Overview of MSFC's Applied Fluid Dynamics Analysis Group Activities

Roberto Garcia/TD64
Lisa Griffin/TD64
Robert Williams/TD64
Space Transportation Directorate

Presented at:
MSFC Falls Fluids Workshop
November 19, 2002

Overview

- Introduction
 - Fluid Mechanics at MSFC

- Relevant Fluid Dynamics Activities at MSFC
 - Turbomachinery
 - Nozzles
 - Combustion devices
 - Systems
 - MDA

- Related Topics
 - Hardware investments
 - Process improvements

- Concluding Remarks
Introduction

- High-fidelity fluids design & analysis expertise at MSFC focused in the space transportation directorate
 - CFD (TD64), induced environments (TD63), cold flow testing (TD62, TD63, TD74), and functional design (TD61)
- Fluid dynamics expertise a core competency at MSFC
- Support focused in two broad areas
 - Space Shuttle propulsion
 - Next Generation Launch Technologies
 - Space launch initiative (2nd generation RLV)
 - Advanced Space Transportation Program (3rd generation RLV)

Introduction: Role of Fluid Mechanics Expertise

- Fluid mechanics applications at MSFC focused on improving the safety, reliability, & cost of space transportation systems
- We define geometry, quantify environments, and predict performance
 - Incident investigation support (analysis and test)
 - Environments and performance definition (analysis and test)
 - Develop advanced hardware concepts and designs (analysis and test)
- We support the programs in meeting their goals
 - Assist the programs in being "smart buyers"
 - Provide innovative technical solutions
- We work with external partners who possess key capabilities
 - Other NASA centers, other government agencies, industry, academia
Introduction: CFD Goals

- Provide personnel with the tools to succeed
 - Maintain and enhance civil service personnel capabilities
 - Provide challenging work, hands-on experience, training
 - Continuously improve analysis techniques, computing resources, and test facilities

- Acquire/develop capability to perform broad, CFD-based parametric design concept studies
 - Spend more time engineering, less time "CFDing"
 - More efficient use of available computing resources
 - Requires automation in all phases: grid generation, flow solver, post-processing

- Expand range of CFD applicability
 - Improved models, combustion, transient processes, relative motion, cavitation, multi-component
 - Greater efficiency and robustness in flow solvers

Turbomachinery Activities

- Turbomachinery Dynamic Environments and Performance
 - High power density of rocket engine turbomachinery requires high-fidelity definition of the flow induced environments
 - Supported in TD64 w/ CORSAIR and w/ test definition & support

- Turbopump optimization task
 - 2 stage supersonic turbine, instrumented rotor
 - Tool improvements, design process improvements, rig design, manufacture, and testing

Optimized supersonic turbine
Turbomachinery Activities

SLI Turbine Airflow test rig:
- Subsonic, high flow turbine
- Design, analysis, manufacture, testing
- Instrumented rotor for code validation
- Turbine test rig in manufacture

CFD analysis of tester predicts similar flow patterns as for engine conditions

Test rig mechanical design complete

Rig parts in manufacture

Turbomachinery Activities

- Conducting CFD code validation to support pump-feedline design
 - Manifolds/feedlines interaction w/ rotor is an important effect
 - Have benchmarked Corsair and Chem for pipe flows
 - Applying validated code towards optimization of feedline for candidate configuration
 - Initial optimization w/ feedline alone
 - Final optimization to include coupling of feedline to rotor
Turbomachinery Activities

- **Space Shuttle LPOT nozzle cracking**
 - First application of Corsair to "incompressible" flow field prediction
- **Shuttle feedline flow liner cracks investigation support**
 - Predicting large p' at flow liner due to back flow from inducer
 - Circumstantial evidence supports predictions

Deep Throttle Turbopump task
- Cooperative effort between Ames/MSFC/Rkdn
 - Generate CFD validation data set for pumps
 - Apply validated CFD code to develop deep throttling pump design concepts
 - INS3D from Ames applied to SOA designs
 - Assess code, improve designs
- Task back within project guidelines for FY03
 - Task largely dormant in FY02 due to program budget cuts

Evaluate diffuser concepts to select test configuration
Turbomachinery Activities

- **Concepts NREC Inducer design Phase 2 SBIR**
 - Develop engineering design tools for cavitating inducers
 - Verify through new inducer designs
- **CRAFTech Cavitation Analysis Capability Development Phase 2 SBIR**
 - Extend current model to cryogenic propellants
 - Add time accurate capability in cavitation model
- **Developing Phantom to better support unsteady turbomachinery analysis**
 - Uses much of Corsair infrastructure
 - New formulation will support real fluids model
 - Improved efficiency for solving pump problems
 - 2-phase flows, non ideal fluids, etc.

Turbomachinery Activities

- **Supported Cobra Turbine designs**
 - PW/AJ joint venture staged combustion LOX-H2 engine
 - Performed CFD of main turbines in various environments
 - full 360-degree analysis
 - Supported design of low pressure turbomachinery
 - Airflow test rigs designed

ATD High Pressure Turbines under Cobra Conditions

<table>
<thead>
<tr>
<th>CFD based design parametrics</th>
</tr>
</thead>
<tbody>
<tr>
<td>Theta</td>
</tr>
<tr>
<td>------</td>
</tr>
<tr>
<td>15</td>
</tr>
<tr>
<td>20</td>
</tr>
<tr>
<td>25</td>
</tr>
<tr>
<td>30</td>
</tr>
</tbody>
</table>

Partial admission full annulus calculations variable GAMMA time-averaged flow
Nozzle Activities

- **Technology need**
 - Nozzles are a key component in setting the engines performance, thrust to weight, and operational life limitations
 - Application of CFD tools to advanced nozzle designs immature

- **Recent/Ongoing activities**
 - Have completed initial interaction with European community via NATO RTO Working Group #10
 - Testing of Aerojet designed altitude compensating nozzles complete
 - Full-flowing and separated CFD code validation data sets
 - FDNS comparisons look very good, but painful to obtain
 - Chem validation to follow

- **Recent/Ongoing activities (continued)**
 - Tested dual-throat linear aerospike (Rkdn design concept)
 - Highly instrumented
 - Setting up to test annular aerospike
 - Validation data for aerospike undergoing differential throttling for TVC

Images showing nozzle concepts and test setups.
Combustion Devices

- **Technology need**
 - Contemporary rocket engine combustion devices similar to 1960s-1970s designs
 - Longer life (robust), higher T/W designs required
 - Experimental demonstration of design robustness/life is cost prohibitive
 - Application of CFD in design of combustion devices hampered by real limitations
 - Inadequate accuracy (lack of physical modeling)
 - Inadequate turn-around time
 - Inadequate validation and verification where required physics are included in the CFD tools
 - Current focus at MSFC is in rocket chamber combustion
 - High pressure, all-speed, reacting flows
 - Presentations Wednesday morning
 - Combustion devices technology roadmap meeting and discussion Thursday morning

Combustion Devices

- **Focus of groups combustion devices activities is the staged combustion injector technology (SCIT) task**
 - Task objective is to develop, validate, and verify a CFD based injector design process
 - Develop 1D injector design/engineering tool
 - Develop optimization tools to allow efficient use of large number of CFD solutions
 - Develop required CFD capabilities for supporting large design parametrics
 - Robustness, physical models, turnaround time
 - Generate validation data sets
 - Verify by testing injector designed using new process
 - Gas-gas, liquid-gas, liquid-liquid
 - H2-O2, HCl-O2
 - Large task with ambitious goals, progress hampered by:
 - Changes in external priorities, direction
 - Greater than anticipated difficulty in achieving required robust (fire-and-forget) capability in FBNS for injector analysis
 - Difficulty in getting data suitable for code validation
- **SCIT task (continued)**
 - Have performed several gas-gas injectors design parametric studies
 - Each on the order of 50 designs
 - Have tested initial gas-gas elements at PSU (code validation)
 - Liquid-liquid injector test rig in manufacturing
 - Multi-element grid template, porosity models being tested

- **Combustion Devices: Injectors and Chambers**
 - Several key areas are likely to get increased attention
 - Hydrocarbon analysis capability improvement (turn-around time)
 - Enhancement to testing at SSC of RS-84 hardware
 - Test data for code validation
 - Assessment of advanced concepts
 - Transient modeling capability
 - Many combustion devices related failures occur during engine transients
 - CFD turnaround time, sub-critical combustion, lack of validation data
 - Combustion Stability
 - The elephant in the room that everyone tries to avoid/pretend it's not there
 - Potential focused NGLT area of focus
 - AFRL potential new initiative
Engine Systems

- **Technology need**
 - T/W of rocket engines sensitive to design of engine manifolds/ducts
 - Many design shortcomings traceable to interaction between components and engine “plumbing”
 - Combined cycle concepts required integrated design/analysis approach

- **Recent/Ongoing activities**
 - Internal assessment of LOCI/Chem from MSU
 - Unstructured, density based code
 - LOCI architecture designed for MDA
 - Under NASA sponsorship for RBCC flow path application
 - Has been applied to engine powerhead problem
 - Will be used to model RBCC flow path

Propulsion-Vehicle System Integration

- **Technology need**
 - SOA vehicle concepts require a high level of propulsion-to-airframe integration
 - Air-breathers (RBCC or TBCC), parallel-burn multi-stages

- **Recent/Ongoing Activities**
 - Developing stage separation database and tools
 - Use generic but relevant vehicle configuration to develop test database
 - Test effort at MSFC, CFD (w/Overflow) at JSC have been great success
 - Further activities under SLI waiting program assessment relative to vehicle development
 - CART3D (Ames) possible efficient way to support concept development
 - Chem w/automated grid templates being developed in U.F. URET
MDA Development

- Technology need
 - Many space transportation system propulsion system failures are multi-disciplinary in nature
 - Thermally induced, fluid-structure interaction, etc.
 - Many are also related to transient or time varying, 3D events
- Recent/Ongoing activities
 - LOCI framework being developed to support 3D, time accurate, MDA analysis capability
 - Initial demonstrations of fluid-thermal-structural modeling capability demonstrated
 - Under URETI plan to continue development of this capability

Validation for Conjugate heat transfer capability

Demonstration of basic fluids-thermal-structural analysis capability

CFD Process Improvements

- Tendency towards greater CFD based design parametrics
- Enabled by access to traditional and non-traditional "super-computers"
 - Access to NASA-Ames SGI based compute clusters
 - 512 and 1024 processor SGI high-end computers
 - Two local PC-based clusters
 - Local SGI O-2000 systems
 - SGI O-2000 desktop workstations

<table>
<thead>
<tr>
<th>Computers</th>
<th>Processors</th>
<th>Processor Speed</th>
<th>RAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nexus</td>
<td>16</td>
<td>250 MHz, R10k</td>
<td>12 GB</td>
</tr>
<tr>
<td>Korben</td>
<td>8</td>
<td>300 MHz, R12k</td>
<td>8 GB</td>
</tr>
<tr>
<td>Neo</td>
<td>16</td>
<td>500 MHz, R14k</td>
<td>16 GB</td>
</tr>
<tr>
<td>Hydra</td>
<td>40</td>
<td>600 MHz - 933 Mhz PIII</td>
<td>10 GB</td>
</tr>
<tr>
<td>Chimaera</td>
<td>200</td>
<td>1500 MHz, Athlon MP</td>
<td>100 GB</td>
</tr>
<tr>
<td>Tyrell</td>
<td>32</td>
<td>250 MHz, R10k</td>
<td>32 GB</td>
</tr>
<tr>
<td>Desktops</td>
<td>2</td>
<td>400 MHz, R12k</td>
<td>0.5 - 2 GB</td>
</tr>
</tbody>
</table>
CFD Process Improvements

- Tendency towards greater CFD based design parametrics
- Enabled by labor-reducing utilities
 - Improved process efficiency
 - Automatic or near automatic grid generation system
 - "fire-and-forget" flow solver capability
 - Time-stepping, grid adaptation/refinement, multi-gridding, etc
- Dedicated personnel for internal process improvement
 - Create or improved labor reducing utilities for CFD process
 - Develop visualization technology for pre- and post-processing
 - Created automated test suite for software upgrades testing
 - Testing/validation key to robustness, improvements, reliability
 - Must be made affordable
- Continuous process

Concluding Remarks

- TD64 focused on supporting the space transportation programs
 - Engaged in the Next Generation Launch Technologies program, SSME program, IR&D
- Design and analysis tools being applied and/or under development in the major hardware areas
 - Turbines, pumps, combustion devices, engine systems, propulsion-to-airframe integration
 - MDA capabilities under development
- Increasing the design process efficiency and fidelity is paramount
 - Attempting to address key shortcomings in CFD process
- Code validation, robustness, reliability key to meeting CFD's promise