The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Howard L. Novak
United Space Alliance LLC
8550 Astronaut Blvd.
Materials & Processes Engineering
Mail Stop: USK-864
Cape Canaveral, FL 32920
novakh@usasrb.ksc.nasa.gov

13th Annual International Workshop on Solvent Substitution and the Elimination of Toxic Substances & Emissions
December 9-12, 2002
Scottsdale, Arizona
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

- Agenda
- Background
- Objectives
- Recommendations
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

• Background

• IR&D Development of IVD Aluminum

• GSE Lifting Hardware Coated with IVD

• MSFC Approval for IVD Drogue Ratchet

• USA M&P Proposal to IVD Other Flight Items
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

SCHEMATIC OF AN ION VAPOR DEPOSITION SYSTEM

- Vacuum Chamber
- Substrate Holder Cathode
- Negative Glow
- Movable Boat Rack
- Aluminum Evaporators
- Wire Feeders
- High Voltage Supply
- Evaporator Power Supply
- Ground

Page 4
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

PRODUCTION ION VAPOR DEPOSITION SYSTEM
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

IVD Coated Drogue Ratchets
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Cadmium Coated Drogue Ratchet
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

KSC Beach Exposure Corrosion Test Site
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

KSC Beach Exposure IVD Ratchet Start
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

KSC Beach Exposure After 8 Months
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

KSC Seawater Immersion Facility
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Seawater After 5 Months Immersion
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster Seawater After 5 Months Immersion
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Seawater 5 Months Immersion Cleaned
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Solid Rocket Booster Retrieval
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Solid Rocket Booster Frustum Retrieval
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

Cadmium Plated Ratchet After Retrieval

STS-111 BI 113 R.H.
WO# 02-160-13D-12
RATCHET #4
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

- Objectives
 - Completed 48 Sets of IVD Coated Drogue Ratchets
 - Continue Coating GSE Hardware with IVD
 - USA M&P Proposal to IVD Other Flight Items
 - Perform Cost / Benefit Analysis IVD Applications
 - ECP for Approved on Selected Flight Items
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

- **Recommendations**
 - Continue Coating GSE Hardware with IVD
 - Consider Use Of IVD For Other Flight Items
 - Including Application To TPS Hardware
 - Promote “Wash-Dry-Fly” Concept
The Use of Ion Vapor Deposited (IVD) Aluminum for the Space Shuttle Solid Rocket Booster

- Copy write Agreement USA, LLC

Copyright © 2002 by United Space Alliance, LLC. Published with permission. These materials are sponsored by the National Aeronautics and Space Administration under Contract NAS9-20000. The U.S. Government retains a paid-up, nonexclusive, irrevocable worldwide license in such materials to reproduce, prepare derivative works, distribute copies to the public, and perform publicly and display publicly, by or on behalf of the U.S. Government. All other rights are reserved by the copyright owner.