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Abstract
A microscopic diffusion model is developed to represent solute transport in the boundary layer of a growing 
zeolite crystal. This model is used to describe the effect of gravity on particle shape and solute distribution. 
Particle dynamics and crystal growth kinetics serve as the boundary conditions of flow and convection-diffusion 
equations. A statistical rate theory is used to obtain the rate of solute transport across the growing interface, 
which is expressed in terms of concentration and velocity of solute species. Microgravity can significantly 
decrease the solute velocity across the growing interface compared to its earth-based counterpart. The extent 
of this reduction highly depends on solute diffusion constant in solution. Under gravity, the flow towards the 
crystal enhances solute transport rate across the growing interface while the flow away from crystals reduces 
this rate, suggesting a non-uniform growth rate and thus an elliptic final shape. However, microgravity can 
significantly reduce the influence of flow and obtain a final product with perfect spherical shape. The model 
predictions compare favorably with the data of space experiment of zeolites grown in space.   

Introduction 
The growth of crystals in microgravity has been a potentially attractive means of producing large crystals. 
This has been attributed to the reduction of density-driven convection and suspension of growing crystals 
in the nutrient pool1-3. It is generally believed that convection at the interface of the growing particle plays a 
significant role in determining the growth rate and the final shape of crystals. In the presence of gravity, the 
density-driven convection that arises from the density difference between the fluid in the depletion zone and 
that in the bulk, and the forced convection that arises from particle sedimentation during crystal growth from 
solution affect solute transport across the growing interface and, in turn, the particle shape4. In particular, flow 
towards the crystal enhances the solute transport rate across the growing interface while the flow away from 
crystal reduces this rate, suggesting a non-uniform growth and an elliptic crystal shape. Microgravity in an 
orbiting spacecraft could help isolate the effects of natural convection and minimize sedimentation5. This is 
expected to promote larger perfect crystals by reducing the convection and allowing a longer residence time 
in a high-concentration nutrient field. Although this size increase and shape optimization in microgravity 
have been observed, our understanding of the underlying mechanism of the influence of variable gravity on 
solute transport and particle shape is still rather limited. The objective of this paper is to develop a theoretical 
model to quantity these relationships.

Zeolite crystal growth is a process of transporting solute species from the solution to the crystal surface and 
then incorporating them into the crystal surface at the kink6. As a crystal grows from the solution, it depletes 
the solute species, producing a concentration-depleted zone around it. In this region, the solute concentration 
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changes continuously from the value at the crystal surface to that in the bulk solution. The concentration 
profile in the depletion zone varies with time as the crystal grows and is controlled by the balance between the 
flow of solute species towards the crystal surface and the rate of incorporation of these solutes into the crystal 
lattice. The kinetics of incorporation at the surface is linked to the bond configuration of the crystallographic 
structure, while the flow towards the surface is highly dependent on the mass transport properties in the bulk 
solution, which turn out to be crucial for the overall crystal-growth process. The diffusive transport through 
the depletion zone around a growing crystal is therefore responsible for any observable difference between 
on-ground and microgravity experiments including crystal quality enhancement.   

Although a number of experiments have been performed on crystal growth and shape evolution both under 
gravity and microgravity, there is no theoretical model to describe particle shape evolution and kinetics of 
mass transport in the boundary layer of a growing crystal. Carotenuto et al.7 performed an order-of magnitude 
analysis of natural convection during solidification and crystallization in microgravity. This model however 
does not account for the motion of the crystal and the kinetics of mass transport. The shape evolution as the 
crystal grows under microgravity is also not addressed.    

A model is developed to describe the crystal growth and shape evolution by integrating particle dynamics 
with the convection-diffusion equation in the boundary layer around the growing crystal. Specifically, particle 
dynamics is used to obtain the drag force and relative velocity between the particle and the solution, while 
the convective diffusion equation is used to describe the solute distribution and thus the mass flux across the 
growing interface. Equally important is studying the impact of variable gravity on evolution of particle shape 
both on ground and in microgravity. The model is validated by comparison of its predictions with a recent set 
of experimental data on zeolite crystal growth.

Formulation
Particle Dynamics
We consider a spherical crystal particle growing in an incompressible solution. As shown in Fig.1, the crystal 
falls down in the presence of gravity due to the difference in density. A boundary layer thus develops around 
the particle with different solute concentration from the bulk. The integro-differential equation governing the 
motion of the growing crystal can be expressed as8:

                                    
where Vp is the velocity of the particle, mp is the mass of the particle, mf is the fluid mass which has the same 
volume as particle, g is the gravity, and F is the hydrodynamic force associated with the fluid movement. 
Typically, the first term on the right side of Eq.(1) represents the buoyancy force and the second results from 
the fluid motion about the particle. For the viscous low Reynolds number flow, the hydrodynamic force can 
be expressed as9:   

where µ is the viscosity and R is the radius of the particle. 

Typically, once nucleated in solution, the crystal will accelerate until it reaches a terminal velocity in the 
presence of the gravity. The acceleration time and the terminal velocity are strongly dependent on the particle 
size R, the density ratio of particle to solution δ, and the viscosity of solution µ. For an unbound solution at 
rest, the acceleration time of a spherical particle can be expressed by10: 

m
dV
dt
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and the terminal velocity of particle can be expressed by

  
            
where ρ is the density of the solution. For zeolite particles with a size in the range 0.01-10 µm settling in 
a solution with a viscosity of 10-3 kg/m⋅s under gravity of 9.81 m/s2, the particle acceleration time will be 
in the range 4.4x10-11∼10-5 seconds. Therefore, it is reasonable to assume that the growing crystal will fall 
at a steady state.                                 

Governing Equation for Flow in the Boundary Layer 
Within this framework, the governing equations for continuity, Navier-Stokes, and convection-diffusion 
of solute species in the boundary layer of growing crystal can be expressed as11:

                                  

where u is the velocity of fluid, p is the pressure, t is time, c is the concentration of the solute species, 
and D is its diffusivity and ν is the kinematic viscosity of solution. We impose the Boussinesq-Oberbeck 
approximation in which physical parameters are assumed constant everywhere but in the momentum 
generation term of the equations above. 
 
This approach amounts to assuming the bulk acts as a nutrient pool for the crystal. When r approaches 
infinity, the velocity of solution reaches the terminal velocity of particle and the solute concentration is 
assumed to be a constant cb. The boundary for the convection-diffusion equation is expressed using the 
transport rate of solute across the interface between the crystal and the solution thus:                                 

Figure 1. Schematic of the boundary layer or depletion zone around the crystal.
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The kinetics of crystal growth dictates that this flux is related to the solute supersaturation as12: 
 

                            
where ci is the solute concentration at the interface, cs is the equilibrium concentration and Ke is the 
equilibrium exchange rate between the solution and crystals. The equilibrium exchange rate can be 
expressed as a combination of two terms12, thus:  
                                                                                                                                                                        
                                                                                                                                                                        
where T is the temperature, ur(L) is the radial velocity of solute molecules at the edge of the boundary 
layer whose thickness is L, and Kr and Kc are two empirical constants. The first term of Eq.(10) is the rate 
that would exist if the solution were static, and the second term results from the convection due to the 
sedimentation of growing crystals.

We assume the concentration in the bulk is constant throughout the growth process. Thus, the portion of 
solution outside of the diffusion layer is approximated as a reservoir that has a given concentration. Since 
the concentration in the bulk is assumed unchanged by the growth process, strictly speaking the system 
cannot reach equilibrium. 

Crystal Growth and Morphology
The morphology of the crystal strongly depends on the growth rates of the different crystallographic 
faces. According to Bravais rule, the important faces governing the crystal morphology are those with the 
highest reticular densities and the greatest interplanar distances. Or, in simpler terms, the slowest-growing 
and most influential faces are the closed-packed and have the lowest Miller indices. The growth of a given 
face is typically governed by the crystal structure and defects on the one hand, and by the environmental 
conditions especially the flow on the other. A reasonable evolution of the crystal size can therefore be 
written as a function of solute molecule flux across the growing interface, thus:

                                     
where ρc is the crystal density. 

A change in the flow environment can influence the shape of the growing crystal. Due to the symmetry, 
we consider the shape change along the principal axis in the plane of gravity such that a two-dimensional 
shape is considered as shown in Fig.1. Therefore, the ratio η of the minor axis (gravity direction) to the 
major axis (sectional) can be used to describe the evolution of shape of elliptic crystal as it grows, thus:
                                     

where R|| and R⊥ are the radii of the growing crystal in the gravitational and sectional directions, 
respectively. Numerically, this ratio equals one when the crystal is spherical.   
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Computational Details
The equations governing the flow and solute transport are solved with the SIMPLEC algorithm embodied 
in the CFD-ACE software code. This code uses a control volume based finite difference formulation with 
upwind difference for convective fluxes. 

      
Having discussed the crystal growth from solution, we shift our attention on the boundary layer around 
the crystal. We will present a dynamic simulation of crystal growth. To handle this simulation, a structured 
multiblock scheme is developed with multizone adaptive grid generation (MAGG) algorithm to avoid the 
stretching and compression of grids. The crystal growth system can be divided onto three blocks: crystal, 
boundary and bulk block. The grids in each block can be generated and moved adaptively independent of 
other blocks. The crystal block becomes larger and the bulk becomes small as the crystal surface moves 
outward. The efficiency and accuracy of the dynamic simulation of crystal growth can be improved by 
using this algorithm. The values of the principal input parameters used in the computation are presented 
in Table 1.       

Table 1. Parameter values used in calculations. 
Parameter Value
Kinematic viscosity ν (m2/s) 1.12×10-6

Solution density ρ (kg/m3) 1×103

Crystal density ρc (kg/m3) 2×103

Kr (m/sK1/2) 6×10-11

Kc 3×10-9

Results and Discussion
Figure 2 shows the solute velocity across the crystal surface as a function of gravity level and solute 
concentration ratio at interface to bulk for solute diffusion constant (a) 1.0x10-5 m2/s, (b) 1.0x10-7m2/s and 
(c) 1.0x10-9m2/s, respectively. It is seen that the solute velocity decreases as the gravity level decreases and 
the solute concentration ratio at the interface to the bulk increases. At high diffusion constant as shown in 
Fig. 2a, variable gravity does not affect the solute flux. However, for a low diffusion constant as shown in 
Fig. 2b and 2c, microgravity can decrease the solute flux to 20% and 70 % of ground value, respectively. 
This is due to the fact that the solute transport is mainly controlled by diffusion at high diffusion constant 
while the convection-controlled transport can compete to the diffusion-controlled transport at a low 
diffusion constant. In addition, for three diffusion constants tested, gravity levels in the range of 1.0x10-

2-10-5 m/s2 have no significant effect on solute flux. There are several solute species involved in zeolite 
crystal growth from solution. The diffusion constants of these species are typically in the range of 10-5-10-

12 m2/s. As the gravity level decreases, the transport of solute species with low diffusion constants will play 
a more significant role in crystal growth.   

Two cases are considered for crystal growth dictated by the type of boundary conditions on solute transport. 
The first assumes a fixed relative solute concentration at the growing interface. This case corresponds to 
a system in which crystal growth process locks the solute concentration at a fixed value at the growing 
interface. The predicted results are presented in Fig. 3 to 5. The second uses the boundary conditions 
expressed in Eqs.(9) and (10) where the parameters are presented in Table 1. This condition implies a 
diffusion-controlled mechanism of crystal growth. The predicted results are presented in Fig.6 to 8. 
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Figure 3 shows the evolution of particle shape and solute concentration profile as the crystal grows on 
ground (a) and in microgravity (b). Buoyancy-induced convection dominates solute transport around the 
crystal on the ground and induces a thinner concentration-depletion boundary layer around the crystal than 
in microgravity. On the other hand, mass transport is governed by diffusion in microgravity producing 
a thicker depletion zone where the concentration gradient is considerably lower than on earth. More 
importantly, density-driven convection under gravity produces a solute-poor region on the upper position 
of the crystal. In this region, the flow away from the crystal reduces the frequency with which the solute 
species collide with the crystal surface. Coupled with the low solute concentration gradient close to the 
crystal surface, growth in this part is considerably slower than other regions around the crystal. 

Figure 4 shows the crystal growth rate in the three directions on the ground (a) and in microgravity (b). 
The overall growth rate decrease as the crystal grows in both cases. This is due to the progressive decrease 
in solute concentration gradient close to the crystal surface. The growth rate in microrgravity is lower than 
that on ground by one order of magnitude, consistent with space experiments on zeolite crystal growth. 
There are significant differences in the growth rate in the three directions on ground. The growth rate in the 

Figure 2. Solute velocity across the growing interface as a function of concentration ratio and gravity 
level for solute diffusion constant (a) 1.0x10-5 m2/s, (b) 1.0x10-7 m2/s and (c) 1.0x10-9 m2/s. 
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direction θ = 180° is nearly four times that for θ = 0 because of density-induced convection. The difference 
in the growth rate between the directions is insignificant in microgravity, as would be expected.

Figure 3. The evolution of particle shape and solute as the crystal grows with a fixed solute 
concentration ratio of interface to bulk for (a) gravity (9.80) and (b) microgravity (10-6).

                                     (a)                                                                               (b)
Figure 4. The crystal growth rate in three directions (θ) with a fixed solute concentration ratio of 

interface to bulk for (a) gravity (9.80) and (b) microgravity (10-6). 

The evolution of shape parameter η as the crystal grows on ground and in microgravity is presented in 
Fig. 5. The curve for η = 1 representing a spherical shape is also presented for comparison. The crystal 
that grows in microgravity keeps the spherical shape while the crystals grown on the ground would be 
predicted to evolve into an ellipsoid. This is largely due to non-uniform growth rate on the ground under 
the influence of density-driven convection while uniform growth rate is maintained in microgravity.

Figure 6 shows the evolution of particle shape and solute profiles as the crystal grows on the ground (a) 
and in microgravity (b). Buoyancy-induced convection deeply affects the solute transport in the boundary 
layer as the crystal falls down on ground. However, this influence is not significant due to the slow growth 
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rate that is dependent on solute concentration near the crystal surface. Mass transport is governed by 
diffusion as the crystal grows in microgravity. 

Figure 6. Evolution of particle shape and solute as the crystal grows with Kr=6.0x10-11 and Kc=3.0x10-9 
and T=100ºC for (a) gravity (9.80) and (b) microgravity (10-6). 

The growth rates of crystal as a function of θ and gravity level are presented in Fig. 7. The growth rate 
on the ground varies with θ since natural convection and diffusion jointly govern solute transport in the 
boundary layer. In microgravity, the variation of the growth rate with θ is relatively small due to the 
suppression of natural convection. 

The evolution of shape parameter η as the crystal grows on ground and in microgravity is presented in Fig. 
8. The variation of growth rate with θ results in an elliptic shape on ground and a nearly spherical shape 
in microgravity. 

Figure 5. The evolution of parameter η as the crystal grows with a fixed solute concentration ratio of 
interface to bulk.
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Conclusions
We developed a microscopic diffusion model for the solute transport in the boundary layer to describe the 
influence of gravity on crystal shape and solute distribution. The full particle dynamics and crystal growth 
kinetics are considered in expressing the boundary conditions for the governing equations. A statistical 
rate theory is used to obtain the rate of solute transport across the growing interface. The latter is expressed 
in terms of concentration and velocity of solute species. Microgravity can significant decrease the solute 
velocity across the growing interface compared to its earth-based counterpart. The extent of this reduction 
highly depends on solute diffusion constant in solution. Under gravity, the flow towards the crystal 
enhances solute transport rate across the growing interface while the flow away from the crystal reduces 
this rate, suggesting a non-uniform growth rate and resulting in an elliptic final shape. Microgravity 
significantly suppress the flow, giving a final product with spherical shape.
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                                     (a)                                                                       (b)
Figure 7. The crystal growth rate in three directions (θ) with Kr = 6.0x10-11 and Kc=3.0x10-9 and 

T=100ºC for (a) gravity (9.80) and (b) microgravity (10-6). 

Figure 8. The evolution of parameter η as crystals grow with Kr = 6.0x10-11 and Kc=3.0x10-9 and 
T=100ºC both on ground (9.80) and in microgravity (10-6).



530 531

References
1. Sand, L.B., Sacco, A., Jr., Thompson, R.W. and Dixon, A.G., “Large zeolite crystals: their potential 

growth in space”, Zeolites 7, 387 (1987).
2. Sacco, A., Jr., Thompson, R.W. and Dixon, A.G., “Zeolite crystal growth in space: what has been 

learned”, 31st Aerospace Sciences Meeting & Exhibit, Reno, USA (1993).
3. Sacco, A., Jr., “The NASA GAS program: A stepping stone to education”, IEEE Transactions on 

Education, V 34, 27-30 (1991).
4. Chayen, N.E., Snell, E.H., Helliwell J.R. and Zagalsky, P.F., J. Crystal Growth, V 171. 219-

225(1997).
5. Sacco, A., Jr., “Large zeolites – why and how to grow in space”, SPIE-The International Society for 

Optical Engineering, San Diego, USA (1991).
6. Otalora, F., Novella, M.L., Gavira, J.A., Thomas, B.R., Garcia-Ruiz, J.M., “Experimental evidence 

for the stability of the depletion zone around a growing crystal under microgravity”, Acta Cryst. D 57, 
412-417 (2001).

7. Carotenuto, L., Cartwright, J.H.E., Castagnolo, D., Garcia-Ruiz, J.M. and Otalora, F., “Theory 
and simulation of buoyancy-driven convection around growing protein crystals in microgravity”, 
Microgravity Sci. Tech., V 13, 3-10 (2002).                                               

8. Saffman, P.G., “The lift on a small sphere in a slow shear flow”, J. Fluid Mech. V 22, 384-400 
(1965).

9. Bird, R.B., Stewart, W.E. and Lightfoot, E.N., “Transport phenomena”, Edited by J.Wiley (1960). 
10. Batchelor, G.K., “Sedimentation in a dilute dispersion of spheres”, J. Fluid Mech. V 52, 245-268 

(1972).
11. Ruiz, X., Ramirez-Piscina, L. and Casademunt, J., “Numerical studies of fluid flow in microgravity 

conditions for confined crystal growth”, Astrophysics and Space Science, V 276, 135-140 (2001).
12. Dejmek, M. and Ward, “A statistical rate theory study of interface concentration during crystal growth 

or dissolution”, J. Chem. Phys. V 108, 8698-8704 (1998). 


	TOC: 


