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ABSTRACT

When launching a spacecraft from Earth parking orbit to deep space, it is highly
desirable to have the hyperbolic excess velocity vector (v-infinity) contained
in the parking orbit plane. Ground launches can force the parking orbit plane
to contain the v-infinity vector by using launch azimuth and lift-off time as
independent wvariables. When launching from the Space Station, a new set of
variables comes into play. The Station orbit 1is of fixed inclination but
precessing due to the Earth’s oblateness. Its plane will seldom (and may never)
contain the desired v-infinity vector. Consequently, the departure strategy
will usually require multiple burns and include a plane change. Also, the
concept of "launch period" will be somewhat different from Earth surface
launches. An analysis of the deployment of interplanetary spacecraft from Space
Station 1s described, with -emphasis on the effect of the trajectory
characteristics on station operatioms. Several planetary mission types are
analyzed for manned Mars missions. In addition, high declination departures of
spacecraft on unmanned missions to an asteroid are examined. The constraint of
Station orbit nodal position is quantified and the operational implications for

station reboost strategy are examined.
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BACKGROUND

The purpose of this study was to identify the operational requirements and
constraints on Space Station Freedom resulting from the use of the station to
deploy spacecraft on manned missions to Mars and unmanned missions to high
declination targets such as asteroids or comets.

Planetary departures from the orbit of a space station fundamentally differ
from ground launches. A surface launch to a planetary target allows an
orientational targeting choice by careful selection of launch time and ascent
azimuth direction; the pre-existing station orbit provides no such options.
Further, the orientation of the station’s orbit continuously changes due to the
oblateness of the equatorial bulge of the Earth, which causes a relatively rapid
regression of the station’s orbital plane (by about -7.2 deg/day). An orbital
launch window occurs every time the regressing orbit plane sweeps over the V-
infinity vector of the transplanetary Earth escape hyperbola for the target
planet considered. At all other times, energy-expensive plane change maneuvers
are required at departure (References 1 and 2). :
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OBJECTIVE

This report summarizes a study performed at the Jet Propulsion Laboratory
in fiscal year 1989. The study examined the trajectory issues involved in using
Space Station Freedom as the departure site for piloted missions to Mars, and
unpiloted missions on high-declination departure trajectories to planetary bodies
such as asteroids and comets. Previous studies in this area (References 1 and
2) dealt with a broad range of issues, including assembly of spacecraft at the
station, the effects of mission staging on other payloads, and safety. Reference
1 also presented a preliminary examination of the trajectory issues for unmanned
spacecraft. This study focusses exclusively on the trajectory issues identified
in the previous studies, and examines the effects on station operations resulting
from the interaction of the departing spacecraft trajectory and the orbit of the
station. Of particular interest 1is sensitivity of the on-orbit propellant
requirements on the misalignment of the station orbital plane and the plane of
the desired transplanetary trajectory. The extent to which the station orbital
plane orientation can be managed by modifying the reboost strategy also has
operational impacts. :
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SPACE STATION DEPARTURE
CASES STUDIED

This phase of the space station staging study focused on an assessment of
Earth departure penalties for space-assembled and -launched manned and unmanned
Mars missions. Specifically, four sample missions were selected from the then-
current (Spring 1989) Gateway Case Study repertoire: two exploration mission
cases (flights number one and two) and two evolution mission cases (also flights
one and two). Table 1 shows the pertinent characteristics of these sample cases
— Earth departure dates, Mars arrival dates, Venus flyby dates (if applicable),
and trajectory configuration, where E = Earth, V = Venus and M = Mars.

The work reported here was performed prior to the announcement of the
Human Exploration initiative. Consequently, flight opportunities in an earlier
time frame — 2001-2005 — were analyzed. The general conclusions should be valid,
however, over a wide range of piloted Mars missions.

In this study, the first two '‘Mars Expedition’’ and '‘Mars Evolution’’
missions described in Reference 3 were analyzed. These missions include both
direct Earth-Mars transfer trajectories and Earth-Venus-Mars flyby gravity assist
missions. Also included in this mission set are trajectories that adhere to a
free return to Earth'’ constraint to maximize crew safety. This constraint
would very likely also be applied to the Human Exploration Initiative missions
to Mars. :

In addition to the Mars missions, the study also examined high declination
departures from station orbit, specifically, a mission to the asteroid 433 Eros.
High declination missions differ from the Mars missions in that the precessing
station orbit plane may never be co-planar with v-infinity vector and a
relatively large plane change will be required.

Due to the need to limit the pages of this report to a number commensurate
with its intent as a summary document, only the results of the analysis of the
Mars second expedition mission will be presented. It is representative of the
missions studied in that most relevant points can be illustrated in example form.
For the complete analysis, the inquiring reader is referred to the FY89 Final
task report: Planetary Exploration Departures from the Space Station:
Trajectory Effects on Station Operations, JPL D-6896.
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MARS EXPEDITION CASE STUDY FLIGHT No. 2
(3 IMP. INJ., EVME ABORT CAP'Y, MARS ARRIVAL 6/15/2003)

The orbital departure imposes a plane change penalty on the mission, the
implementation of which can be performed as a 3-impulse maneuver: co-planar (with
respect to the space station) injection into a 24 hour elliptical parking orbit,
a plane change at the high apogee such that the new plane contains the departure
V-infinity vector, and a perigee injection burn onto the departure hyperbola.

When evaluated over all possible nodal positions (0-360 degrees) of the
space station for each potential departure date, a contour plot of effective C3
can be constructed (shown by bold contour lines in the accompanying figure).
Empty, uncontoured regions are ‘'‘forbidden’’ areas, the result of exceeding the
geometric range angle constraint (discussed in more detall in References 1 and
2). The figure clearly shows regions of low (~15 km/%ec ) C3, which are
forbidden to apsidal 3-impulse maneuvers (Reference 2), and a region of
intermediate C3 requirements, sandwiched between the previous two, showing
reasonably long departure periods. The thin lines are contours of constant total

V3iMpin km/sec. The slanted straight lines labeled ‘‘nodal regression'’
represent the continuous shift of nodal longitude of the space station with
elapsed time. Hence any departure period from the orbital station of known nodal
orientation will lie along one of these slanted lines, as shown. Some periods
are short, others long, depending on the nodal longitude at an arbitrary initial
reference date and the way the slanted regression line intersects the C3
contours, arranged in a '‘horseshoe’’ pattern around the forbidden zone. As can
be seen in the figure, some departure periods are discontinuous and multiple,
while others are uninterrupted over the entire launch period range.
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ORBITAL DEPARTURE PERIOD AVAILABILITY

The final plot for this mission case shows departure period availability
with respect to the station’s nodal orientation. Two aspects of this plot should

be stressed:

a) If a minimum (single or dual) departure period duration value is
- specified, one can determine the effective C3 energy required to
satisfy that requirement, e.g., for an 20 day guaranteed window, C3
= 30 km%'sec® is needed. This in turn could dictate the maximum
allowable payload if an existing injection booster capability is
given.

[ 1)

b) If a specific energy is given (i.e., fixed stage and payload), the
plot shows the region of the nodal space in which orbital launch
cannot occur. For instance, 1if 18 days are required for the
departure period in order to make last-minute repairs to the
spacecraft, exchange systems or crew, deliver spares from ground or
get a second launch off, then, at a C3 = 30 kmg/sec , nodal
longitudes between 0O and 180 degrees are not allowable. If these
are indeed the naturally occurring nodal orientations of the station,
then only three options exist:

1) Go to a higher energy injection stage or stages
2) Leave some of the payload in Earth orbit

3) Move the ascending node of the station away from the critical
zone. Reboost strategy, as discussed later in this report,
is one of the techniques that could be used.

Another aspect of interest is the departure period itself — what is
a departure period of any given duration intended to accomplish? Can the number
of days between two allowable '‘half periods’’ be utilized in the waiting
process?
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EXAMPLE REBOOST STRATEGY

It is highly unlikely that a planetary mission departing from the space
station will have the luxury of sufficient C3 capability to make its departure
independent of the station’s nodal position.

Periodic space station altitude reboost maneuvers will be required
throughout the station’s life. The upper atmosphere produces drag, resulting
in the loss of orbital altitude. The amount of drag depends on frontal area mass
loading and atmospheric density, which in turn strongly depends on altitude and
the state of solar activity ~ the more active the Sun, the higher the upper
atmospheric density and thus higher drag and an increase in the orbital decay
rate.

Two example strategies are shown to provide an indication of the
sensitivity of nodal regression rate to orbital altitude. Suppose the typical
lower/upper altitude bounds of 352-374 km is raised to 409-416.5 km. For a 1998

atmospheric density predietion, both strategies result in a 90 day reboost cycle .

(four per year), but the higher altitude strategy gains 70.7 degrees of nodal
longitude at a year’s end. However, the resupply altitude would then be higher,
resulting in a lesser payload delivered by the Shuttle. The Shuttle’s
sensitivity of payload to altitude is approximately -25 kg/km.

The second example strategy shown would raise only the upper altitude bound
from 374 to 381 km (same 1998 atmospheric density assumptions). This would
result in a change of the reboost cycle duration to 120 days (three per year),
and would leave the original resupply altitude unchanged but with a corresponding
reduction in frequency of logistics resupply and crew changeout. Also, the gain
in nodal longitude would be much less significant: 8.9 degrees change per year.
Many other combinations of reboost altitudes are possible, and the reboost
strategy may have to be quite complex to accommodate other station activities.

It is quite possible that the strategy to manage the station’'s nodal
position will have to be started well in advance, perhaps years in advance, of
the scheduled departure date. Fortunately, the inexorable motion of the planets
permits precise advance knowledge of the station’s required orbital orientation.
This allows sufficient time to adjust the station’s nodal rate. The most
unpredictable wvariable in this case will be unforeseen wvariations in solar
activity and the resultant changes in the station’s orbital decay rate.
Flexibility in reboost strategy would have to be maintained to compensate for
these variations.
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PROPELLANT MASS REQUIRED FOR
MARS MISSION

One purpose of this study was to determine the penalty for orbital launch
missions in terms of total (fueled) mass on orbit required by a typical space
station-launched manned payload bound for Mars. Since the amount of propellent
required for Earth orbital departure scales linearly with injected payload mass,
a standard value of 176 metric tons was assumed for the payload mass for all
mission cases (from Reference 3).

As previously shown, the departure period availability, measured in days,
greatly depends on the amount of energy available for injection - for higher
energies, longer departure periods become available. However, some orientations
of the space station’s ascending node are very hard to accommodate, thereby
driving the effective C3 energy requirement to very high values.

In order to assess the total mass on orbit, My, from known effective C3
requirements, a table was prepared relating these two quantities. A single stage
cryogeniec (LOX + LHj) propellent departure maneuver and injection vehicle was
assumed, exhibiting a specific impulse of 460 seconds, with a tank/engine mass
factor of 10 percent of the propellent mass. The propellant requirements table
shows the total resulting mass on orbit, including the propellent and tankage
masses required for different levels of effective injection C3. The use of
multiple stages would lower the total mass on orbit somewhat.
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CONCLUSIONS

The conclusion of this study is that for piloted Mars missions departing
from the station, trajectory considerations appear to impose no insurmountable
barriers. Careful attention must be paid to overall system performance, cost
and risk optimization (including station operations, ground-to-station logistics,
and the departing mission). Astute advance planning would permit the station
to be a very advantageous assembly and departure point for manned exploration
mission although closely spaced departures could present a problem in the trade-
off of nodal position and mass-to-orbit.

It should be noted that any other assembly and staging site in low earth
orbit would encounter essentially the same problems as the station regarding
nodal regression and the trade-offs required to assure advantageous departure
geometries. Nodal regression rates differ with inclination and altitude and it

'is conceivable that some mission-specific advantage might accrue in having, say,

more mass-to-orbit capability (i.e., a lower orbit altitude) or a different
inclination. However, in the absence of such mission-specific trajectory
constraints, the space station appears quite capable of supporting the trajectory
requirements of manned solar system exploration.
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CONCLUSIONS (cont.)

The departure window availability for differing mission types (e.g., Earth-
Mars, Earth-Mars-Earth, Earth-Venus-Mars-Earth,) and different launch
opportunities exhibits great topological diversity. To derive any generalized
meaning from this diversity, one needs to consider the '‘big picture’’ of how
such major missions would be planned. As is typical of space missions, the
effective C3 capability of the departure booster will be the limiting factor in
the trade-off between payload mass and launch window duration. While spacecraft
designers always seem to need more mass, mission managers want the longest
possible launch window. These competing demands must be reconciled with the C3
limitations of the launch vehicle. For a given launch vehicle capability, it
is clear from the graphs of station departure window availability that
positioning the ascending node of the station orbit in the most advantageous
position can have a profound effect on the length of the departure window. For
endeavors of the magnitude of manned Mars missions, this would clearly be part
of the mission plan, as no mission is likely to have the luxury of sufficient
C3 capability to be totally independent of station nodal alignment.
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