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Abstract

A simple method is presented to estimate the complex dielectric constants of
individual layers of a multilayer composite material. The multilayer composite material
sample is loaded in an X-band rectangular waveguide and its two port S-parameters are
measured as a function of frequency using the Hewlett-Packard (HP) 8510 Network
Analyzer. Also, by applying the mode matching technique, expressions for the S-
parameters of the composite material as a function of electric properties of individual
layers are developed. Using the MatLab Optimization Tools simple MatLab scripts are
written to search for electric properties of individual layers so as to match the measured
and calculated S-parameters.

A single layer composite material formed by using materials such as Bakelite,
Nomex Felt, Fiber Glass, Woven Composite B and G, Nano Material #0, Cork, Garlock,
of different thicknesses are tested using the present approach. The dielectric constants of
these materials estimated using the present approach (assuming the thicknesses are
known) are in good agreement with their true values. Assuming the thicknesses of
samples unknown, the present approach is shown to work well in estimating the
dielectric constants and the thicknesses.

A number of two layer composite materials formed by various combinations of
above individual materials are tested using the present approach. The values of dielectric
constants of individual layers estimated (assuming the thickness of individual layers are
known) using the present approach are in good agreement with their true values.
However, the present approach could not provide estimate values close to their true
values when the thicknesses of individual layers were assumed to be unknown. This is
attributed to the difficulty in modelling the presence of airgaps between the layers while
doing the measurement of S-parameters. A few example of three layer composite are
also presented.

I Introduction

Multilayer substrates are used for many practical applications such as
Microwave Integrated Circuits (MIC), Monolithic MIC ( MMIC) [1] , radomes for
protection of antennas from external environment, spatial filters for antenna beam
shaping [2], and Frequency Selective Surfaces (FSS) [3-4]. With proper choices of
individual layers in a multilayer composite substrates it is possible to achieve a
composite material with altogether new properties that were otherwise not found in the

individual layers. Exact knowledge of the material properties such as permittivity and



permeability of individual layers in a multilayer substrate is essential for designing spatial
filters, radomes and composite materials for FSS applications. However, the present
practice in the estimation of electric properties of composite materials with multi-layers
emphasizes only the determination of overall effective properties. In this report an
attempt is made to provide a procedure to estimate the electric properties of individual
layers of a composite material.

Permittivity and permeability of these composite multi-layer substrates can be
estimated using one of the following methods: 1) free-space techniques; 2) resonant
cavity perturbation techniques; and 3) transmission line methods. Each method has its
own advantages and limitations. For measurement of electric properties over a wide
frequency range, transmission line or waveguide methods [5-8] are more popular even
though they are less accurate due to unavoidable measurement errors. In the waveguide
measurement method, a sample of composite multilayer substrate is placed in a
waveguide and two port S-parameters are measured using a hp-8510 Network Analyzer.
In the earlier work [7-8], assuming that an equivalent homogeneous material occupies
the sample space, S-parameters are estimated as a function of effective electric properties
of the equivalent material. Using the inverse procedure, constituent parameters of the
equivalent material are determined by matching the estimated and measured S-
parameters. In these methods electric properties of individual layers are not determined.
However, for some applications such as radomes and FSS, a knowledge of electric
properties of individual layers is required. In this report, a waveguide measurement
method is presented to estimate the electric properties of individual layers of a composite

multilayer substrate.



The remainder of this report is organized as follows. The mode matching
formulation of a waveguide loaded with multilayer composite material is developed in
section II. Also in section II, the expression are developed to estimate 2-port S-
parameters of composite material slab. Numerical and measured results on the S-
parameters of numerous composite material are presented in section HI for the direct
problem where electrical properties of individual layers are assumed to be known. Also
in section III, using the MatLLab Codes given in Appendices, estimated values of
dielectric constants of one, two, and three layer composite material are presented. The
report concludes in section IV with remarks on the validity and usefulness of the present
method.

IL. Theory

In this section, the method of moments is used to determine the S-parameters of
a rectangular waveguide loaded with a multilayer dielectric substrate as shown in figure

1.

Y Incident Wave Port #1

Reflected Wave

Composite
Material Slab

i
.
—

/{ Transmitted
Wave

Layer #1

Layer #2

Z Rectangular
* Waveguide

Figure 1: Geometry of rectangular waveguide loaded with
multilayer composite material.



The multilayer substrate consists of N layers, where the n™ layer has parameters

(¢,,,M,,) and is located between the transverse planes at z=z, , and z=2,.
S,, and §,, Parameters:
To estimate the S,; and §,, components of 2-port parameters, it assumed that the

TE,, mode of unit amplitude is incident on the interface at z =0 from the region z<0 .

If E_,E,..E, are the transverse electric fields on the interfaces at z=0,2;,2,5..-Zy,

to?
respectively, then the transverse electric fields in the various regions of waveguide are

obtained as

E, =-2jé,sin(f0z)+ Z( [[Eqe z,.dsjé,.em& ()
i=0 \ ;=0

H, = 2Y00f10 cos(Byz) — Z[ J‘JE,O o Z,.dsJYisz,.eiﬁ,o: )
i=0 \ =0

for z<0,

sin(B7' (2, ~2) [ [Eyuy s&ds+sin(B (z-2,,) [[E, seds

E =S . 3
! ; sin(f3z,) ' ©)
- Cos(ﬂin (Zn - Z)) JIEI(I1—I) d éfds - COS(ﬂi" (Z - Zn—l )) J.J‘Em o é‘ids
H, =3 vho @

jsin(B'A ) Y

JIf
[=}

i

for z, , <z<z,,and

n-1 =

ENH = i{ ijW Oéids}giefﬂi)m(:zv—:) s

i=0

=N



i=0\ ; =y

H,, i[ J.JE,N .eds]yNHh P e (6)

for z2z,.
For uniqueness, the tangential magnetic fields at each interface must be continuous.

Hence

07 —%|| yo 4y 08B Y, .
2Y°h°_z[[y" o mm(ﬂAJ ”E"’ “sin(BIA,) - ”E eds}' @

i=0

for the interface located at z =0,

0= Z F:.H. ] iliii + z

i=0| J Sln(ﬂi A) i=0

. IIErO e ¢,ds . i 2
Yil c.:o.s(ﬂiAl) +Y;2_(£._S_(ﬂfoiz) .[IE” ec.ds h
JSln(ﬂilAl) .]Sln(ﬂi.AZ) =g

-y’ IIE,, ee.ds

o

2

JsmwA) "

0= = Irh +i
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| [JE,eéas
H

y?2 cos(B7A,) Ly? cos(BA, )} J-J-EZ.Eids:l;i

S _ o - 'A A E ooz
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i=0 ] SIn(ﬂi An) = i=0 J Sln(lBi An) -]snl(ﬁi An+l) =z,

i=0 J Sln(ﬂ"HAnH)
for the interface located at z = z_, and

n?

+ i — n+lii I.[Ex(nﬂ) ¢ éids (8)

=41
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0=5 Lo

N
(ﬁNA ). J.J. (V- l)oeds+z |: iN_(':()‘L(ﬂi_AL)_+YiN+I} IJEtN.gids (9)
~ jsin — 2

jsin(BYA,)

=N~

for the interface located at z =z, .

The transverse electric fields over the interfaces can be expressed in terms of vector

modal expansion functions as:

Jo _ J, - J, - Jy _
E,=>T,¢ .E, =T, E, ZT,Uej,....E,N = Tye, (10)

j=0 j=0 j=0 Jj=0
where T, T seee T y; ATE the complex unknown coefficients. Substitution of (10) into (7)-
(9) yields

_ d cos(BA Ao Y!
2 hy =) Toh| Y] +Y;7-(—ﬁ—fl—‘)— =T h| ——5— (11)
j=0 J Sln(ﬂjA]) j=0 J Sln(ﬂjAl)
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+ 2T, |Y
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Equations (11) —(13) are the required integral equations to be used to determine the
complex amplitudes T;;,T,;,...Ty, . Selecting ﬁk as a testing function and using the

Galerkin’s procedure, the equations (11)-(13) are converted into a set of simultaneous

equations:
1 1
2y = T00|:Y00 Y M] ~T, [__YO_I_} (14a)
]Sln(ﬁOAl) J Sm(ﬂoAn)
. lA 1
0=To.[n°+x'—?9.§(ﬂ‘+‘) B — (14b)
J Sln(ﬁl A)) J Sm(,B1 A))
cos(f! A !
0=T010 ono +YJI‘,.—&‘& _Tuo _'Yl—l (14c)
J Sm(ﬂjoAn) J sul(ﬁjoAl)

obtained from equation (11). From the continuity of magnetic field at z = z; we get

T, Y, A , ’A, Y}
- Tuts I{Ys?".LWwo- cosfol,) }—Tm Y (150
J SIH(ﬂOAl) J Sln(ﬁOAl) J sm(ﬁo A,) J Sm(ﬂo A,)
] 1 2 2
=— .TOIYII +T { ! .Co's(ﬂllAl) +Y7 (.:O.S(ﬁl’Az)}_ : .T21Y17 (15b)
J Sm(ﬂl Ap) J SIn(ﬂl A) J Sln(ﬂfAz) J Sm(ﬂfAz)

...............

...............



T, Y cos(B, A)) . cos(B:A,) T, Y;
='..OJ—|IJ|"'+ tJ, Jl, .. Jll : +Yf, .. ﬂjl‘) - L. = qjl (ISC)
Jjsin(B; A)) jsin(B; A)) jsin(B;A,) | Jjsin(B;A,)

Likewise, using the continuity of magnetic fields at z = z,,z = z5,....2 = Z_, , similar sets

of simultaneous equations are obtained. From the continuity of magnetic fields at z =z,

we get
T oo cos(BNA )
= No[ 0 SO0 Aw) |y (16a)
jsin(By Ay) jsin(By Ay)
- Tyl |: v cos(B"Ay) +YN+1} (16b)
- .. N N1} *1 . . N 1
jsin(BAy) jsin(BAy)
Tinon, YJA,: N Cos(ﬂﬁ,Aw) N+l
=Ty, | Y, ———+71,, (16¢)
J Sln(ﬂj,v Ay) J Sm(ﬂj‘v Ay)

Due to the orthogonal nature of vector modal functions it can be shown that the complex
amplitudes Ty, j =1,23..Jy, T,;, j =123..J, ...... Ty,Jj=123..J are all zeros.

Hence equations (14)-(16) can be simplified as

lA Yl
2Yo0 =Ty |:Y00 + Yol ios—(ﬂol—l)} T, [_—O—|"’ (17a)
jsin(B,A)) jsin(B,A))
1 1 2 2
I e e S
jsin(B,A)) Jsin(B,A,) jsin(B;A,) jsin(B,A,)
2 2 3 3
L e e [ a7
jsin(B;A,) Jsin(B;A,) jsin(B;A,) jsin(ByA,)

.................................

.................................



N
- 7;(1\/-1)050 o ON Co‘s(ﬁoNNAN) + YON+1 (17d)
jsin(B, Ay) jsin(B, Ay)
solution of above (N + 1) equations gives an estimate of complex amplitudes
Too-Ti0sTogseee-Tyy from which §), and §,, are determined as
S, =Tp—1 and S, =T, (18)

S,, and S, Parameters:
The port 2 parameters, §,, and §, can be determined by following the procedure used
for estimation of §,, and §,,;, and reversing the locations of the layers as shown in

figure 2. Note that the §,, calculated using the reference planes shown in figure 2 and

S,, measured using the hp-8510 network analyzer differ by phase e =

\' Incident Wave Port #1

Reflected Wave

Compasite 2,
Material Slab 2 2z Ry

— Nﬁ Layer AN

P :
P /{ ‘ransmitted
Wave

- b‘

Waveguide

Layer #N-2
Layer #N-3

Figure 2: Geometry of rectangular waveguide loaded
with a composite material for estimation of §S,, and §,,



III. Numerical Results

A: Estimation of S-Parameters( Direct/Forward Problem)

A simple MatLab code (Appendix A) is written to solve the simultaneous equations
given in equations (17) and determine all four § -parameters of a composite material slab
placed in a rectangular waveguide. In this section, assuming the properties of individual
layers of a composite material known, the S -parameters for various composite slabs are
computed (using the MatLab code) as a function of frequency and compared with the

measured S -parameters.

Single Layer Composite Material:

Figure 3 shows S|, and §,, parameters of a composite material consisting of a

Garlock single layer as a function of frequency. In this case a single layer of Garlock
‘ with thickness A, =0.17cm  and electric properties £, =7.5— j0.001 is used to form a

composite material. Excellent agreement between measured and estimated
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Figure 3: Measured and estimated S -parameters of single
Garlock slab. Thickness A, =0.17cm, £, =7.5—- j0.001,

i, =1.0-j0.0
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values of the S -parameters validates the MatLab code. Figure 4 shows the S, and §,,
parameters of a composite material formed by a single layer of Teflon material

(g, =2.03—-0.001, u, =1.0- jO.0 ) of thickness A, =0.635cm . A good agreement
between the measured and estimated values of S -parameters confirms validity of the

present method. Note that the parameters §,, and §,, are expected and found to be

identical to S,, and S,,, respectively.
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Figure 4: Measured and estimated S -parameters of single teflon slab.
Thickness A, =0.635cm, €, =2.03— j0.001, u, =1.0- 0.0

Two Layer Composite Material:

For further validation of the present method and MatLab code, the S -parameters of
composite material formed by various combination of two layers are fabricated and

tested. A first sample considered consists of Bakelite and Teflon layers.
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The composite slab is formed by placing the bakelite layer with A, =0.33cm,
Zy =0, z; =0.33cm and the Teflon layer with A, =0.635cm, z; =0.33cm,

Z, =0.965cm . Measured and estimated S|, and S,, parameters as a function of
frequency are shown in figure 5. For the composite material described in figure 5, the

measured and estimated S,, and S,, values are shown in figure 6.

Bakelite -Teflon layers

Bake#te d = 0.3302 cm, or = 3.76 -} 0.001

Teflond =0.635 em, or = 2.03 -[0.001
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Figure 5: Measured and estimated .S -parameters of two layers composite
material (Bakelite-Teflon). Bakelite: A, =0.33cm, z, =0, z;, =0.33cm,

g =3.76-j0.00L,u, =10, Teflon: A, =0.635cm, z, =0.33cm,
2, =0.965cm, €, =2.03- j0.00L, 1, =1
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Bakelte- Teflon 8
Bakelte d = 0.3302 cm, or = 3.76 -:).001
Teflon d =0.635 cm or = 2.03-§0.001
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Figure 6: Measured and estimated values of S,,and S,, for composite
slab (parameters as described in figure 5)

A second sample of composite material considered consists of Garlock and Nomex

materials. The composite slab is formed by placing first a Garlock slab of thickess

A, =017cm, €, =75~ j0.00lL,u, =1.0 at z, =0 and z, =0.17cm and then a Nomex

slab of thickness A, = 0.33cm, £, =1.2- j0.00L 4, =1.0 at z;, =0.17¢cm and

Z, =0.5¢m. Measured and estimated S,,, S,,, §,, , and §,, parameters for Garlock-

Nomex composite slab are shown in figures 7 and 8.

From figures 7-8, estimated values of S -parameters for the Garlock-Nomex composite

slab agrees well with measured values of the § -parameters. However, for the Bakelite-

Teflon combination there is small disagreement between measured and estimated §,, and

S, parameters. This disagreement may be attributed to the presence of an air gap

between the slabs of Bakelite and Teflon.
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Three Layer Composite Material:

A third sample of composite material considered consists of Nano Material # O,
Garlock and Garlock slabs. The composite slab is formed by placing first a Nano

Material #0 slab of thickess A, =0.31cm, £, =2.5- j0.00L,x, =1.0 at z, =0 and
z, =0.31cm and then a Garlock slab of thickness A, =0.17cm,

£ =75-j0.00Lu, =1, at z; ==3lcem, and z, =0.48cm. Another Garlock slab of
thickness A, =0.17cm, £, =7.5~ j0.001, 4, =1.0 is placed at z, =0.48cm and

23, =0.65cm . Figures 9-10 show measured and estimated S -parameters of composite

slab consisting of Nano_Mat #0-Garlock-Garlock combination.

Composite Slab: Nano Materil #0, Garlock, Garlock
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Figure 9: Measured and estimated S, and S,, parameters of composite slab
consisting of Nano-Material#0, Garlock, and Garlock(Dimensions as
described in text)
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Composite Siab: Nano Materil #0, Garlock, Garlock
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Figure 10: Measured and estimated S,, and S, parameters of

composite slab consisting of Nano-Material#0, Garlock, and
Garlock(Dimensions as described in text)

From figures 9-10, the trend in the values of S -parameters predicted by the computation
is similar to the trend observed in the measured values. However, significant differences
are observed between the measured and estimated values of S -parameters. This may be
attributed to the sample preparation where the presence of air gaps between the
individual slabs is unavoidable. Also even though these individual slabs may be in
physical contact with each other, electrical contact may still not be insured. It is also
noticeable that the disagreement between the measured and estimated § -parameters gets

worse as more individual slabs are used to form a composite slab.
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B: Estimation of Dielectric Constants( Inverse Problem):
Single Layer Composite Material:

In this section a procedure is described for the computation of the complex
dielectric constant of a given composite sample from the two port measured data. For a

given composite material sample, let the two port S -parameters be (S,,,,,55,,»
S omsSnn, )» Measured using the hp-8510 Network Analyzer. With a prior knowledge of

the thickness of composite slabs, the two port S -parameters can be estimated using the

MatLab Code given in Appendix A as a function of £ . Let the estimated values of S -
parameters be S, (£,),5,,.(€,),S 5. (€,),S5,.(€,). The errors in estimated and measured
S -parameters can then be written as ER, = real(S,,. —S,,,,) » ER, =imag.(S,,.—S,,)»
ER, =real(S,,, —S,,,), ER, =imag.(S,, —S.,,)» ----- ER, =real(S,,, —S,,,),

ER; =imag.(S,,, — S, ). The total mean squared error or the objective function to be

minimized as a function of £, can be written as

ER, =\/(ER} + ER? + ER? + ER} + ER? + ER? + ER? + ER?) (19)
A simple MatLab Code given in Appendix B minimizes the objective function in (19) to
estimate the unknown value of dielectric constant &, .

Examples (When Thickness of Sample Is Known):

Garlock Slab: A single layer of Garlock slab of size (2.29 x 1.02 x 0.17 )cm was placed
in an X-band rectangular waveguide. After proper calibration of the hp 8510 Network
Analyzer, two port S-parameters of the Garlock slab were measured as a function of

frequency. The measured data is stored in a file FT_GRLK.60. Using the MatLab Code

17



given in the Appendix B, the dielectric constant of the Garlock slab is estimated and

shown in figure 11.

Real and Imaginary Parts of Relative Dielectric
Constant of Gartock Matenial
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Figure 11: Relative dielectric constant (real and imaginary) of
Garlock material estimated using measured and ideal S-
parameters.

In figure 11 solid and dash-dot lines are the estimates of dielectric constant using the
ideal or noise free S-parameters calculated assuming the dielectric constant is known and
equal to £, =7.5— j0.001. The estimates shown in figure 11 were obtained by
considering the thickness of the slab equal to 0.170cm. To check the level of confidence
in these estimates, from the estimated values of dielectric constant (estimated using the
measured data), the difference between measured and computed values of S-parameters

is plotted in Figure 12.

18



0.1

———t— ReaS116-811m)
0.075 - - =0= = Imag.(S11c-S11m)
— o RealS21cS21m)
— ==~ Imag.(S21¢-S21m)

0,05
. R
Yt
L
£
<
5]
[a W
o~
g
cg .05 |-
122)
Near
0075}
1 | MRS RS N IR N ST S NS
0.1 10 1 12
Frequency (GH2)

Figure 12: Differences between computed and measured values of S-
parameters. Calculated S-parameters are determined using estimated
dielectric constant

The differences between the computed and measured S-parameters are within the limits
set in the optimizer. Ideally, the difference between the computed and measured S-
parameters must be close to zero. However, to achieve ideal results, the optimizer would
take longer time.

Number of single layer composite materials of various material and thickness were
constructed and their S-parameters were measured over the X-band frequency range.
From these measured values of S-parameters and using the MatLab Code given in

Appendix B, the dielectric constants of these single layer composite were estimated and

presented in figures 13-25.
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Figure 15: Relative dielectric constant (real and imaginary) of Cork
material estimated using measured and ideal S-parameters (thickness =

0.3048cm)
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Figure 16: Relative dielectric constant (real and imaginary) of Ceramic
material estimated using measured and ideal S-parameters (thickness =
0.2845 cm)
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Figure 17: Relative dielectric constant (real and imaginary) of
Nomex Felt material estimated using measured and ideal S-
parameters (thickness = 0.33cm)

Real and Imaginary Parts of Relative Dielectric
Constant ot Rubylith Material

Real Part )
=mimi= |mag. Part Estmated Using kdeal S-Parameters

L] Real Part  Egimated Using Measured S-Parameters
4 B Imag. Part

- Real Part
Srs m e E MmN E EREENER

Relative Dielectric Constant
N
T

Imaginarty Part
0 -'@-%-@-@-v&%-&-&-n%ﬁu&—-@"ﬁ-&l@-

1 i : 1

[
-

10 11
Frequency(GHz)
Figure 18: Relative dielectric constant (real and imaginary) of Rubylith

material estimated using measured and ideal S-parameters (thickness =
0.3683 cm)
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Real and imaginary Parts of Relative Dislectric
Constant of Bakelite Matenal
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Figure 19: Relative dielectric constant (real and imaginary) of Bakelite
material estimated using measured and ideal S-parameters (thickness =

0.33cm
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Figure 20: Relative dielectric constant (real and imaginary) of Fiber
Glass material estimated using measured and ideal S-parameters
(thickness = 0.0533cm
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Real and Imaginary Parts of Relative Dielectric
Constant of Woven Composite B Material
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Figure 21: Relative dielectric constant (real and imaginary) of Woven
Composite B material estimated using measured and ideal S-parameters
(thickness = 0.1625cm
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Figure 22: Relative dielectric constant (real and imaginary) of low density Foam
material estimated using measured and ideal S-parameters (thickness =
0.2921cm)
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Real and imaginaty Parts of Relative Dielectric
Constant of Woven Composite G Matenal
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Figure 23: Relative dielectric constant (real and imaginary) of Woven

Composite G material estimated using measured and ideal S-parameters
(thickness = 0.2083 cm)

Examples (When Thickness of Sample Is Unknown):

In the previous section it was assumed that the thickness of the sample is known
apriori. These thicknesses are measured in the laboratory using an electronic
micrometer. However, for compressible and thin samples the accuracy of these
measurements is questionable. In this section it is assumed that the thickness of the
sample is unknown and the optimizer is asked to estimate the thickness along with the
dielectric constant of a single layer composite material slab. The MatLab Code used for
estimation of sample thickness as well as dielectric constant is given in Appendix B.
Garlock Slab: The measured data stored in a file FT_GRLK.60 is used to estimate the
thickness of Garlock slab and dielectric constants. Using the MatLab Code given in the
Appendix B, the dielectric constant of the Garlock slab and its thickness are estimated

and shown in figure 24.
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Real and lrn;;inary Paits of Relative Dielectric
Constant of Garlock Material (Thickness Unknown)
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Figure 24: Relative dielectric constant (real and imaginary) of Garlock
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.17 cm. Thin
solid line indicate estimated value of sample thickness.

In figure 24, estimated values of the dielectric constant assuming sample thickness
unknown are in close agreement with the dielectric constant estimated assuming known
value of sample thickness. The average value of estimated sample thickness is 0.1699 cm
which is very close to the actual measured thickness of 0.1702cm. This validates the idea
that apriori knowledge of sample thickness is not necessary for the inverse problem. In
fact the thickness of the sample can be considered as one of the unknown variables along

with the dielectric constants to optimize the error function defined in (19). Using the
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Figure 25: Differences between computed and measured values of S-
parameters. Calculated S-parameters are determined using estimated
dielectric constant and thickness of the slab

estimated values of dielectric constants and the sample thickness, the difference between
measured and computed values of S-parameters is plotted in Figure 25.

The differences between the computed and measured S-parameters are within the limits
set in the optimizer. Ideally, the difference between the computed and measured S-
parameters must be close to zero. However, to achieve ideal results, the optimizer would
take a longer time.

From the measured values of the S-parameters for a variety of single layer
composite materials (Nano Material #0, Cork, Ceramic, Nomex Felt, Rubylith, Bakelite,
Teflon, Fiber Glass, Woven Composite B and G, Nano Material # 0) the dielectric
constants and thicknesses of the material are estimated using the MatLab Code given in
Appendix B. These estimated values are shown in figures 26-36. For comparison, the
estimated values of dielectric constants using Matl.ab Code given in Appendix B are also
plotted in figures 26-36. The estimated values of dielectric constants assuming the

thickness unknown are in good agreement with the estimates obtained using known
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values of dielectric constants. From the figures 26-36 it may be concluded that the
thickness of a single layer slab can be treated as one of the unknown variables along with

the dielectric constants.

Real and imaginary Parts of Relative Dielectric
Constant of Nano Matetial #0 (Thickness Uninown)
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Figure 26: Relative dielectric constant (real and imaginary) of Nano
material #0 estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.301 cm. Thin
solid line indicate estimated value of sample thickness.
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Real and Imaginary Parts of Relative Dielactric
Constant of Cork Material (Thickness Unknown)
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Figure 27: Relative dielectric constant (real and imaginary) of Cork
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.3048 cm.
Thin solid line indicate estimated value of sample thickness.
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Figure 28: Relative dielectric constant (real and imaginary) of Ceramic
material estimated assuming thickness unknown. Symbols indicate estimated
values of dielectric constant using thickness = 0.2845 cm. Thin solid line
indicate estimated value of sample thickness.
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Real and Imaginary Pars of Relative Dielectric
Constant of Nomex Felt Matenal (Thickness Uinknown)
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Figure 29: Relative dielectric constant (real and imaginary) of Nomex Felt
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.3302 cm. Thin
solid line indicate estimated value of sample thickness.
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Figure 30: Relative dielectric constant (real and imaginary) of Rubylith
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.3683 cm.
Thin solid line indicate estimated value of sample thickness.
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Real and lm?rury Parts of Relative Dielectric
Constant of Bakele Material { Thickness Unknown)
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Figure 31: Relative dielectric constant (real and imaginary) of Bakelite
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.3302 cm. Thin
solid line indicate estimated value of sample thickness.
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Figure 32: Relative dielectric constant (real and imaginary) of
Teflon material estimated assuming thickness unknown. Symbols
indicate estimated values of dielectric constant using thickness =
0.9398 cm. Thin solid line indicate estimated value of sample
thickness.
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Real and imaginary Parts of Relative Dielectric
Constant of Fiber Glass Matenal (Thickness Unknown)

‘s m s s s @ s @ ENQEER
Real Part
3 M’WM
- Real Part
=:miemim |mag. Pant Estimated Assuming Thickhess Unkhownh
2
. % IRr::;PI::I't Estimatad Using Thickness = 0.05334 cm

Thickness in cm

Relative Dielectric Constant

5 A5 5%

Average Thicknass = 0.0803 cm

b 1 1 1 . L
10 11 12
Frequency(GHz)

Figure 33: Relative dielectric constant (real and imaginary) of Fiber Glass

material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.0533 cm. Thin
solid line indicate estimated value of sample thickness.
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Figure 34: Relative dielectric constant (real and imaginary) of Foam
material estimated assuming thickness unknown. Symbols indicate
estimated values of dielectric constant using thickness = 0.2921 cm.
Thin solid line indicate estimated value of sample thickness.
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Figure 35: Relative dielectric constant (real and imaginary) of Woven Composite
B material estimated assuming thickness unknown. Symbols indicate estimated
values of dielectric constant using thickness = 0.1626 cm. Thin solid line
indicate estimated value of sample thickness.
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Figure 36: Relative dielectric constant (real and imaginary) of Woven
Composite G material estimated assuming thickness unknown. Symbols
indicate estimated values of dielectric constant using thickness = 0.2083 cm.
Thin solid line indicate estimated value of sample thickness.
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Most of estimated dielectric constants determined assuming thickness unknown agree

well with the dielectric constants estimated using measured value of slab thickness.

However, in figure 33, the two results disagree significantly. This is because the

thickness of the slab is very small. In fact, the S-parameters calculated using estimated

thickness and the dielectric constants agree very well with the measurements as shown in

figure 37.
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Figure 37: Measured and computed S-parameters for Fiber Glass Material.
Computed S-parameters are determined using estimated values of dielectric
constant and thickness of Fiber Glass.

Two Layer Composite Material:

In this section measured S-parameters of composite material consisting of two material

layers are used to estimate the dielectric constants of individual layers. The error or

objective function used for this purpose is identical to equation (19). The MatLab Code
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given in Appendix B, with proper input variables is used to estimate the dielectric
constants of two layers.

Examples:(Thickness of Layers Known):

A two layer composite material consisting of Bakelite and Teflon was formed by placing
first the Bakelite layer of thickness A, =0.33cm between the z, =0 and z, =0.33cm
planes. A Teflon layer of thickness A, = 0.635cm was then placed between z; = 0.33cm
and z, =0.965cm. The measured values of S-parameters of the Bakelite-Teflon as a
function of frequency was stored in a file FT_BKLTEF.60. Using the MatLab Code
given in Appendix B, the dielectric constants of the two layers were estimated and

plotted in Figure 38.

Two Layers Composie Material : Bakeliie-Teflon
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Figure 38: Relative dielectric constant (real and imaginary) of Bakelite-Teflon
Composite material estimated using measured S-parameters (assuming thickness
known)
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Figure 39 shows estimated values of dielectric constants of Bakelite-Teflon Composite
material using the ideal S-parameter values computed using the MatLab Code given in
Appendix A. Figure 40 shows the error involved in the estimations of dielectric
constants using measured and ideal values of S-parameters. From figure 40 it is clear that
the error in estimation using the measured S-parameters is higher than the error involved
in the estimatior; using ideal S-parameters. This may be attributed to the noise present in
the measured data and inability of the analytical model to take into account potential air

gaps present between the two layers.
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Figure 39: Relative dielectric constant (real and imaginary) of Bakelite-Teflon
Composite material estimated using ideal S-parameters (assuming thickness known)
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Figure 40: Value of error function given in (19) in estimating the dielectic
constants of Bakelite-Teflon Composite using both measured and ideal S-
parameters

For further verifications of the present approach for a two layer composite material the
following samples were considered:

1) Garlock-Nomex Felt: A; =0.17cm, A, =0.33cm, z, =0.0, z, =0.17cm,

Z, =0.5¢cm

2) Garlock-Ceramic: A| =0.17cm, A, =0.2845cm, z, =0.0, z;, =0.17cm,
Z2, =0.4545cm

3) Garlock-Nano Material #0: A| =0.17cm, A, =0.3099cm, z, =0.0,

2, =0.17cm, z, =0.4799cm
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4) Garlock-Woven Composite G: A, =0.17cm, A, =0.2083cm, z, =0.0,

2, =0.17cm, z, =0.3783cm

5) Garlock-Bakelite A, =0.17cm, A, =0.33cm, z,=0.0, z, =0.17cm,

2, =0.50cm .

For these samples the relative dielectric constants of individual layer were estimated

from the measured and ideal S-parameters. Estimated values of relative dielectric

constants are shown in figures 41-56.
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Figure 41: Relative dielectric constant (real and imaginary) of Garlock-Nomex
Felt Composite material estimated using measured S-parameters (assuming
thickness known)
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Two Layers Composite Material . Garlock-Nomex Felt
(Thicknesses of layers assumed known)
Estimates are determined using ideal S-parameters
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Figure 42: Relative dielectric constant (real and imaginary) of Garlock — Nomex Felt
Composite material estimated using ideal S-parameters (assuming thickness known)
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Figure 43: Value of error function given in (19) in estimating the dielectic constants of
Garlock —Nomex Felt Composite using both measured and ideal S-parameters.
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Figure 44: Relative dielectric constant (real and imaginary) of Garlock-Ceramic
Composite material estimated using measured S-parameters (assuming thickness
known)
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Figure 45: Relative dielectric constant (real and imaginary) of Garlock ~ Ceramic
Composite material estimated using ideal S-parameters (assuming thickness known)
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Figure 46: Value of error function given in (19) in estimating the dielectic constants of
Garlock —Ceramic Composite using both measured and ideal S-parameters.
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Figure 47: Relative dielectric constant (real and imaginary) of Garlock-Nano Material #0
Composite material estimated using measured S-parameters (assuming thickness known)
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Figure 48: Relative dielectric constant (real and imaginary) of Garlock — Nano
Material #0 Composite material estimated using ideal S-parameters (assuming
thickness known)
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Figure 49: Value of error function given in (19) in estimating the dielectic constants
of Garlock —Nano Material #0 Composite using both measured and ideal S-parameters.
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Figure 50: Relative dielectric constant (real and imaginary) of Garlock-Woven
Composite G material estimated using measured S-parameters (assuming thickness
known)
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Figure 51: Relative dielectric constant (real and imaginary) of Garlock — Woven
Composite G material estimated using ideal S-parameters (assuming thickness known)
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Figure 52: Value of error function given in (19) in estimating the dielectic constants of
Garlock —~Woven Composite G material using both measured and ideal S-parameters.
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Figure 53: Relative dielectric constant (real and imaginary) of Garlock-Bakelite
Composite material estimated using measured S-parameters (assuming thickness

known)
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Two Layers Composlie Material : Garlock-Bakellte
(Thicknesses of layers assumed known)
Estimatos are determined using ideal S-parameters
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Figure 54: Relative dielectric constant (real and imaginary) of Garlock — Bakelite
Composite material estimated using ideal S-parameters (assuming thickness
known)
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Figure 55: Value of error function given in (19) in estimating the dielectic
constants of Garlock —Bakelite Composite material using both measured and
ideal S-parameters.
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From the results shown in figures 41-55, it may be concluded that the method presented
in this report can successfully estimate dielectric constants of two layer composite
material with apriori knowledge of the thickness of individual layers. An attempt was
made to estimate thicknesses of individual layers along with their dielectric constants
using the MatLab Code given in Appendix B. However, the optimizer did not estimate
these values correctly and hence the results for such cases are not presented.

Three Layer Composite Material:

In this section measured S-parameters of composite material consisting of three material
layers are used to estimate dielectric constants of individual layers. The error or
objective function used for this purpose is identical to equation (19). The MatLab Code
given in Appendix B, with proper input variables is used to estimate the dielectric
constants of two layers.

Examples:(Thickness of Layers Known):

A three layer composite material consisting of layers of Nano Material #0, Garlock, and
Garlock was formed by placing the Nano Material #0 layer of thickness

A, =0.3099¢cm between z, =0 and z; =0.3099cm planes, the Garlock layer of
thickness A, =0.17cm between z, =0.3099cm and z, = 0.4799cm planes, and
Garlock layer of thickness A, =0.17cm between z, =0.4799cm and z, = 0.6499cm

planes. The measured values of S-parameters stored in FT_NANGRKGRK.60 were used
to estimate dielectric constants of each individual layers using the MatLab code given in
the Appendix B. The estimated values of dielectric constants are shown in Figure 56.
The values of dielectric constants of each these material when estimated using single

layer measured data were found to be &, = 2.5~ j0.00 for the Nano Material #0,
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£, =7.5- j0.00 for the Garlock material. However, when the individual dielectric

constants are estimated using the measured data for the three layer composite material,

these estimates come out to be little different for the earlier estimates. This may be

attributed to the presence of airgaps between the layers.
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Figure 56: Estimated values of dielectric constants of individual layers from
measured values of S-parameters of three layer composite slab (Nano Material
#0-Garlock-Garlock)
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Figure 57: Final values of error function in estimation of dielectric constants of
individual layers shown in Figure 56
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The final value of error function or objective function for the estimation shown in Figure
56 is shown in Figure 57.

A second example of three layer composite material considered was formed by three

layers of the same Garlock slabs. The first Garlock slab of thickness A, =0.17cm was

placed between the z, =0 and z;, =0.17cm planes, second Garlock layer of thickness
A, =0.17cm was placed between z, =0.17cm and z, = 0.34cm planes, and the third
Garlock layer of thickness A, =0.17cm between z, =0.34cm and z, =0.51cm planes.

The measured values of S-parameters stored in FT_GRKGRKGRK.60 were used to
estimate dielectric constants of each individual layers using the MatLab code given in
Appendix B. The estimated values of dielectric constants are shown in Figure 58. The
values of estimated dielectric constants of each individual layers must be close to

£, =7.5-j0.00. However, the results shown in the Figure 58 are widely spread around
the correct value of the dielectric constant. This discrepancy in the estimated values
derived using the measured S-parameters of multilayer composite material is attributed to
the measurement errors caused by the airgaps between the layers. The error function or

objective function at the final values of dielectric estimates is shown in Figure 59.
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IV Conclusion
A simple waveguide mode matching method in conjunction with the fminsearch

MatLab optimization search function has been presented to estimate the complex
permitivity of multi-layer composite material. A multi-layer composite material is placed
in an X-band rectangular waveguide and its two-port S-parameters are measured over the
X-band using hp-8510 Network Analyzer. For the same composite material using the
simple mode matching technique the two port S-parameters are calculated as a function
of complex dielectric constants and thicknesses of each layer. The fminsearch function
available in the MatLab Optimization Tools is then used to determine complex dielectric
constants of each layers assuming the thicknesses of each layer are unknown.

The present approach has been validated using number of composite material
configurations. The composite material formed by single layers of Garlock, Cork,
Ceramic, Nomex Felt, Woven Composite B and G, Rubylith, Bakelite, Teflon, Fiber
Glass, Foam, Nano Material have been tested using the present method. The estimated
values of dielectric constants and their thicknesses have been found to agree well with the
true values supplied by the manufacturers. The composite materials formed by placing
two layers of the above basic materials have been tested using the present method. The
dielectric constants of individual layers estimated have been found to be in good
agreement with their values specified by manufacturers. However, for the composite
material consisting of more than one layer it was assumed that the thicknesses of
individual layers were known. It has been observed that the present method could not
estimate the dielectric constants of individual layers correctly when three of more layers

were used to form a composite material. This is attributed to the fact that the airgap
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present in the measurement samples could not be accurately modelled in the estimation

model leading to an incorrect estimation of dielectric constants
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Appendix A: MatLab code for estimation of S-parameters of multilayer substrate
placed in a rectangular waveguide.

% This program calculates S-parameters of

% N-layer composite material placed in an

% X-band rectangular waveguide as a function

% of frequency. Waveguide dimensions (2.29 cm x 1.02 cm)

% Select 201 frequency points over 8.2-12.4 GHz

% Frequency band.

delf = (12.4-8.2)/201;

for j = 1:201
fr(j) = 8.2 +(j-1)*delf;

end

% Input number of layers

nl = input('nl =');

% Input dielectric constants

for k = 1:2*nl
% First value is real part of dielectric constant
% second value is imaginary part of dielectri constant
x0(k) = input('x0(k) =');

end

% Input location of interfaces

for k = 1:n1+1
zn(k) = input('zn(k) =');

end

% Set dielectric constants depending upon
% number of layers. Only 4 layers are

% included. If nl > 4 then add condition
% for given nl

‘ ifnl ==
er(1) =x0(1) -i*x0(2);

end

ifnl==2
‘ er(1) = x0(1) -i*x0(2);
: er(2) = x0(3) -i*x0(4);
‘ end

ifnl ==
, er(1) = x0(1) -i*x0(2);
| er(2) = x0(3) -i*x0(4);
' er(3) = x0(5)-i*x0(6);
end
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ifnl ==4
er(1) = x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er(3) = x0(5)-i*x0(6);
er(4) = x0(7)-i*x0(8);
end

nlayer = n1; %number of layers redifined

n = nlayer+1; % Matrix order

t =zeros(n,1); % Right handside column matrix initilized
s =zeros(n); Y% Admittance matrix initilized

ak =zeros(n,1); % propagation column matrix

% Set dielectric constants redifined

% const is set to zeros (3 by 3)

const = zeros(n);

% Dimensions of x-band waveguide in cm
aa = 2.29;

bb = 1.02; % guide dimensions

% Free space dielectric constant

€0 = 1.e-9/(36*pi);

%1 = 8.2e9 %frequency of microwave signal

¢ =3.e10; % velocity of light in meters/second

ul =4*pi*l.e-7; % Magnetic permeability of free space
n0 = (u0/e0)*.5; % Free space impedance

for ifr = 1:201

freq = fr(ifr); % Frequency in GHz

ak0 =2*pi*freq/30; %wave number in free space
% This loop calculates propagation

% constants in layers

for k1 = 1:nl

const(kl) = ak0*ak0*(er(k1))-(pi/aa)"2;

if (real(const(k1)) < 0.0) ak(kl) = -i*(-const(k1))".5;
else ak(kl) = (const(kl1))".5;

end

end

% ak00 and akl1 are propagation constants
% for the free space regions of waveguide
const) = ak0"2-(pi/aa)"2;
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if (real(const0) < 0.0) ak00 = -i*(-const0)".5;
else ak00 = (const0)*.5;

end
akll = ak00;

for k1 =1:n1
addm(k1) =ak(k1)./(ak0*n0);
end :

addm00 = ak00/(ak0*n0);
addml1 = addm00;

% Initilize s matrix
for k1= 1:nl1+1

for k2 = 1:n1+1
s(k1,k2) = 0.0;
end
end

% LOOP TO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1 =2:nl

k2 =kl1-1;

argl = ak(k2)*(zn(k1)-zn(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 =kl;
argl = ak(k2-1)*(zn(k1)-zn(k1-1));
arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)*cos(arg2)/(i*sin(arg2));
k2 = kl1+1;
arg2 = ak(k1)*(zn(k1+1)-zn(kl));
s(k1,k2)= -addm(k1)/(i*sin(arg2));

end

% FIRST ROW OF IMPEDANCE MATRIX

s(1,1) = addm00 + cos(ak(1)*zn(2))/(i*sin(ak(1)*zn(2)))*addm(1);
s(1,2) = -addm(1)/(i*sin(ak(1)*zn(2)));

% LAST ROW OF IMPEDANCE MATRIX
s(nlayer+1,nlayer) = -addm(nlayer)/(i*sin(ak(nlayer) ...

*(zn(nlayer+1)-zn(nlayer))));
s(nlayer+1,nlayer+1) = addm(nlayer)*cos(ak(nlayer)* ...
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(zn(nlayer+1)-zn(nlayer)))/(i*sin(ak(nlayer)* ...
(zn(nlayer+1)-zn(nlayer)))) + addm11;

% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% IS NON ZERO
for j = 1:nlayer+1
t(j) = 0.0 +i*0.0;
end

t(1) =2*addm00;
% INVERT S AND MULTIPLY BY t
T = inv(s)*t;

% FIRST ELEMENT OF T - 1 IS REFLECTION

% COEFFICIENT AND LAST VALUE OF T is TRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION IS REFERENCED TO
% INPUT PLANE IT IS MULTIPLIED BY PHASE CORRECTION

sl1c(ifr) =T(1,1)-1;
s21c(ifr) =T(n1+1,1)*exp(i*ak00*zn(nl1+1));

end

% CALCULATING S22 AND S12

% Inverse the position of interfaces

if nl ==
zn(1) = zn(1);
zn(2) = zn(2);
er(1) =x0(1) -i*x0(2);

end

if nl ==
zn(1) = -zn(3) + zn(3);
zn(2) = -zn(2) + zn(3);
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zn(3) = -zn(1) + zn(3);

er(1) = x0(3) -i*x0(4);

er(2) = x0(1) - i*x0(2);
end

if nl ==
zn(1) = -zn(4) + zn(4);
zn(2) = -zn(3) + zn(4);
zn(3) = -zn(2) + zn(4);
zn(4) = -zn(1) + zn(4);

er(1) = x0(5) -i*x0(6);

er(2) = x0(4) -i*x0(3);

er(3) = x0(1) -i*x0(2);
end

ifn==
zn(1) = -zn(5) + zn(5);
zn(2) = -zn(4) + zn(5);
zn(3) = -zn(3) + zn(5);
zn(2) = -zn(2) + zn(5);
zn(1) = -zn(1) + zn(5);
er(1) = x0(7) -i*x0(8);
er(2) = x0(5) -i*x0(6);
er(3) = x0(3) -i*xo0(4);
er(4) = x0(1) - i*x0(2);
end
nlayer = n1; %number of layers redifined
n = nlayer+1; % Matrix order
t =zeros(n,1); % Right handside column matrix initilized
s =zeros(n); Y% Admittance matrix initilized
ak =zeros(n,1); % propagation column matrix
% Set dielectric constants redifined

% const is set to zeros (3 by 3)

const = zeros(n);

aa = 2.29;

bb = 1.02; % guide dimensions

% Free space dielectric constant

e0 = 1.e-9/(36*pi);

%f = 8.2e¢9 %frequency of microwave signal

c =3.e10; % velocity of light in meters/second

ul =4*pi*l.e-7; % Magnetic permeability of free space

n0 = (u0/e0)*.5; % Free space impedance
for ifr = 1:201
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freq = fr(ifr); % Frequency in GHz

ak0 =2*pi*freq/30; % wave number in free space
% This loop calculates propagation

% constants in layers

for k1 = 1:nl

const(k1) = ak0*ak0*(er(k1))-(pi/aa)"2;

if (real(const(k1)) < 0.0) ak(k1) = -i*(-const(k1))".5;
else ak(kl) = (const(k1))2.5;

end

end

% ak00 and ak11 are propagation constants
% for the free space regions of waveguide
const0 = ak0/2-(pi/aa)"2;

if (real(const0) < 0.0) ak00 = -i*(-const0)".5;
else ak00 = (const0)”".5;

end
akll = ak00;

% calculate addmitince for layers:
for k1 =1:nl

addm(k1) =ak(k1)./(ak0*n0);
end

addmo00 = ak00/(ak0*n0);
addmll = addm00;

% Initilize s matrix
for k1= 1:n1+1
for k2 = 1:n1+1
s(k1,k2) = 0.0;
end
end

% LOOP TO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1 =2:n1

k2 =k1-1;
argl = ak(k2)*(zn(k1)-zn(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 = kl;
argl = ak(k2-1)*(zn(k1)-zn(k1-1));
arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)*cos(arg2)/(i*sin(arg2));
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k2 = kl+1;

arg2 = ak(k1l)*(zn(k1+1)-zn(k1));

s(k1,k2)= -addm(k1)/(i*sin(arg2));
end

% FIRST ROW OF IMPEDANCE MATRIX

s(1,1) = addm00 + cos(ak(1)*zn(2))/(i*sin(ak(1)*zn(2)))*addm(1);
s(1,2) = -addm(1)/(i*sin(ak(1)*zn(2)));

% LAST ROW OF IMPEDANCE MATRIX

s(nlayer+1,nlayer) = -addm(nlayer)/(i*sin(ak(nlayer) ...
*(zn(nlayer+1)-zn(nlayer))));

s(nlayer+1,nlayer+1) = addm(nlayer)*cos(ak(nlayer)* ...
(zn(nlayer+1)-zn(nlayer)))/(i*sin(ak(nlayer)* ...
(zn(nlayer+1)-zn(nlayer)))) + addml11;

% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% 1S NON ZERO

for j = 1:nlayer+1

t(j) = 0.0 -i*0.0;

end

t(1) =2*addmo0;

% INVERT S AND MULTIPLY BY t

T = inv(s)*t;

% FIRST ELEMENT OF T - 1 1S REFLECTION

% COEFFICIENT AND LAST VALUE OF T is TRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION IS REFERENCED TO
% INPUT PLANE IT IS MULTIPLIED BY PHASE CORRECTION
ref =T(1,1)-1;

s22¢(ifr) = ref*exp(i*ak00*2*zn(n1+1));
s12¢(ifr) =T(n1+1,1)*exp(i*ak00*zn(nl+1));

end

ss = load('FT_GRLK.60');
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delf = (12.4-8.2)/201;
for j =1:201

fr(§) = 8.2 +(j-1)*delf;
end

for j =1:201

s11r(j) = ss(j,1);
s11i(j) = ss(j,2);
s21r(j) = ss(j+201,1);
s21i(j) = ss(j+201,2);
s12r(j) = ss(j+402,1);
s12i(j) = ss(j+402,2);
s22r(j) = ss(j+603,1);
$22i(j) = ss(j+603,2);
end

plot(fr,s11r,fr,s11ifr,real(s11c),fr,imag(s11c))
ok = input('Is plot ok =');
plot(fr,s21r,fr,s21i,fr,real(s21c),fr,imag(s21c))
ok = input('Is plot ok =');
plot(fr,s12r,fr,s12i,fr,real(s12c),fr,imag(s12c))
ok = input('Is plot ok =');
plot(fr,s22r,fr,s22i,fr,real(s22c),fr,imag(s22c))
ok = input('Is plot ok =');

%o
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Appendix B: MatLab code for estimation of dielectric parameters of multilayer
substrate placed in a rectangular waveguide.

% This program estimates dielectric parameters of

% multi-layer substrate . Measured data has to be loaded in
% meas.dat file

% X-band rectangular waveguide as a function

% of frequency.

% Load measured data file

ss = load('meas.dat’);

delf = (12.4-8.2)/201;
for j =1:201
fr(j) = 8.2 +(j-1)*delf;

end

% Input number of layers
nl = input('nl =');

% Input dielectric constants

for k = 1:2*nl
% First value is real part of dielectric constant
%0 second value is imaginary part of dielectri constant
x0(k) = input('x0(k) =');

end

% Input location of interfaces

fork = 1:n1+1
zn(k) = input('zn(k) =");
end

for j = 1:201

s11r(j) = ss(j,1);

s11i(j) = ss(j,2);

s21r(j) = ss(j+201,1);
s21i(j) = ss(j+201,2);
s12r(j) = ss(j+402,1);
s12i(j) = ss(j+402,2);
s22r(j) = ss(j+603,1);
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s22i(j) = ss(j+603,2);
end
% CHECK WHETHER SYSTEM IS LOSSLESS OR LOSSY

for j = 1:201

s11 = s11r(j)+i*s11i(j);
s21 = s21r(j)+i*s21i(j);
s12 = s12r(j)+i*s12i(j);
$22 = s22r(j)+i*s22i(j);
freq = fr(j);

x0 = [1.0;0.0;1.0;0.0;1.0;0.0];

options = optimset('Display’, 'iter', 'MaxFunEvals' , 1000, 'TolFun’, 1.e-08)

options = optimset('TolX"', 1e-08)

[x,fval,flag] = fminsearch(@obj_ref,x0,0options,s11,s21,s12,s22 freq,nl ...
»Zn);

erll(j) = x(1);

erl2(j) = x(2);

er21(j) = x(3);

er22(j) = x(4);

er31(j) = x(5);

er32(j) = x(6);

fgl(j) = fval;
flag

end

outmat = [fr.",erl11.',er12.'];
save('templ’,'outmat’,'-ascii’)

outmat = [fr.",er21.",er22."'];
save('temp2','outmat’,'-ascii')
outmat = [fr.",er31.",er32.'];
save('temp3','outmat’,’-ascii')
outmat =[fr.',fgl.'];
save('temp4','outmat','-ascii')

%
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% This is object function
function f = obj_ref(x0,s11,521,512,522 freq,nl,zn)

if nl ==
er(1) = x0(1) - i*x0(2);

end

if nl ==
er(1) = x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
end
if n1 ==3
er(1) = x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er(3) = x0(5) -i*x0(6);
end

if nl ==
er(1) = x0(1) -i*x0(2);
er(2) = x0(3) -i*x0(4);
er(3) = x0(5) -i*x0(6);
er(4) = x0(7) -i*x0(8);
end

nlayer = n1; %number of layers redifined
n = nlayer+1; % Matrix order

t =zeros(n,1); % Right handside column matrix initilized
s =zeros(n); % Admittance matrix initilized
ak =zeros(n,1); % propagation column matrix

% Set dielectric constants redifined

% const is set to zeros (3 by 3)

const = zeros(n);

aa = 2.29;

bb = 1.02; %guide dimensions

% Free space dielectric constant

e0 = 1.e-9/(36*pi);

%f = 8.2¢9 %frequency of microwave signal

¢ =3.e10; % velocity of light in meters/second

u0 =4*pi*l.e-7; % Magnetic permeability of free space
n0 = (u0/e0)*.S; % Free space impedance
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% for ifr = 1:201

%o freq = fr(ifr); % Frequency in GHz

ak0 =2*pi*freq/30; % wave number in free space
% This loop calculates propagation

% constants in three layers

for k1 =1:nl

const(kl) = ak0*ak0*(er(k1))-(pi/aa)"2;

if (real(const(k1)) < 0.0) ak(k1) = -i*(-const(k1))".5;
else ak(kl) = (const(k1))".5;

end

end

const0 = ak0”2-(pi/aa)"2;
if (real(const0) < 0.0) ak00 = -i*(-const0)".5;
else ak00 = (const()*.5;

end
akl1 = ak00;

% calculate addmitince for layers:
for k1 =1:nl

addm(k1) =ak(k1)./(ak0*n0);
end

addmo00 = ak00/(ak0*n0);
addmll = addm00;

% Initilize s matrix
for k1= 1:n1+1
for k2 = 1:n1+1
s(k1,k2) = 0.0;
end
end

% LOOP TO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1 =2:n1

k2 = k1-1;
argl = ak(k2)*(zn(k1)-zn(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 =kl;
argl = ak(k2-1)*(zn(k1)-zn(k1-1));
arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)*cos(arg2)/(i*sin(arg2));
k2 =kl1+1;
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arg2 = ak(k1)*(zn(k1+1)-zn(k1));
s(k1,k2)= -addm(k1)/(i*sin(arg2));
end

% FIRST ROW OF IMPEDANCE MATRIX

s(1,1) = addmO00 + cos(ak(1)*zn(2))/(i*sin(ak(1)*zn(2)))*addm(1);
s(1,2) = -addm(1)/(i*sin(ak(1)*zn(2)));

% LAST ROW OF IMPEDANCE MATRIX

s(nlayer+1,nlayer) = -addm(nlayer)/(i*sin(ak(nlayer) ...
*(zn(nlayer+1)-zn(nlayer))));

s(nlayer+1,nlayer+1) = addm(nlayer)*cos(ak(nlayer)* ...
(zn(nlayer+1)-zn(nlayer)))/(i*sin(ak(nlayer)* ...
(zn(nlayer+1)-zn(nlayer)))) + addm11;

% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% IS NON ZERO
for j = 1:nlayer+1
t(j) = 0.0+i*0.0;
end
t(1) =2*addm00;

% INVERT S AND MULTIPLY BY t
T = inv(s)*t;

% FIRST ELEMENT OF T - 11S REFLECTION

% COEFFICIENT AND LAST VALUE OF T is TRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION IS REFERENCED TO

% INPUT PLANE IT IS MULTIPLIED BY PHASE CORRECTION

sllc =T(1,1)-1;
s21c =T(nl1+1,1)*exp(i*ak00*zn(n1+1));

f = real(sllc-s11)*real(sl1c-s11) + imag(sllc-s11)*imag(s11c-s11) ...
+real(s21c-s21)*real(s21c-s21) + imag(s21c-s21)*imag(s21c-s21);

% CALCULATING S22 AND S12
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ifnl ==
znl(1) = zn(2) - zn(2);
n1(2) = zn(2) - zn(1);
end
if nl ==
znl(1) = zn(3) - zn(3);
znl(2) = zn(3) - zn(2);
zn1(3) = zn(3) - zn(1);
end

ifnl==3
znl(1) = zn(4) - zn(4);
znl(2) = zn(4) - zn(3);
znl(3) = zn(4) - zn(2);
zn1(4) = zn(4) - zn(1);
end

ifnl ==4
znl(1) = zn(5) - zn(5);
znl(2) = zn(5) - zn(4);
znl(3) = zn(5) - zn(3);
znl(4) = zn(5) - zn(2);
nl(5) = zn(5) - zn(1);
end

if nl==1

er(1) =x0(1) - i*x0(2);
end
ifnl ==

er(2) = x0(1) - i*x0(2);
er(1) = x0(3) - i*x0(4);
end
ifnl ==3
er(1) = x0(5) -i*x0(6);
er(2) = x0(3) -i*x0(4);
er(3) = x0(1) - i*x0(2);
end
if nl ==
er(1) = x0(7) -i*x0(8);
er(2) = x0(5) -i*x0(6);
er(3) = x0(3) -i*x0(4);
er(4) = x0(1) - i*x0(2);
end
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nlayer = nl; %number of layers redifined

n = nlayer+1; % Matrix order

t =zeros(n,1); % Right handside column matrix initilized
s =zeros(n); Y% Admittance matrix initilized

ak =zeros(n,1); % propagation column matrix

% Set dielectric constants redifined

% const is set to zeros (3 by 3)

const = zeros(n);

aa = 2.29;

bb = 1.02; %guide dimensions

% Free space dielectric constant

e0 = 1.e-9/(36*pi);

%f = 8.2¢9 %frequency of microwave signal

¢ =3.e10; % velocity of light in meters/second

ul =4*pi*l.e-7; % Magnetic permeability of free space
n0 = (u0/e0)".5; % Free space impedance
%for ifr = 1:201
%freq = fr(ifr); % Frequency in GHz
ak0 =2*pi*freq/30; % wave number in free space
% This loop calculates propagation
% constants in three layers
for k1 =1:nl
const(k1) = ak0*ak0*(er(k1))-(pi/aa)”"2;
if (real(const(k1)) < 0.0) ak(k1) = -i*(-const(k1))"*.5;
else ak(kl) = (const(k1))*.5;
end
end
% ak

%ok = input('ok = ")

% ak00 and ak11 are propagation constants
% for the free space regions of waveguide
const0 = ak0/2-(pi/aa)"2;

if (real(const0) < 0.0) ak00 = -i*(-const0)".5;
else ak00 = (const0)".5;

end
ak11l = ak00;
% ak0
% calculate addmitince for layers:
for k1 =1:nl

addm(k1) =ak(k1)./(ak0*n0);
end
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% addm
% ok = input('ok =')
addmo00 = ak00/(ak0*n0);
addml1 = addm00;
% addm00
% addm11
%ok = input('ok =')
% Initilize s matrix
for k1= 1:nl1+1
for k2 = 1:n1+1
s(k1,k2) = 0.0;
end
end

% LOOP TO CALCULATE IMPEDANCE MATRIX
% EXCLUDING FIRST ROW AND LAST ROW
for k1 = 2:nl

k2= kl-l;

argl = ak(k2)*(znl(k1)-zn1(k1-1));
s(k1,k2) = -addm(k2)/(i*sin(argl));
k2 =kl;
argl = ak(k2-1)*(znl1(k1)-zn1(k1-1));
arg2 = ak(kl)*(zn1(k1+1)-zn1(k1));
s(k1,k2) = addm(k2-1)*cos(argl)/(i*sin(argl)) + addm(k1)*cos(arg2)/(i*sin(arg2));
k2 =k1+1;
arg2 = ak(k1)*(znl(k1+1)-zn1(k1));
s(k1,k2)= -addm(k1)/(i*sin(arg2));

end

% FIRST ROW OF IMPEDANCE MATRIX

s(1,1) = addmO00 + cos(ak(1)*zn1(2))/(i*sin(ak(1)*zn1(2)))*addm(1);
s(1,2) = -addm(1)/(i*sin(ak(1)*zn1(2)));

% LAST ROW OF IMPEDANCE MATRIX

s(nlayer+1,nlayer) = -addm(nlayer)/(i*sin(ak(nlayer) ...
*(znl(nlayer+1)-znl(nlayer))));

s(nlayer+1,nlayer+1) = addm(nlayer)*cos(ak(nlayer)* ...
(znl(nlayer+1)-znl(nlayer)))/(i*sin(ak(nlayer)* ...
(zni(nlayer+1)-zni(nlayer)))) + addml1;

%s

%ok = input('ok =')
% form cpmplex matrix
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% ONLY FIRST ELEMENT OF RIGHT HAND SIDE
% 1S NON ZERO
for j = 1:nlayer+1
t(j) = 0.0 + i*0.0;
end
t(1) =2*addm00;

% INVERT S AND MULTIPLY BY t
T = inv(s)*t;

% FIRST ELEMENT OF T - 11S REFLECTION

% COEFFICIENT AND LAST VALUE OF T is TRANSMISSION
% COEFFICIENT

% SINCE MEASURED TRANSIMMSION IS REFERENCED TO
% INPUT PLANE IT IS MULTIPLIED BY PHASE CORRECTION

ref =T(1,1)-1;
s22¢ = ref*exp(i*ak00*2*znl1(nl+1));
s12¢ =T(nl1+1,1)*exp(i*ak00*znl(nl+1));

f = f+ real(s22c-s22)*real(s22c-s22) +imag(s22c-s22)*imag(s22¢-s22) ...
+ real(s12c-s12)*real(s12c-s12) + imag(s12c-s12)*imag(s12c-s12);
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