commarids to the PSA-througEthe
Crew GUT. Also, the user can issue verbal commands to
and receive spoken notifications generated by the PSA via
a headset. Other external systems, including other PSA’s,
can directly and simultaneously issue commands to the
PSA, which will attempt to resolve any conflicts. Finally,
the PSA itself can generate commands in keeping with its
high-level goals and periodic task schedule.

The PSA autonomy framework is comprised of a
number of control elements, which are represented as
boxes in Figure 6. The current implementation is
distributed over three processors, as indicated by the
dashed boxes, which are connected by wireless Ethernet.
Each of these three subsystems and the control elements it
contains is briefly discussed below. Note that the
framework design and many of its elements draw their
heritage from the model-based, goal-achieving,
temporally-flexible NASA “Remote Agent” autonomy
software flight-validated on the Deep Space One
spacecraft in 1999 [21.

__ ~~~~- _ ~ ~ _

Figure 5 - 3D simulator screenshot of PSA in ISS

We have recently integrated our PSA-specific simulator
with a general-purpose 3D simulator, which provides 3D-
rendered graphics and object dynamics. The current
version is a synthesis of the graphics provided by the SGI
Open Inventorm 3D toolkit built on top of Open GL@ and
the CMLabs Vortex rigid-body physics simulator. By
providing VRML and collision models of the ISS and
objects within it including a PSA, we can navigate the
PSA throughout the ISS and interact with simulated
crewmembers, payloads, and objects that behave with
realistic dynamics. The simulator is capable of supporting

with crewmember

Onboard Control System Elements
The onboard control system is responsible for sensing,

sensor analysis (e.g., object and fault recognition), state
- -

(e.g., motor currents), and real-time reactive control (e.g.,
obstacle avoidance), generally with sub-second latency.
This system is designed to enable local operation of the
PSA even when communication with the off-board system
is lost, which may occur during a flight emergency.

Local Path Planner-generates a trajectory between
two waypoints that takes into account locally sensed
obstacles When given a third waypoint, the trajectory
passes through the second waypoint. The local path
planner performs limited trajectory repair in case of a path
plan failure, e.g., blocked path.

High-level controllers-translates the trajectory into a
sequence of 6-DOF (position, velocity, and acceleration)
setpoints for the low-level controllers.

4

Figure 6 - PSA Autonomv Framework

Low-level controllers-translates the setpoints into
motor force commands to achieve the specified PSA
motion.

PSA Hardware-the sensors and actuators with their
associated drivers. These include fan motor controllers,
stereo cameras, environment sensors, proximity sensors,
and an LCD.

Monitors-signal processing loops that abstract the data
generated by the sensors. They run from being as simple
as indicating that a proximity sensor has triggered to
continually calculating 6-DOF positions and velocities by
fusing the stereo camera, 6-DOF inertial sensors, and
proximity sensors.

Communication Manager-responsible for managing
message -trdfE m e x e c u t i n g TppTopriate message
handlers. Serves same role in both off-board systems.

Off-board Autonomy System
The off-board autonomy system is responsible for high-

level autonomous control including inter-agent
communication and coordination (including humans), goal
management, decomposing high-level tasks (planning)
into commands that can be executed by the onboard
control system, e.g., waypoint commands, constraining
task times (scheduling), command sequencing (plan
execution), and reasoning about sensor data provided by
the onboard control system, e.g., for diagnosis, and for
plan repair, e.g., onboard control system is unable to
achieve a waypoint. Architecturally, this system could be
integrated onboard the PSA. It is off-board to permit

increased computational power that is not constrained by
onboard size, power, and communication constraints. The
off-board processor also can be conveniently located in
the PSA docking bay.

Declarative Models-ontains the library of constraints
used by the Plan Database that define a set of coordinated
state machines. A constraint may simply specify that Task
A must precede Task B by at least 10 seconds but not
more than 20 seconds. The constraint may also
functionally relate the parameters of tasks A and B as well
as specify preconditions as to when it applies.

Plan Database-ontains the plan being executed and
is responsible for automated sub-goaling of tasks, Le.,
determining the set of sub-tasks required to achieve a task,
and for maintaining flexible plans, i.e., the propagation of

Tailid-task v a r i a ~ e - ~ o m a i n s - t h a t - ~ ~ m a l l y t . e s t r i c ~ d
without violating a constraint. This has been implemented
using the EUROPA plan database developed at the NASA
Ames Research Center. EUROPA is a derivative of the
model-based, temporally-flexible Remote Agent Plan
Database described in [3], an earlier version of which was
demonstrated on Deep Space One [2]. The plan database
represents a temporal, constraint-based network of tokens
that defines the past, the present, and flexibly-defined
future states and actions of the system. Each token
represents the “state” of a state variable for a period of
time and the tasks that achieve or determine this state.
Each token defies a start, end, and duration temporal
variable, each with an upper and lower bound, as well as
the procedure (predicate and arguments) invoked when the
token is “executed.” The plan database supports multiple

5

timelines with constraints on and between tokens. If none
of the constraints are violated for a given instantiation of
the plan database, the database is defined to be consistent.

Deliberative Planner-schedules outstanding tasks, and
the related sub-tasks generated by the plan database, as
well as makes decisions regarding constraining the
domains of task variables to achieve specified goals
during a specified period of time. This element is
implemented by a variation of the Remote Agent Model-
based Planner/Scheduler described in [3] and as specified
by the Intelligent Distributed Execution Agent (IDEA)
architecture [4]. More specifically, the Deliberative
Planner @P) is responsible for generating a consistent,
flexible plan in the plan database given a start and end
horizon time bound, an initial state of the timelines at the
start time, and a set of goals. A flexible plan is loosely
defined as a set of timelines, each consisting of tokens on
each timeline, token order constraints that prevent
overlapping tokens on the same timeline, and token
procedure variable constraints. Plan flexibility is
characterized by the set of decisions yet to be made that
result in a coosisteot plan. A plan identification function is
used to determine which of the outstanding decisions must
be made in order to have a valid plan. The search process
and decision selection priorities are determined in part by
user-defined heuristics. Complex plans can require
considerable computation time. The proper set of
heuristics can dramatically reduce the time required. The
DP is called to initialize the plan database and also is
called during plan execution as specified by the plan being
executed. It is typically called to plan for a period of
significant duration sufficiently in the future such that the
DP will complete prior to the start time of this period, but
not so far in the future that the initial state at the future
start horizon is not known with high confidence.

Reactive Planner-responsible for insuring that the Plan
Database is in a state such that the tasks to be executed at
a specified time are unambiguous. It has been
implemented as described in [4]. In many respects, as
implemented the Reactive Planner (RP) is very similar to
the DP described above, although that not need be the
case. The salient differences between the two planners are:

the Rp reasons over a shorter, more immediate time
horizon, typically ending just after the current execution
time ~

the RP plan identification function is more restrictive so
decisions that were postponed by the DP must now be
made; the time allocated for planning is relatively very
short, typically less than a few seconds, and cannot be
exceeded without a fault
in the event of a plan deliberation or execution failure,
the RP repairs the plan locally or if necessary generates
a standby plan to safe the PSA and calling the DP. Plan
repair may be necessary for several reasons including
tasks completing too late or too early, task return state
variables posted to the Plan Database make it
inconsistent, and new tasks have been added to the Plan
Database for immediate execution that cause a conflict.

Plan Experts-computational procedures, called by a
planner, that return &formation-used by the planne; to

make planning decisions, typically regarding token
variable values. For example, a route planner expert is
cailed by either the deiiberative or reactive pianner to
determine the time, route, and energy required to move
between two points in the environment or to cover a
certain space. The route planner expert has access to a
global map that can be updated with sensed obstacles. A
route plan request is typically made by the deliberative
planner as part of developing the initial plan, but may also
be called by the reactive planner to develop an alternate
route if necessary, e.g., the route is blocked or there is
insufficient energy to complete the current plan. In
addition, a user may initiate a request to answer a
hypothetical question about a particular goal.

Plan Runner (command sequencer)-executes tokens in
the plan database at the appropriate time. Executing a
token involves calling the procedure with its arguments
defined by the token, updating the plan database with the
token return values when the procedure terminates,
constraining the plan database so that planners only have
limited ability to change the past, and calling the Reactive
Planner, as described above, as needed to update the plan
database: The plan runner implemented is described in
more depth in [4].

State Estimator-abstracts and infers a consistent set of
state variables with respect to a system model given the
discrete and continuous sensor data provided over time.
Some of these state variables, such as the health of a
sensor, may not be directly measurable. To accomplish
this we are using the model-based L2 state estimation
system, which is based on algorithms described in [5] and
is an extension of the Livingstone system that was a
component of the Remote Agent [2]. In certain instances it
may be necessary to infer that a sensor is not healthy in
order to achieve a set of state values that are consistent
with the system model. In other cases it may be necessary
to collect additional data to disambiguate between
conflicting possible inferences for given sensor data.

GoaUDialogue Manager-acts as an arbiter between the
autonomous control system and other agents, including
people. It retains state regarding its interaction with the
other agents, e.g., recalls the subject of a previous
sentence spoken by the user. As an arbiter, this element
serves two roles: a goal manager and a dialogue manager.
The goal manager essentially acts as a meta-planner for
the deliberative planner. As stated above, the deliberative
planner requires a start and end horizon time bounds,-a
initial state of the timelines at the start time, and a set of
goals. The goal manager interacts with the user to
determine this information. This may include negotiation
of goals when all goals are not achievable or supporting
mixed-initiative planning for hypothetical situations. The
dialogue manager is responsible for acting as an intelligent
interface with other agents. When interacting with people,
it can converse with a person speaking a restricted natural
language, responding as appropriate to spoken commands
and queries. It inserts, changes or removes tokens in the
Plan Database or responds to user queries by querying the
planner experts and Plan Database. Currently, the
integrated Dialogue Manager is simplistic. A more
sophisticated dialogue manager tested on a stand-alone
simulator is presented in [6]. The integration of such a
dialogue manager remains as future work.

6

I

Figure 7 - Sample PSA Test Mission Scenario

Off-board User In t e~ace System
The user-interface system enables the user to interact

with the PSA by commanding and displaying information.
It provides situational awareness, sensor-data views, plan
views, and commanding capabilities. This includes
interfaces for interactively creating and modifying the plan
as well as teleoperation. Our intent is for this interface to
support operation at various autonomy levels that can be
dynamically changed and range from teleoperation to
high-level autonomous control.

Voice Recognition and Synthesis-provides speech-to-
text and text-to-speech conversions. The voice recognition
subsystem essentially converts an audio signal into a
parsed text stream. Conversely, the voice synthesis
subsystem essentially converts text commanded by the
Dialogue Manager or the Plan Runner into speech via the
user headset or remote speakers. We use commercial
products to accomplish these tasks and plan to upgrade
them as improvements are made.

Teleoperation Manager-zxecutes supported user
commands and coverts GUI-generated commands into
commands executable by the Autonomy system, e.g., plan

Xiting. -.XISO,- it s p p o r t s two force-feedback 3-DOF
joysticks or one 6-DOF joystick for teleoperation in
position, velocity, or acceleration modes.

Crew GUI-displays the sensor data, renders the PSA
in a 3D model of its environment, displays plans, provides
plan editors for both PSA task and path plans, and
provides for direct commanding of the PSA. Included in
the displayed sensor data is the real-time video stream
generated by the PSA. In addition, by using a camera
mounted on the Crew GUI display, the Crew GUI
supports teleconferencing.

5. Sample Mission Test Scenario
In order to measure the system capabilities with respect

to the operational requirements and to identify the
challenging problems, several scenarios have been

developed. These scenarios are designed to execute in
simulation as well as with the physical prototypes in the
test facilities. These scenarios perform a valuable role in
measuring our current capability levels and are also useful
for regression testing. As the capabilities of the PSA
including its autonomous control system improve, the
complexity scenarios are increased effectively raising the
performance bar.

In this section we discuss a scenario, summarized in
Figure 7, in which the PSA, an autonomous
Environmental Control Life Support System agent,
ECLSS, and a crewmember participate in the diagnosis of
and recovery from an ISS module fault. In this scenario,
ECLSS is autonomously controlled by a high-level
autonomous system similar to the one used by the PSA as
shown in Figure 6 (the main difference is that ECLSS
does not use a path planner). The scenario has two
variations depending on the cause of the initially sensed
anomaly. This scenario is used to demonstrate:

Integrated Vehicle Health Management
Cooperative multi-agent planning and execution
Generation and execution of a near-optimal 6-DOF

Stereo vision-hed 6-DQF lacalizatian and map - . .

route plans

registration

The scenario begins with the PSA station keeping at its
dock when a fixed temperature sensor at rack 5, locker 1
in the ISS U.S. Lab module signals a high temperature to
the ECLSS. The ECLSS attempts to diagnose the problem
and is not able to determine whether the sensor is
defective or if the station system is actually overheating
without additional information. In our case, we have
specified that each case is equally likely. So in order to
disambiguate the system state, ECLSS commands the PSA
agent to go to the fixed sensor location and verify the
temperature at that location by sending the PSA agent a
sense-at-location goal. The PSA agent then reactively
deliberates (Le., the reactive planner calls the deliberative
planner in response to the new goal). The deliberative
planner decomposes the goal into a move-to subgoal

7

.

followed by a subgoal to maintain position while the
temperature is sensed. The move-to subgoal then
decomposes into a path-pianning subgoai foiiowed by an
execute path subgoal. All of these goals are flexibly
scheduled. When the path-planning goal is executed, a
path from the current location to the desired location is
generated, where a path consists of a sequence of
waypoints that avoids known obstacles and no-fly zones.
When the path is scheduled to execute, the PSA agent
sends it to the PSA subsystem, which executes each
waypoint. As needed, the trajectory between waypoints is
dynamically changed to avoid obstacles detected en route.
When it arrives at the destination, the PSA subsystem
c o n f i i s that the path was completed, or in a failure case
it cannot be achieved, with the PSA agent. ?SA agent then
commands the PSA subsystem to station keep for a period
while the PSA measures the temperature. After that
period, the top-level PSA agent sense-at-location goal
completes by returning the sensed temperature to ECLSS.
ECLSS then compares the two sensor readings. The two
cases where they agree or disagree are listed below. The
preceding activity is summarized by steps 1-5 in Figure 7.

If the PSA and ECLSS temperature sensors disagree,
the ECLSS sbte esthatcr iders that the fixed
temperature sensor has failed and requests that a
crewmember repair it by sending a message to the ECLSS
operator user interface requesting the repair and waits for
confirmation that the crewmember has repaired the sensor.
When the crewmember conf i i s , the fixed sensor value
returns to nominal. Meanwhile, ECLSS tells PSA to
measure the temperature again at the same location and
compares the return value to the value read from the fixed
sensor. Since they now agree, the ECLSS state estimator
infers that the fned sensor is healthy and the PSA is
commanded to its dock completing the scenario (steps 6a-
1 la).

However, if the PSA and ECLSS temperature sensors
agree, then the ECLSS state estimator infers that a nearby
locker is overheating, but which one is unknown. ECLSS
gives a goal to the PSA agent to direct it to locate the
source of the heat. The PSA agent decomposes this goal to
send a command to the PSA subsystem that causes it to
execute its heat source seeking behavior. This behavior
has the PSA fust spin fully around, scanning the
environment with its thermal imager. Once the scan is
complete, the PSA points to the largest magnitude heat
source and moves toward it. When the PSA gets as close
as it can to the heat source, the PSA agent goal returns the

+cation and-temperature measuremen& to -ECLSS.-€n eur
case, the heat source is actually in a neighboring rack: rack
4, locker 3, which the ECLSS state estimator infers.
ECLSS then commands the system operating in the locker
to power-off, which reduces the (simulated) heat in the
area. The ECLSS fixed sensor then reads a nominal
temperature. ECLSS sends the PSA agent a goal to
measure the temperature again to verify the temperature is
nominal. The PSA measures the temperature and returns
the temperature to ECLSS. ECLSS infers that the locker
temperature is nominal and releases the PSA from further
requests. The PSA then returns to its dock completing the
scenario (steps 6b-14b).

6. Future Work
Future research and development efforts will focus on

system-level active hybrid diagnosis, fleet operahons

(several PSAs working together to handle environmental
problems) as well as autonomous operations with
spacecraft command and control systems (instead of
human commanding/teleoperating). Long-term functional
upgrades may include adding effectors, e.g., arms, capable
of control panel operation, payload maintenance, re-
supply, and repair. Consider a mission where a spacecraft
is in orbit unoccupied. A larger, 4-armed PSA could be
used to monitor and maintain the flight worthiness of the
spacecraft and reduce mission risk.

7. summary
We presented the ongoing research and development

effort to design the autonomous control software for an
internal spacecraft autonomous mobile monitor, which is
also applicable to a wide range of free-flying vehicles. We
discussed the high-level functional requirements of the
project followed by a description of the PSA prototypes of
increasing complexity and fidelity, as well as the micro-
gravity test facility, which allows us to fly the PSA
prototypes on the ground as if they were onboard the ISS.
The autonomy framework for intelligent flight vehicle
control being developed and tested as partof this project
was then presented and its components detailed. A sample
mission scenario being used to test the prototypes and the
autonomous control system was also outlined. We
concluded with a brief discussion of the future work.

8. Acknowledgments
We gratefully acknowledge the contributions of the

many talented people on this project including Kurt
Konolige, Nicola Muscettola, Charles Neveu, Eric
Poblenz, and Adam Sweet. In addition, we acknowledge
the support provided by the NASA Cross-Enterprise
Technology Development Program, the Computing,
Information, and Technology Program, and the
Engineering Complex Systems Program.

9. References
[11 Gregory A. Dorais and Yuri Gawdiak, “The Personal

Satellite Assistant: an internal spacecraft mobile monitor.”
Proceedings of the IEEE Aerospace Conference, Big Sky,
MT, 2003.

[2] Douglas Bernard, et al., “Final report on the Remote
Agent experiment.” Proceedings of the New Millennium
Program DS-I Technology Validation Symposium,
Pasadena, CA, February 8-9,2000.

~] A n X ~ X i i C s o ~ e t C i i L ~ ” P l a m i n g in interplanetary
space: theory and practice.” Proceedings of the 51h Artificial
Intelligence Planning and Scheduling Conference,
Brekenridge, CO, 2000.

[4] Nicola Muscettola et el., “A unified approach to
model-based planning and execution.” Proceedings of the
Sixth International Conference on Intelligent Autonomous
Systems, Venice, Italy, 2000.

[5] James Kurien and P. Pandurang Nayak, “Back to the
future with consistency-based trajectory tracking.”
Proceedings of the 17” National Conference on Artificial
Intelligence, Austin, TX, 2000.

[6] Manny Rayner, Beth Ann Hockey, and Frankie
James, “A compact architecture for dialogue management
based on scripts and meta-outputs.” Proceedings of
Applied Natural Language Processing (ANLP), 2000.

8

