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Generalization of the Euler Angles 

Malcolm D. Shuster' and F. Landis Markley2 

Abstract 

It is shown that the Euler angles can be generalized to axes other than members of an 
orthonormal triad. As first shown by Davenport, the three generalized Euler axes, hereafter: 
Davenpon uxes, must still satisfy the constraint that the first two and the last two axes be 
mutually perpendicular if these axes are to define a univcrsal set of attitude parameters. 
Expressions are given which relate the generalized Euler angles, hereafter: Davenport angles, 
to the 3-1-3 Eulcr angles of an associated direction-cosine matrix. The computation of the 
Davenport angles from the attitude matrix and their kinematic equation arc presented. The 
present work offers a more direct development of the Davenport angles than Davenport's 
original publication and ofTers additional results. 

Introduction 

The Eulcr angles [ 1 4 1  are defined as the angles of a sequence of three rotations 

which represent the attitude, in particular, the attitudc of a rigid body. Here, nl,  
ii;, and i i y  are selected from the set { 1, 2, 3 }, where 

^ ^ ^  

i= [i] , 2 =  [i] , and 3 ,  [HI . (2) 

In general, we denote column vectors by bold sans serif letters. A caret here 
denotes a unit column vector. The primes denote that the column vectors arc each 
represcntations with respect to a different abstract basis (as seen by an inertial 
observer). In this case, the basis is the current basis of the body-fixed coordinate 
system, which changes (from an inertial point of view) as the body rotates. 

'Acme Spacecraft Company, 13017 Wisteria Drive, Box 328, Germantown, Maryland 20874. 

*Aerospace Engineer, Guidance, Navigation and Control Systems Engineering Branch, Code 571, NASA 
email: m.shustcr@ieee.org. 

Goddard Space Flight Center, Greenbelt, MD 20771. email: landis.markley@.gsfc.nasa.gov. 



2 Shuster and Markley 

In order that the representation in terms of the Euler angles have the required 
three degrees of freedom, we must further stipulate that 

f i l #  fia and f i h # f i i .  (3) 
Given this restriction, there are twelve possible sets of Euler angles: six symmetric 
sets, whose labels are written as 

1-2-1 1-3-1 2-3-2 2-1-2 3-1-3 3-2-3 

and six asymmetric sets, designated by 

1-2-3 1-3-2 2-3-1 2-1-3 3-1-2 3-2-1 

In each label the first (leftmost) integer denotes the first rotation axis. For example, 
the 1-3-2 set of Euler angles correspond to fi l  = i, fii = 3, and fii = 2. The 
asymmetric sets have been called variously Cardan angles, Bryant angles and Tait 
angles. 

Regarded as the representation of body-fixed axes, the Euler axes are generally 
chosen from a right-hand orthonormal triad of column vectors. That this orthonor- 
mal triad need not be limited to thc reprcscntations of the body coordinate axes 
with respect to themselves (that is, to the set { 1, 2, 3)) should be obvious but 
will be demonstrated rigorously below. What we wish to know in particular is 
whether it is possible to construct a representation of the attitude in terms of Euler 
rotations about three arbitrary non-orthogonal axes as seen from the body-frame. 

In the present notc wc prove that a universal representation of the attitude in 
terms of three consecutive Euler rotations about arbitrary non-orthogonal axes is 
not possible. However, we shall show that an cxtension of the definition of the 
Euler angles does indeed exist. The Euler angles for those sets of Euler axes 
which accommodate the representation of any attitude we shall refer to as universal 
attitude parameters, or as a universal representation, in order to distinguish them 
from the angles about three axes for which some attitudes cannot be represented. 

Universality of the Conventional Euler Angles 

To the best of our knowledge, all texts present formulas for extracting the 
conventional Euler angles from the rotation matrix, but none demonstrate rigorously 
that the Euler angles can represent an arbitrary rotation matrix. The proof is quite 
simple, and we offer it here. 

We particularize our discussion to the 3-1-3 set of Euler angles. We shall show 
later in this report that any of the remaining eleven sets of conventional Euler 
angles can be obtained from the formula for extracting the 3-1-3 Euler angles. 
Hence, it the first step will be to prove that the 3-1-3 Euler angles are a universal 
parameterization of the attitude. 

The explicit evaluation of equation (1) for fi l  = 3, fi2 = i, and fi3 = 3 yields3 

&j13(9,  19, $) E R(39 $1 R(i, 19) R(3,  V) 

(4) 
c* ccp - s* c29 scp c* scp + s* c19 ccp 

-s*scp+c*cl9ccp 
-st9 ccp 

3Hencefonh, we shall discard the primes on the Euler-axis representations with the understanding that 
these are always with respect to current body axes. 
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where ccp = coscp, scp = sincp, etc., and we have written the axis indices as 
subscripts on R. The elemcnts of the attitude matrix (direction-cosine matrix) are 
the components of the initial body axes with respect to the final body axes. In order 
to demonstrate that the parameterization of R313 can realize any proper orthogonal 
matrix, it is sufficient to show that thc represcntation of the coordinate axes of the 
initial coordinate system with respect to themselves (namely, i, 2 and 3) can be 
transformed into any other right-hand orthonormal triad of column vectors, i.e., the 
representation with respect to an arbitrary set of arbitrary right-hand orthonormal 
coordinate axes. 

Thus, we examine first 

sin 8 sin $ 
e, = R,,,(v, 8, @ ) 3  = sin8 cos$ . ( 5 )  [ cos8 ] 

Clearly, 8 and (7r/2 - $) are the spherical angles of an arbitrary unit vector. Hence, 
by a suitable choice of 8 and $, 8, can be made to coincide with an arbitrary unit 
column vector, in particular, the third mcmber of the target right-hand orthonormal 
triad. We will assume that 8 and $ have been so chosen. 

Examine next 

cos 11, cos cp - cos 8 sin cp sin $ 

sin 8 sin cp 
8, = ~ , , , ( c p , f i ,  +)i = -s in+coscp-cos8sincpcos~ 

This last column vcctor can be written as 

where 
- cos 8 sin $ 

Obviously, 0 ,  and C2 are each unit column vcctors and 

u1 ‘e3 = 0 ,  ’8, = 0 ,  ‘ 0 ,  = 0. .... 
(9) 

The vectors 0 ,  and 0, span the plane perpendicular to e,, and cp can be chosen 
to generate any unit vector in that plane. Since thc first member of the target 
right-hand orthonormal triad must lie in that plane, thcrc is a value of cp for which 
6, coincides with that unit column vector. Thus, for suitable choices of the three 
Euler angles, R,,, will transform 3 and i into any pair of mutually perpendicular 
unit column vectors. 

Finally, because both the initial column vectors { i, 2,  3 }) and thc target column 
vectors { e, ,  a,, 8, } are each right-hand orthonormal sets and R,,,(cp, 8, $) is 
proper orthogonal by construction, it follows that 
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which completes the proof. Therefore, the 3-1-3 Euler angles are a universal 
representation of the attitude. The proof can be repeated with minor modifications 
for any of the other eleven conventional sets of Euler angles, but the universality 
of these remaining sets will follow as an corollary of the result for the generalized 
Euler angles. 

Generalized Euler Angles (Davenport Angles) 

Consider a three-parameter rotation given by 

R(A1, A,, A,; cp,.r9,+) = RM,, $1 R(%,t9) R(A1, (0) 1 (11) 

where now, there are no restrictions on A I ,  A,, and A,, except that 

A, # A, and A, # A,. (12) 

Can any rotation be represented in this way? A necessary condition for this to be 
true is that any unit column vector can be transformed into any other unit column 
vector by this sequence of rotations. For the generalized Euler angles to be a 
universal representation of the attitude, this condition must be satisficd. 

Consider now the transformation 

3 = R(A,, A,, A,; cp, 29, $)A,. 

A, ' 3  = A,. R(A,,29) A,. 

(13) 

(14) 
Then 

We shall show that equation (14) cannot be satisfied for arbitrary A I ,  A,, A,, and 
3. 

Writing Eulcr's formula as [ 31 

R(A,  C )  = 1 , , , + s i n ~ [ [ i i ] ] + ( 1 - c o s ~ ) [ [ t i ] ] ~ ,  (15) 

with 
0 u, -u2 

[ [ u l l =  [ 2 -ul 0 .; ] (16) 

it follows straightforwardly that the condition on 19 becomes 

A, ' 3  = (Ag. A,) + A, . (A, x (A2 x A,))  - sin29 (A,. (A2 x A,)) 
- cost9 (A,. (A, x (A2 x A,))) . (17) 

Define now 

B cosct -A3. (A2 x (A, x A,)) and B sinct -A,. ( A z  x A,), (18) 

or, equivalently, 
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where arctan,(y, x) is the function which yields the arc tangent of y/x in the 
correct quadrant. This corresponds to the function ATAN2 in the FORTRAN 
programming language. In terms of these new variables, equation (17) becomes 

A3 ' 0  = P + B  COS(^ - a ) ,  (20) 

where 
p (A3 ' A,) + A,. (A2 x (A, x A,)) = (A3 ' A Z ) ( A Z  ' A,). (21) 

The right member of equation (20) can assume any value between P - B and 
P + B. Therefore, a solution will exist for 19 if and only if 

p + B ? A 3 . i ? ? p -  B .  (22) 

However, since A, . i? can assume any value between -1 and +l, it follows from 
equation (22) that P and B must satisfy 

B L 1 - P  and B > l + P .  (23) 

Thus, we require that 

On the other hand, defining 

it follows that 

B 2 1 + IPI. 

u n2 x n, ,  . . A  

2 
B2 = [A3 + [ A 3 .  ( A 2  x u)] 

= 11112 A; ( ir irT + ( A 2  x i r ) (A,  x a)T } A, (26) 

Now, A, and ir are orthogonal Hence, A,, 0, and A, x ir, form an orthonormal 
triad, and therefore 

A2A; + 0 OT + (A2 x ir)(A, x = 1 3 x 3 .  (27) 

It follows that 

We have thus 

P = ( A 3 .  A z ) ( A 2  A,), B = lA3 x AzI lA, x A l l .  (29ab) 

Equations (24) and (29) can be satisfied simultaneously if and only if 

B =  1 and p = O .  (30ab) 

Hencc, wc require that 
A, It?, and A, I A3 (31ab) 

as a necessary condition that the generalized Euler angles be able to represent an 
arbitrary attitude. Equations (31) were first discovered by Paul Davenport [ 51, who 
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also proved sufficiency, as we shall below. For this reason we will refer henceforth 
to the generalized Euler angles as the Davenport angles. 

Equation (31) is a less restrictive condition than the generalization of equa- 
tions (2) and (3) to an arbitrary right-hand orthonormal triad, which would have 
required further that (Al . A,) be either 0 or 1. The additional degree of freedom 
allowed by equation (31) is the angle between A, and A,. 

We shall now prove that the condition expresscd by equation (31) is sufficient 
for the set of Davenport axes to permit a universal parameterization of thc attitude 
in terms of Davenport angles. Let us write 

A, = R(A2, A) A, , (32) 

where A, and A, are orthogonal. Then, 

A, =cosXAl -s inX(Az x A,), -T < X S T ,  (33) 

which clearly satisfies A, I A, and is the most gencral column vector satisfying 
this condition. X is the angle from A, to A,, defined to be positive in the 
counter-clockwise direction about A2.  The symmetric sequences of Euler angles 
correspond to X = 0, while the asymmetric scquenccs correspond to either X = ~ / 2  
or X = -7r/2. If A 2  is the cyclic follower of A,, then X = ~ / 2 .  If it is the anticyclic 
follower, then X = -7~12. 

It follows [ 31 that 

R(A3, $1 N A 2 , 8 )  W A l ,  cp) 

= R(R(A2, 0 1 ,  $) N A 2 ,  8) R(h,cp)  

= R(A2, 4R(fi,, $)RT(A2, X)R(A,, 4 R(fi1, cp) 

= qi,, A) R ( h ,  A,, A,; 9, 8/, $1, 

(34a) 

(34b) 

( 3 4 4  

where 
8 / = 8 - X .  (35) 

If A is an arbitrary proper orthogonal matrix, then wc wish to find angles (p, O' ,  $) 
which satisfy 

A = R(Al, A,, A,; cp, 8: $) = R(h2, A) R(A,, h2, i 1 ;  cp, 8', $). (36) 

To show that this is possible, Ict C be the proper orthogonal matrix which satisfies 

CA, = 3 ,  and C A , = i .  (37) 

C=[A, ( A 1 X A 2 )  A,] T , 
Since A, and A, are orthogonal, the matrix C cxists and is given by 

(38) 

where the expression for C is given as the transpose of a proper orthogonal matrix 
labeled by its column vectors. It follows from equations (36) and (38) that the 
triplet (9, 8', $) must satisfy 

R(3,  i, 3; cp, 8, $) = RT(i,  A) CACT. (39) 
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The triplet (cp, 6', $) is now simply the 3-1-3 set of Euler angles representing the 
matrix which is the right member of equation (39). Since the 3-1-3 Euler angles 
havc been shown to be a universal representation of the attitude, we know that a 
solution always exists. This provcs the sufficiency of equations (31). Q.E.D. 

As a by-product of our proof we have that 

for any set of axes satisfying cquation (31) and c given by equation (38). As an 
immediate corollary we have that any of the twelve conventional sets of Euler angles 
is a universal attitude rcpresentation. For a suitable choice of X and C, expressions 
similar to equation (40) can be obtained for all twelve sets of conventional Euler 
angles. 

Recall that X is a function solely of the axes. 

This formula also assumes that equation (31) holds. 
We remark that while the three Davenport axes must satisfy equation (31) in 

order for the representation to be universal, the parameterization of the attitude 
can still be useful when only equation (12) is satisfied, if one knows a priori that 
the axes permit a realization of the attitude matrix for the values of interest. 

Extracting the Davenport Angles 

To determine the Davenport angles from a given direction-cosine matrix we note 
the relationships 

T ASA A1 = COS(@ - A) ,  
T A,A A I  = sin(29 - A) sin$, 

(i, x A3)TAt31 = -sin(d-X) c o s $ ,  

T A3A A, = sin(29 - A) sin c p ,  

ij;~ (hl x hZ)  = - sin(8 - A) cos cp . 

Except for the fact that 29 has been replaced by .19 - A, the right members of 
equations (42) are each identical within a sign to the elements of the dircction- 
cosine matrix given in equation (4). 
From equation (42a) we havc immediately 

(43) 
29 = + arccos(A3Ahl), T 

If we choose the principal value of the arc cosine, then 29 will be single valued and 
lie in the range 

For X < 29 < X + n, so that sin(l?) - A) > 0 the two remaining Davenport angles are 
given by 

A5 29 5 X f n .  (44) 

(4Sa) 

(4Sb) 

T T 
cp = arctan, [AgA A,, -A3A (A1 x A,)] , 

$ = arctan, [AzA Al , -(Az x fi,)TA I?,]. T 
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The cases where sin(29 - A) = 0 are treated in the next section. 

Singularity of the Davenport Angles 

The representation in terms of Davenport angles must become singular when 

R(A,, 29) A l  = & A 3 ,  (46) 

which follows from an examination of the resulting equations 

w n 3 ,  $1 mk!, 29) Nil, cp) 

= W A 3 7  $1 WA,, 8) W A l ,  cp) RT(A,, 29) R(A, ,4  

= W A 3 ,  11,) W A 3 ,  ‘PI R(A2,29) 

= R(A3, $ * cp) R(%, 4 
= R(h ,  8) R(A1, cp * $1, 

(47a) 

(47b) 

(47c) 

(474  

where we assumed equation (46) in going from equation (47a) to equation (47b). 
It is easy to see from equation (42a) that a singularity in thc Davenport angles 
occurs when sin($ - A) = 0. 

Equations (45) are inappropriatc for the computation of (0 and $ at a singularity, 
when 29 - A = 0 or 7r, because all of the arguments of the arctan, functions will 
vanish. In that case we must turn to four other “elements” of the direction-cosine 
matrix, namely, 

T A,A (Al x A,) = sin ~p cos $ + cos cp sin $ cos(8 - A) a ,  

(Az x f i3)T A A, = coscp sin$ + sincp cos $ cos(29 - A) b , 

T A,AA, = coscp cos$ - s in9  sin$ cos(29 - A )  c ,  

(A2 x fi3)TA (A, x A z )  = sin ~p sin 11, - coscp cos $ cos(d - A) d . 

From these relationships it follows that 

[l *cos(t9 - A)] sin(cpf$) = a f  b ,  

[l * cos(29 - A)] cos(cp f $) = c d ,  

from which it follows that 

cp + $ = arctan,(a + b, c - d )  

cp - $ = arctan,(a - b, c + d)  

for 

for 

cos(29 - A) # -1, 

cos(29 - A) # +l. 

These equations provide a more accurate means for calculating either cp + $ or 
9 - $ (but, unfortunately, not both) whcn the attitude is very close to a singularity 
than do cquations (45). 
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The Davenport angles extracted by this procedure and that of the previous section 
will not always agree with the conventional Euler angles when a conventional Euler- 
axis set is used. This is due to trivial angular ambiguities of 27r and to the two-fold 
ambiguity in the Davenport angles, which is related to the well-known two-fold 
ambiguity of the conventional Euler angles. Thc general relation for the two-fold 
ambiguity in the Davenport angles can be obtained from cquation (40) and the 
similar relation for the 3-1-3 Euler angles, namely, 

R ( 3 , i , 3 ; y o , I 9 , $ ) = R ( 3 , i , 3 ; y o + A , - I 9 , $ - A ) ,  (51) 

with the result 

R(ii1, A,, ii,; V , d ,  $) = R(ii1, A,, ii,; (0 + A ,  2 x  - I9,$ - A ) ,  (52) 

which summarizes the result for the 3-1-3 Euler angles ( A  = 0) and the 3-1-2 
Euler angles ( A  = 7r/2). The specification of the formulas of this section and the 
previous section to the extraction of the conventional Euler angles is left as an 
exercise for the reader. 

Kinematics 

The kincmatic equation for the Davenport angles is identical to the general 
expressions for the conventional Euler angles4 We may write [3]  

w=?jA3+9R(ii , ,  $J)ii,+I$R(ii,, $J)R(ii,, 19)iil. (53) 

where w is the body-referenced angular velocity vector. This may recast in the 

with S’(iil, fi,, ii,; 19) represented in terms of column vectors as 

S(iil, ii,, is; 19) = [R( i i2 ,  6 ) i 1  1 ii, I ii,] . (55 )  

Simple forms exist for the matrices S(i1, i2, i3; 19)  and M ( 9 ,  19, 11) as explicit 
functions of the conventional Euler angles 141. Those for the Davenport angles 
are more complicated. 

More useful for simulation is the inverse of M ( y ,  19, $J), which satisfies 

4The kinematic equation for the Davenport angles was also derived by Davenport [SI. 
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The right member of equation (58) can be reduced to 

where the denominator D is given by 

D (R(A,, 2 9 )  A l )  (A, x A3) = - sin(8 - A) (60) 

Discussion 

We have given a presentation of the Davenport angles in the same detail that 
is normally given to the standard twelve sets of Euler angles. The connection has 
been made between the Davenport angles and the 3-1-3 set of Euler angles, and 
this has been used to develop further relationships of the Davenport angles. A 
corollary of our work is that if a reorientation of a spacecraft is to be accomplished 
by rotational maneuvers about threc axes, then these must be Davenport axes. An 
application of the Davenport angles to attitude estimation is given in Reference 6. 
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