
the hyperwall

Timothy A. Sandstrom *, Chris Henze t, Creon Levit
Exploratory Computing Environments Group,

NASA Ames Research Center

Abstract
This paper presents the hyperwall, a visualization clus-

ter that uses coordinated visualizations for interactive ex-
ploration of multidimensional data and simulations. The
system strongly leverages the human eye-brain system with
a generous 7x7 array offlat panel LCD screens powered by
a beowulf clustel: With each screen backed by a worksta-
tion class PC, graphic and compute intensive applications
can be applied to a broad range of data. Navigational tools
are presented that allow for investigation of high dimen-
sional spaces.

linked views, brushing
Keyworh- Scientific visualization, multivariate analysis,

1 Introduction
That data are growing in size and complexity is self

evident, no more so than when it comes to multidimen-
sionallrnultivariate (MDMV) data. Scientific and Informa-
tion visualization literatures are filled with research delv-
ing into the issues associated with this data explosion. A
common theme emerges: sooner or later, machines run
out of some precious resource, be it CPU, graphics, screen
real estate, memory, or disk bandwidth. Screen space, for
instance, has been a limiting factor in MDMV visualiza-
tion systems ever since the first brushed scatterplot matrix
[I, 21. One can only display so many windows, can only
present so many variables in a single view before reaching
a point of diminishing returns.

We seek to interactively explore large, MDMV datasets
and families of parameterized simulations. Towards this
end we have assembled a system using a combination of
commodity hardware and custom software known as the
’hyperwall’. Combining a phalanx of pixels and proces-
sors, we seek to overcome some of the graphics and com-
putational limitations found in many MDMV visualization
systems and work towards a true problem solving environ-

ment where many tools can be brought to bear on a given
problem at once.

There are many approaches to MDMV visualization,
the goal typically being to visually summarize and interact
with the data searching for trends and relationships. Tools
such as XGobi [3] and XmdvTool[5], use techniques such
as scatterplots, glyphs, and parallel coordinates to display
MDMV data in lower dimensional projections. Direct ma-
nipulation techniques such as interactive brushing are used
to find relationships between variables. These packages
draw on the works of authors such as Tukey and Cleve-
land, providing a rich set of the classic statistician’s tools
to bring to bear on the data. Other research has focused
on multiple, coordinated views or visualizations of related
data. North and Shneiderman have revealed the efficacy
of these techniques across a broad spectrum of problems.
Finally, a number of tools have taken a spreadsheet ap-
proach to MDMV visualization, where the layout of the
views have inherent meaning, implying location and allow-
ing navigation in a given high dimensional space. This ap-
proach also allows a high degree of coordination between
views, for instance when a given modification or operation
is applied to all visuals in a column or some other subset
of the matrix.

The hyperwall exists at the confluence of these streams,
combining spreadsheet metaphores, direct manipulation,
and multiple linked coordinated views.

2 System Architecture
The core of our system is a 49-node beowulf cluster.

Each node uses an nVidia GeForce4 graphics card to drive
one of the LCD flat screen monitors arranged in a 7x7 ma-
trix on a custom rack. This gives us around 64 million
pixels spread across some 55 square feet of screen real es-
tate. All nodes run without a keyboard or mouse, and cus-
tom software has been written to allow a user to interact
with the nodes. This software, hyperx, captures all mouse

* AMTI Inc., sandstro@nas.nasa.gov
t AMTI Inc., chenze@m.nasa.gov
SNASA, creon@nas.msa.gov

1

and keyboard events on a master node and broadcasts the
identical X event stream to any or all nodes allowing user
control of any GUI-based software running on the cluster.

3 Spreadsheet-Based Visualization
Since we lay our visualizations out in a matrix, our sys-

tem is related to spreadsheet-based visualization systems
[6, 7, 81 and gains many of the inherent benefits thereof.
The position of a visualization in our matrix of screens
can be directly related to a location in a high dimensional
space, providing the user with a necessary context for un-
derstanding and navigating h4DMV spaces. For instance,
Fig 2 shows a parameter study of the Reusable Launch Ve-
hicle. Each row displays a different angle of attack, each
columm a different Mach number. The user knows, at a
glance, the parameters associated with the dataset in each
view.

Like other spreadsheet-based systems, the simultaneous
display of related visualizations facilitates a broad range of
primarily visual activities such as comparing and contrast-
ing related images, tracking features between timesteps,
and finding patterns amidst the complexity of a family of
bivariate scatterplots. Furthermore, with aggregate visual-
izations (using possibly several different applications), we
can explore visualization space as well as data space, look-
ing at our data in a number of ways at once. Our system
provides well for these visual tasks by providing high res-
olution views of all visualizations and allowing for a high
degree of interactivity with these views by the user.
3.1 Caveats

One way in which we differ from spreadsheet-based vi-
sualization systems is that, in general, we do not have a
built in programming language. This would allow one,
for instance, to calculate the difference between the scalar
fields on two nodes, and display the results on another.
However, this might require a high degree on integration
between software on the master node and software running
on the nodes. While we have written applications that are
as tightly coupled as this, node application software can
often be run unmodified. This loose coupling greatly ex-
tends the number of applications we can use on the cluster
especially those for which we do not have source. Alas,
some features may require code modification no matter
what. For example, synchronized animation across mul-
tiple nodes will typically involve some external synchro-
nization mechanism probably not anticipated in a given ap-
plication.

4 Coordinated Visualizations
In our system, nodes either work together in order to

display one scene (like a powerwall), or they each indi-
vidually display a separate (possibly related) scene. Co-
ordination in the powerwall sense requires that all nodes

render the same scene at the same time with a shared set
of viewing transfomations. At the other end of the spec-
trum, each node displays possibly a different dataset, or the
same dataset using a different rendering parameter, or even
a completly different visualization technique. Coordina-
tion in this case may mean that all the nodes have the same
viewing transformations, or that the same colormap is used
across the different datasets. In any case, we achieve co-
ordination of views by providing each node with the exact
same stream of X events.
4.1 Using X to interact with the nodes

Using the X Test extension distributed with X11R6,
we can send simulated mouse and keyboard events to X
servers running on any of the nodes. Using custom soft-
ware, called hyperx, a user can sit at the master node and
interact simultaneously with any number of nodes in the
matrix. This allows one to change such things as view
perspective, color mapping, visualization type, or any pa-
rameter of a visualization accessible via a GUI. Imagine
interactively changing a cutting plane position through 49
different datasets at once, and you begin to see the possibil-
ties of such as system. Another nice feature is the ability to
move the mouse and keyboard around screen to screen as
if you are interacting with one very large virtual desktop.
4.2 Issue: Maintaining View Coherence

In powerwall mode, when a group of nodes are coop-
erating to show a single scene, all the nodes must agree
upon the current set of transformations. Similarly, when
groups of nodes independantly render related objects, we
typically want to have the same viewpoint across all of
them. Transformations or viewpoints are usually modified
via the mouse or keyboard. Thus, we can often achieve
view coherence by sending the exact same event stream to
each node though there are again some subtleties that may
require modifications to software running on the nodes.

When adjusting the view with the mouse, an X-based
application will typically pass through the main loop many
times as the mouse is dragged. Since we want all ganged
nodes to respond identically, any source of asynchronic-
ity in the event production or consumption must be hunted
down and removed. Thus for example, all event compres-
sion must be turned off. Other sources of asynchronicity
are X workprocs, and callbacks from VO events on sock-
ets registed via XtAppAddInput. Self generated X events
can be another source of disparity in the event stream and
hence lead to divergance of transformations and viewoints.

Once these and other sources of randomness in either
the event stream production or consumption have been re-
moved, the remaining issue is that of graphics throughput.
Suppose, as you are drawing your scene across four nodes
ganged in a 2x2 array, one node’s portion of the view frus-
tum happens to contain a bulk of the polygons in the isosur-

2

Figure 1: Architecture.

,

3

Figure 2: Examining an RLV parameter study.

4

*

face being rendered. Its frame rate drops to say, 3 fps while
the other nodes gallop merrily along at 15 fps. The views
will in this case diverge until the user releases the mouse,
whereupon the views will again converge when all nodes
in the gang have digested all the events in their identical
event streams. If needed, a finer grained approach using
some sort of distributed synchronization mechanism such
as a barrier can remove this remaining issue, and provide
frame for frame view coherence. This is needed for things
such as synchronized animation.
4.3 Powerwall mode

Sooner or later, everyone eventually asks if we can show
one image over all the screens (like a powerwall). The an-
swer is yes, with some reservations. Unless you are using
Chromium [101 to divide up of the graphics work, in gen-
eral, node application software will need to be modified.
We have used Chromium on our cluster but at the time,
there were performance issues related to using only fast
ethemet between nodes, as well as issues with display lists
and applications using multiple windows.

For 2D scenes, such as rendering an image, there is an
implied X Y offset into the image based upon its location in
the wall. Image rendering software would need to calculate
the relevant subrectangle for its portion of the view, possi-
bly affecting UO, buffering, and display routines. Display-
ing 3D scenes across an array of screens can be achieved
by dividing up the view frustum appropriately and having
each node render the entire scene. While this seems waste-
ful, the efforts required for culling the scene via octrees,
or other suitable schemes, usually does not become nec-
essary until the rendered scenes become completely un-
wieldy. Modem graphic cards like the GeForce4 and its
contemporaries are quite capable of rendering millions of
polygons per second. Of course, one could come up with a
giga-polygon isosurface to foil us here but in practice, this
has not been an issue. View coherence is an issue however
as discussed in section 4.2.

5 Navigating in Hyperspace
The complexity of MDMV datasets inspires us and cries

out for novel tools to search around for new unseen rela-
tionships. Inevitably, there is the tension between com-
plexity of task and simplicity of interface.

For example, navigation is one of the primary chal-
lenges in MDMV visualization. Successful interfaces for
navigation are often intuitive, provide contextual informa-
tion, and are flexible enough to get the user where they
want to go. A good example of MDMV navigation is the
Hyperslice [4] interface. The user is presented with an
array of bivariate plots, each of which is centered on an n-
dimensional point C = (XI, Xa, ..., X,) This point can
be moved around in n-space by direct manipulation. By

grabbing in the XI, Xa subplot the user changes those co-
ordinates of C, leaving all the other dimensions X3 ... x,
constant. This interface gives immediate feedback to the
user via direct manipulation, provides contextual informa-
tion for the user through the meaningful layout of the sub-
plots, and allows the user to navigate the center point C,
anywhere in the n-dimensional space.

For our purposes, we have several datasets requiring
navigation through a 6D space. One example, is the vi-
sualization of the electron pair density function. Given
a molecule, we consider an nearby electron. Then, for
each possible position of that electron in 3-space around
the molecule, we consider all possible positions of a com-
panion electron. With 3 degrees of freedom for each elec-
tron, this results in the 6D electron-pair density function
which we wish to explore in order to find electron-rich or
electron-poor areas.

For our purposes, it made sense to move a hyper-
plane around instead of a hyperpoint like the Hyperslice
interface. On a given node, 3 dimensions of the data,
say (X, Y, Z), can be represented with volume render-
ing or some other suitable 3D scalar visualization tech-
nique. Then, with a navigational tool running on the mas-
ter, we can interactively assign the remaining 3 dimensions
(U, V, W) by orienting a plane in 3D. On the plane are ar-
ranged an array of points, each of which represents a node
in the cluster (and hence, a screen on the wall) and has a
unique (U, V, W) coordinate.

If the nodes are running a simulation, then the coordi-
nates are typically continuous and are sent to the nodes to
update their displays. Thus for example, each node would
do a volume rendering of all (X,Y,Z) data for a fixed
(U, V, W). For the situation when the (U, V, W) coor-
dinates are discrete the coordinates for a given node would
be ’snapped’ to the nearest valid coordinate. An example
might be data files associated with a parameter study where
a coordinate change might require the nodes to load a dif-
ferent file.

6 Interactive Parameterized Simulations
With the advent of workstation class PCs, significant

computational power is availible to throw at a problem.
When combined with an array of graphics displays, we
approach an environment where we can exercise compu-
tational steering[9].

Our system allows us to run parameterized families of
simulations in parallel. However, computational steering
environments often require that one ’instrument’ the simu-
lation code in order to give the user feedback (monitoring)
and allow interactive control (steering). For monitoring,
the simulation code is often modified to allow display of
the state of the simulation. Another modification would be
to allow user access to the simulation’s runtime parameters

5

Figure 3: Six-D browser interface here shown with a schematic water molecule. This interface allows the user to coordinate
the simulations seen in Figure 4.

Figure 4: The Six-D browser allows interactive exploration of the electron pair density function around a water molecule.

6

for steering. Both of these modifications are delicate and
obviously require in-depth analysis of any simulation code.

As an example, a molecular simulation code known
as COSMOS (Computer Simulations of Molecular Sys-
tems) has been instrumented by NASA researchers Chris
Henze and Brian Green. Every time COSMOS completes
a timestep, it sends the updated atom positions to a viewer.
Within the viewer, the user can interact with the simula-
tion by selecting individual molecules and moving them
around. Furthermore, using an interface on the master
node, forces such as compression, expansion, rotation, and
shear can be applied.

Within the hyperwall environment, dozens of these sim-
ulations can be run in parallel. Fig 5 displays thumbnail
snapshots from a set of carbon nanotube simulations each
of which has been subjected to an expansive force inter-
actively supplied by the user. Again, layout in the ma-
trix implies position in this parameter space of nanotubes.
Along the diagonal, from top to bottom, the nanotubes
grow larger. Greater distance above and below the diag-
onal corresponds to more twist (also known as the chirality
number) in a clockwise or counterclockwise direction. We
can see that, in general, the smaller tubes tend to break
apart with the level of force applied by the user.

7 Conclusion
We have presented the hyperwall, a system capable of

interactive exploration of MDMV data and simulations.
Because we have a full blown beowulf cluster, each node
of which is amed with its own graphics card, we can run
compute and graphics intensive applications, bringing a
powerful array of tools to bear on any given problem. This
allows us to compute whole arrays of visualzations or sim-
ulations in parallel, displayed at high resolution, in a highly
interactive fashion. The sheer visual nature of the display
system encourages people to scan the displays looking for
trends, relationships, and anomilies. We find that scientists
want to walk right up to the wall of screens, look closer,
and point out observational cunosiees to co-investigators
making it inherently collaborative in nature.

Acknowledgements
This work was sponsored by NASA contract

TOA61812D. Thanks to David Ellsworth, for all the en-

couragement and helpful insights.

References
[11 J. W. Tukey. “Exploratory Data Analysis,” Addison-

Wesley, 1977

[2] R. A. Becker and W. S. Cleveland. “Brushing Scat-
terplots,” Technometrics, 29(2), 127-142,1987

[3] D. F. Swayne, D. Cook, A. Buja. “XGobi: Interac-
tive Dynamic Graphics in the X Window System with
a Link to S,” in ASA Proceedings of the Section on
Statistical Graphics, p. 1-8,1991

[4] J. van Wijk, R. van Liere. “Hyperslice - visualization
of scalar functions of many variables,” In Proceedings
of IEEE Visualization, 1993

[5] M. Ward, “XmdvTool: integrating multiple methods
for visualizing multivariate data,” In Proceedings of
IEEE Visualization 1994, pp. 326-333

[6] M. Levoy. “Spreadsheet for images,” In Computer
Graphics (SIGGRAPH ’94 Proceedings), volume 28,
pages 139-146. SIGGRAPH, ACM Press, 1994

[7] A. Varshney and A. Kaufman. ‘TINESSE: A finan-
cial information spreadsheet,” In IEEE Information
Visualization Symposium, pages 70-71,125,1996

[8] Ed H. Chi, J. Riedl, P. Barry, J. Konstan. “Principles
for Information Visualization Spreadsheets,” In IEEE
Computer Graphics and Applications (Special Issue
on Visualization) July/August, 1998. IEEE CS, pp.
30-38.

[9] J. Mulder, J. van Wijk, and R. van Liere. “A Survey
of Computational Steering Environments,” in Future
Generation Computer Systems, 13(6), 1998

[IO] G. Humphreys, M. Houston, R. Ng, R. Frank, S. Ah-
em, P. Kirchner, J. T. Klosowski. “Chromium: A
Stream-Processing Framework for Interactive Ren-
dering on Clusters,” presented at SIGGRAPH, San
Antonio, Texas, 2002

7

Figure 5: Redtime interaction with a family of nanotube simulations.

8

i

