Spacecraft Fire Safety: A Human Space Flight Program Perspective

Dr. Michael D. Pedley
ISS Materials and Processes Manager
NASA Johnson Space Center

SPACECRAFT FIRE SAFETY

A HUMAN SPACE FLIGHT PROGRAM PERSPECTIVE

Michael D. Pedley
ISS Materials and Processes Manager
NASA Johnson Space Center

TYPICAL MANNED SPACECRAFT MATERIALS
TYPICAL FLAMMABLE HARDWARE PROTECTION

MATERIALS FLAMMABILITY

- Current ground-based testing conservative but not intolerably restrictive for Shuttle/ISS environments – adequate supply of nonflammable materials for vehicle design to 30% oxygen environment

- Long-term need to quantify “conservative”
 - Relax ISS flammability requirements for payloads, clothing, portable equipment accordingly
 - Future manned space exploration missions extremely weight limited – very desirable to minimize use of nitrogen as consumable by returning to Apollo/Skylab oxygen concentrations
FIRE RETARDANTS

- Need a good and easy fire retardant treatment for fabrics (cotton, paper, synthetics)
 - No significant changes in weight/feel of material,
 - Impervious to washing, dry cleaning
 - Odorless

- Have to compete with current practice of allowing 100% cotton outer clothing (flammable)
 - Commercially available fire retardants tried with little enthusiasm from crew
 - stiff, dry-clean only, slight odor

NONFLAMMABLE FOAM CUSHION MATERIAL

- No good nonflammable foam cushion material
 - Current choices are Pyrell fire-retardant polyurethane (flammable and life-limited) and Minicell polyethylene foam (more flammable but not life-limited)
 - Both weigh about 2 lb/cu. ft. and are very inexpensive

- Desired cushion material would have following properties
 - Nonflammable to at least 30% oxygen
 - Lightweight – preferably appreciably less than 2 lb/cu. ft.
 - Not life-limited – life 30 years +
 - Minimal compression set
 - High resilience, tear resistance
 - Negligible particulate formation
 - Open cell for vacuum compatibility
 - Very inexpensive
 - Easy to cut into complex shapes
NONFLAMMABLE FOAM CUSHION MATERIAL
-- EXISTING CANDIDATES

- Polyimide Foams (Solimide)
 - Very lightweight (0.5 lb/cu. ft.), nonflammable in 30% oxygen, not life-limited, open cell
 - Very poor compression set, significant particulate generation, poor “feel”
 - Difficult to cut without generating considerable particulate
 - Very expensive

- Melamine Foams
 - Very lightweight (0.5 lb/cu. ft.), nonflammable in 30% oxygen, not life-limited, open cell, reasonable compression set
 - Minimal particulate generation but appreciable fine dust
 - Poor resilience, very poor tear resistance
 - Very difficult to cut complex shapes or thin slices
 - Very inexpensive

- Silicone Foams
 - Expensive, very heavy (at least 6 lb/cu. ft. for adequate resilience)

ELECTRICAL WIRE AND CABLE

- Critical component from fire safety standpoint, because electrical power is only really credible ignition source (excepting solid-fuel oxygen generators)

- Key features
 - Nonflammable to 40% oxygen, resists arc-tracking
 - High resistance to mechanical damage (abrasion, nicks, cuts)
 - High flexibility
 - Lightweight and capable of operating at high temperatures (at least 200 °C)

- No perfect construction
 - Teflon is heavy and has poor damage resistance
 - Kapton is stiff, has very poor arc-tracking resistance, is easily damaged by nicks, and may degrade in humid environments
 - Tefzel is flammable in enriched oxygen, has limited life above 150 °C and modest damage resistance
 - Teflon-polyimide hybrids currently best compromise for most applications but some aspects inferior to Kapton and others inferior to Teflon
RUSSIAN SOLID-FUEL OXYGEN GENERATOR (SFOG)

GOX IGNITION MECHANISMS

- Two important areas of limited understanding with respect to materials ignition and combustion in oxygen systems

- In recent years, several oxygen system fires have been attributed to a phenomenon christened (possibly erroneously) as “flow friction”
 - Occurs only at high pressures (> 2500 psia)
 - Occurs in pressurized static systems (all other known ignition mechanisms are tied to motion – rapid pressurization, particle impact, friction)
 - Appears to result from leakage through a seal
 - Ignition mechanism not understood, so cannot be controlled by design/materials selection

- Limited studies of particle impact ignition have shown that high flow velocities are required and that metallic particles are probably worse than nonmetals – but we don’t know in any detail:
 - Velocity effects for different particulate contaminants
 - Effects of particle size and quantity
 - Effectiveness of filters as protection (as functions of filter size and filter material)
 - True hazards from gas streams exiting valve seats/orifices at sonic velocity
FIRE DETECTION

- Need capability to distinguish between pyrolysis event and true self-supporting combustion
 - Pyrolysis events relatively commonplace and inevitable (electrical shorts, component failures, arcing/arc tracking)
 - No true fires on orbit, excepting SFOG, combustion experiments
- Needs to have high reliability, no false positives
- Solve conundrum of
 - Air flow needed for to transport smoke, combustion products to traditional sensors for fire detection
 - Air flow worst thing for microgravity fires

FIRE SUPPRESSION

- Fire suppression capability always for backup only, but needs to be effective backup
- Issues with Halon-type extinguishers include:
 - ECLSS compatibility
 - Extinguishant toxicity
 - Effectiveness at elevated oxygen concentrations
 - Environmental
- Issues with carbon dioxide (ISS baseline) include:
 - Application (where is base of flame?)
 - Induced forced convection (will carbon dioxide application extinguish a microgravity fire or stir it up?)
 - Mixing (obtaining adequate concentrations in racks)
- Issues with water-based suppressants (includes Russian segment ISS baseline) include:
 - Compatibility with electrical systems
 - Clean up
 - Use in racks (application to fire source, clean-up)