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By Richard T. Whitcomb 

SUMMARY 

An investigation of the characteristics of a wing 
with an aspect ratio of 9.0 and an NACA 65-210 airfoil 
section has been made at Mach numbers up to 0.925. The 
wing tested has a taper ratio of 2.5:1.0, no twist, 
dihedral, or sweepback, and 20percent-chord 37.5-percent-
semispan plain ailerons. The results showed that serious 
changes in the normal-force characteristics occurred when 
the Mach number was increased above 0.74 at angles of 
attack between 410 and 100 and above 0.80 at 00 angle of 
attack. Because of small outbbardshifts in the lateral 
center of load, the bending moment at the root for condi-
tions corresponding to a 39 pull-out at an altitude of 
35,000 feet increased by approximately 5 percent when the 
Mach number was increased from 0.77 to 0.90. When the 
Mach number was increased beyond 0.83 the negative pitching 
moments for the high angles of attack increased, whereas 
those for the low angles of attack decreased with a 
resulting large increase in the negative slope of the 
Ditching-moment curves. A large increase occurred in the 
values of the drag coefficients for the range of lift 
coefficients needed for level flight at an altitude of 
35,000 feet when the Mach number was increased beyond a 
value of 0.80. The wakes at a station 2.82 root chords 
behind the wing quarter-chord line extended approximately 
a chord above the wing chord line for the angles oi attack 
required to recover from high-speed dives at high Mach 
numbers.

INTRODUCTION 

The recent development of turbine-jet units of 
relatively high thrust ratings has made possible the
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consideratipn of jet-propelled air p lanes with maximum 
speeds greater than 500 miles per hour. Until the present 
time, however, very little information has been available 
on the aerodynamic characteristics of the com pQnent parts 
of an airplane designed to operate at these high speeds. 
In order to design such a high-speed airplane properly, 
more information about these characteristics at high and 
low speeds was needed. The NACA has undertaken a broad 
research program to supply this additional information. 
In conjunction with this program a series of tests have 
been made on a high-aspect-ratio wing in the Langley 8-foot 
high-speed tunnel in order to determine the effects of 
compressibility on the characteristics of such a wing at 
Mach numbers approaching unity. Included in the series 
of tests were investigations of the basic wing character-
istics, aileron characteristics, effects of dive brakes 
and a dive-recovery flap, and downwash fluctuations. The 
results of the first investigation are presented herein. 
The results of the other investigations are presented in 
references 1, 2, and 3, respectively. 

The results presented herein include the normal-force, 
span-loading, pitching-moment, drag, and wake-width data 
for the wing alone with undeflected straight-sided ailerons. 
Data for Mach numbers up to 0.925 are presented. 

S MB 0 LS 

Symbols are defined as follows: 

a speed of sound in undisturbed stream, feet per second. 

a1 slope of normal-force curve (dON/dC), per degree

b	 span of model, feet (3.15) 

C	 effective area of tunnel cross section, square feet 
U9 .5) 

C L	 lift coefficient 

c	 section chord of model, feet 

C	 average model chord, feet (0.35) 

C 0NFIDNTIAL-
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C t	 mean aerodynamic chord (M.A.C.), feet (0.37) 

AH	 loss of total pressure in wake 

L	 lift on model, pounds 

M	 Mach number (V/a) 

pitching moment about 25-percent-chord line 

Po static pressure in undisturbed stream, pounds per 
square foot 

p local static pressure at a point on airfoil sec-
tion, pounds per square foot 

P
( 

pressure coefficient	
p - p0

\ 

q dynamic pressure, pounds per square (lpV2), foot

S	 area of model, square feet (1.10) 

V	 velocity in undisturbed stream, feet per second 

x	 distance along chord from loading edge of section, 
feet 

y	 distance along semispan from wing center line, 
feet 

distance from root section to center of lift, feet 

a	 angle of attack, degrees 

Y	 ratio of specific heats 

P	 mass density in undisturbed stream, slugs per 
cubic foot 

Subscripts: 

cr	 critical 

L	 lower surface of airfoil section 

U	 upper surface of airfoil' section 

CONFIDENTIAL 
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The coefficients are defined as follows: 

Cn	 section normal-force coefficient 

cfl![ (PL _PU) dx 

CM	 section pitching-moment coefficient about 
25-percent-chord station 

Cm	

1c 
(P - P15) cx -dx 

VU 

CN	 wing normal-force coeficient 

CN 
2 
g	 ccdy 

Crnc/	 wing pitching-moment coefficient about 25-percent-
chord station

b/2 

Cmc/	
2	

C 2 Cm 0 

tj 0 

CB	 bending-moment coefficient for root section 

CB—

)(0

CCYGY 

 

2y'/b	 lateral position of center of load 

2y'	 0B 
b	 0N
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CB60

	

	 bending-moment coefi 

semispan station 

10.5b 

CB60 =	 CC(y - 0.3b) dy 

cB60/cN	 design index for bending moments at 60-percent 
semispan station 

C D0	 wing profile-drag coefficient 

CD1	 wing induced-drag coefficient 

CD1 = 0.06cL2 

CD	 wing total-drag coefficient 

CD = C D0 + CD1 

APPARATUS; 

The Langley 8-foot high-speed tunnel, in which the 
tests were conducted, is of the single-return, closed- 
throat type. The Mach number at the throat is continuously 
controllable. The air-stream turbulence in the tunnel 
is small but slightly higher than in free air. 

The wing tested has an NACA 65-210 airfoil section, 
an aspect ratio of 9.0, a taper ratio of 2.5:1.0, no 
sweepback, twist, or dihedral, a ti p having ordinates 
given in table I, and a 20-percent-chord,7.5-percent- 
semispan plain aileron that extends from the 60-percent- 
semispan station to the end of tile straight part of the 
trailing edge. The wing, as tested, is shown in figure 1. 
The effective span of the model is 37.8 inches, the root 
chord is 6 inches, and the tip chord is 2.1. inches. Other 
dimensions are given in figure 2. The ordinates of the 
NACA 65-210 airfoil used for the inboard sections are 
presented in table II. For the sections outboard of the 
L0-percent-span station, the ordinates ahead of the 
80-percent-chord station are the same as those given in
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table II but from 80-percent chord to the trailing edge 
the contours of these sections are straight lines. The 
wing was machined from medium hard brass. The ailerons 
were machined from steel and are attached to the wing by 
small hinges. 

Twenty static-pressure orifices were placed at each 
of eight stations along the wing span. The approximate 
chordwise locations of these orifices at each station are 
shown in figures presenting pressure-distribution data. 
The spanwise locations of the stations are 11, 20, 30, 
43, 6, 614, 80, and 95 percent of the semispan. The four 
inboard stations were placed on the left half of the wing 
and the four outboard stations were placed on the right 
half.

The model was supported 
vertical steel plate as shown 
was designed to have zero vel 
tion of the stream and to pro 
velocity along the span near 
numbers scheduled. The profi 
ellipse, the ordinates for wb 
and the dimensions and constr 
are shown in figure 3. The a 
was changed during the test t 
figure 3. The steel pressure 
connected to tubes that passe 
of the plate and, were connect 
Wake surveys were made by a r 
pressure tubes and 7 static-r)

in the tunnel by means of a 
in figure 1(b). The plate 
Dcity gradients in the direc-
duce minimum variations in 
the test region at the Mach 
Le of the plate is a modified 
ich are presented in table III 
action details of the plate 
igle of attack of the model 
r the mechanism shown in 
tubes in the model were 
J. through the hollow part 
d to 'multiple-tube manometers. 
3.ke, which has 42 total-
essure tubes. n]aeed hehnc1 

the model as shown in figures 1(c) and 3 . The vertical 
spacing of the total-pressure tubes varies from 0.1 inch 
at the center of the rake to 2 inches at the tips of the 
rake. The rake is supported in the tunnel by means of a 
horizontal strut, the leading edge of which is approxi- 
mately 5 inches behind the trailing edge of the vertical 
support plate.

METHODS AND PROCEDuRES 


Suport System 

The use of a vertical steel plate as the support of 
the model was chosen for the following reasons:
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(1) The large, unknown interference effects-produced 
at high Mach numbers by struts of the usual type were 
completely eliminated. 

(2) Inasmuch as the plate effectively produced a new 
test section, the frontal area of the model was the only 
factor contributing to choking of the air stream. The 
highest possible choking Mach number that could be obtained 
in an 8-foot circular tunnel with a model of the size 
tested was therefore realized. 

(3) The necessity of having a portion of the model 
enveloped by a relatively thick boundary layer, as would. 
be the case if a semispan model had been supported at the 
tunnel wall, was avoided. 

(Lv) The symmetrical installation eliminated the 
possibility of unsymmetrical choking or of cross flows, 
such as would be expected if a semispan model, mounted 
from the tunnel wall or from a reflection plate near the 
wall, were employed.

Calibration Tests. 

A series of calibration tests of the tunnel air stream 
were made with the support plate installed both with and 
without the wake-surve y-rake support strut installed. 
Static pressures were determined at 30 points on the plate 
and at 36 points on the tunnel wall at Mach numbers u 
to 0.95 with and without the model in place. The calibra-
tion tests with the model were made for angles of attack 
of 00, )O, and 90 and a series of tests were also made to 
detrmine the static pressures and the angles of flow at 
the model position. A combination of a calibrated static 
head and a yaw head mounted on the wake-survey-rake 
support strut was used for these tests. 

A comparison of the static pressures measured on the 
surfaces of the plate and walls and by the static-pressure 
tube indicates that the Mach number and dynamic-pressure 
variations in the air stream in the region of the model 
are small. The variations in these values at the surfaces 
of the plate in the direction of the air stream are less 
than 0.2 percent through distances of 1 foot from the model 
position at all Mach numbers up to 0.90. The vertical 
variations are , less than 0.2 percent through distances
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of 2 feet from the model position. The spanwise varia-
tions are less than 1.0 percent through a distance of 
20 inches from the plate and 2.5 percent from the plate 
to the wall at Mach numbers up to 0.90. The dynamic 
pressures used to obtain the coefficients were determined 
from averages of the pressures measured near the model 
Position. 

The angularity of the stream flow in a horizontal 
plane has been found to be less than 0.10, this value 
being the limit of the accuracy of the calibrating 
instrument.

Limiting Test Mach Muiubers 

The tunnel choked at the suiport plate at a Mach 
number of 1.0 without the model in place. The tunnel 
choked at the model at an uncorrected Mach number of 0.95 
with the support plate and model in place. Numerous tests 
have indicated that the data obtained in a wind tunnel 
when choking ocurs at the m odel are not applicable to 
the prediction of wing characteristics for free air 
(reference L) . The data obtained at the choking Mach 
number of 0.95, therefore, have not been presented. 

Static-pressure measurements made on the tunnel wall 
and model support plate at an uncorrected Mach number 
of 0.925 indicate that there is a perceptible tendency 
toward choking at the plane of the model at this Mach 
number. The reults obtained at this Mach number, even 
if completely corrected for the usual effects of tunnel-
wall interference, may not, therefore, indicate the flight 
characteristics. The general trends, however, are believed 
to be illustrated by the results obtained at this Mach 
number. 

With the support strut for the wake-survey rake in 
place the tunnel choked at this strut when the uncorrected 
Mach number at the plane of the model was 0.882. As 
previously mentioned, a calibration test was made with 
the wake-survey strut in place. The results of this test 
show that no invalidating choking effects occur at the 
plane of the model when the tunnel chokes at the survey 
strut. Choking at the survey strut simply imposes a 
limitation on the maximum test Mach number instead of 
affecting the applicability of the results. The data on
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the model with the wake-survey strut in place can thus 
be assumed to be correct up to the choking Mach number 
of the wake-survey strut and data up to this Mach number 
have been presented.

Tests 

All normal-force and pitching--moment data were 
obtained from pressure-distributionineasurements and all 
drag data were obtained from wake surveys. The pressure 
and wake measurements were made during separate test runs. 
Pressure-distribution measurements were made at the 
following uncorrected Mach numbers and angles of attack: 
for Mach nm1bers of o.Loo, 0.600, 0.760, 0.800, 0.825, 
and 0.850 at angles of attack of -2°, 00, 20,	 70, 

and 100 ; for Mach numbers of 0.900, and 0.925, at angles 
of attack of 00, 20, 110 , and 70. The pressures at the 
160 orifices in the wing were recorded simultaneously by 
photographing the multiple-tube manometers. 

Wake-survey measurements were made at six spanwise 
stations iJo root chords behind the 25-percent-chord 
line of the wing. These stations were 20, 140, 60, 80, 
95, and 102 percent of the wing semispan from the wing 
support plate. These measurements were made for uncor-
rected Mach numbers of o.Loo, o.600, 0.725, 0.760, 0.800, 
0,850, and 0.883 at angles of attack of 00, 20, )O and 7° 
In order to obtain wake-width measurements at a typical 
tail location, wake surveys were made at a station 
2.82 root chords behind the 25- percent-chord line of the 
wing and. 0.265 sernispan from the plate. 

Corrections for Tunnel-Wall Interference 

Calculations using the methods of references 5 to 8 
have been made to estimate the magnitude of the effect of 
tunnel-wall interference on the Mach number, the dynamic 
pressure, and the normal force, pitchingmoment, and drag. 
Three types of interference have been considered: 

(1) Model constriction 

(2) Wake constriction 

(3) Lift vortex interference



C2 dy +
(1 + 0i.lI2) 

1C(l - 2)3/2
C DS 
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The basic formulas employed to determine the effects of 
solid blockage and lift vortex interference are taken 
from reference 5 . The formulas for wake constriction 
have been developed from reference 6. Most of the cor-
rections for effects of compressibility are from ref-
erence 7, and further corrections for these effects came 
from reference 8. The following expressions were used: 
For the effects of model and wake constriction, 

AV	 0.0515	
- I V = 03/2(1 - M2) 

and

^Im	 6V = 

	

M	 V
y 

+	 M 

tq	 LV 
qv (2 - i.I2) 

For the effects of lift vortex interference, 

Lc_____ 
48 qc3/2 (1 - M4) 

LCrn0/)4
Lc 

192 qc3/2(1 - M2) 

0.598rr(L +	
+ 7.16 

• 
a=  

qC3/2 \j1w2 
The magnitudes of the corrections obtained by the 

use of these expressions have been found to be very small 
even at test Mach numbers u p to and including 0.90. At 
this Mach number, the corrections to the Mach number vary
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from 0.4 percent at an angle of attack of 00 to 1 percent 
at 100 . The corrections to the coefficients for the lift 
vortex interference are even smaller. The corrections1 
the greater part of which arise from wake constriction, 
have been applied to all data obtained at test Mach numbers 
up to and including 0.90. The results obtained by the use 
of the aforementioned expression for the wake-constriction 
corrections have been compared with wake-constriction 
corrections determined by use of static pressures measured 
at the tunnel wall and the results of the two methods ,have 
been found to be substantiali:	 M in agreement at test ach 
numbers up to and including 0.90. It may be assumed, 
therefore, that no significant errors exist in the results 
for these Mach numbers as a consequence of tunnel-wall 
interference. 

Corrections obtained by the indicated expressions 
for data obtained at a Mach number of 0.925 are much 
larger than the corrections for the lower Mach numbers; 
the corrections to the Mach numbers amount to as much as 
2.5 percent, whereas those to the, coefficients amount to 
3.0 percent. Because cf the close proximity of this Mach 
number to choke and to the speed of sound, these correc-
tions are possibly unreliable. No corrections have been 
applied to the results obtained at this Mach number. 

Corrections for Model Inaccuracies 

During the construction of the model a washout of 030 
developed in the right half of the wing. In addition, the 
wing was inadvertently tested with approximately a 0.30 
negative aileron angle. The effects of these inaccuracies 
were indicated by the results of the tests made at an angle 
of attack of _20, which is very close to the zero-lift 
condition at low Mach numbers. The distributions for 
this angle at low Mach numbers were.not zero across the 
span but showed a slightly negative normal force at the 
tip. All the span load distributions have 'been corrected 
for these inaccuracies by the use of cross plots of sec-
tion normal-force coefficient against angle of attack. 
The moment coefficients have also been similarly cor-
rected. 

Because of its relatively great torsional stiffness, 
the twist of the model due to air loads was small at all 
Mach numbers; calculations indicate that the twist was
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less than 0.050 for all conditions. No corrections have 
been made for the effect of this twist. 

RESULT S 

Effects of Reynolds Number 

The Reynolds numbers obtained during the tests varied 
from 900,000 at a Mach number of o.Loo to 1,400,000 at a 
Mach number of 0.907. These values are considerably lower 
than those for an airplane wing in flight. An indication 
of the effects of such a difference in Reynolds number on 
the characteristics of the NACA 65-210 airfoil section 
with and without ailerons may be obtained, by referring 
to the two-dimensional data obtained for this section at 
various Reynolds numbers in the Langley two-dimensional 
low-turbulence pressure tunnel (references 9 and 10). 
The effects of Reynolds number variations at supercritical 
Mach numbers have not been fully established; however, the 
results of tests made on airfoils at supercritical Mach 
numbers for various Reynolds numbers (reference 11) indi- 
cate that at these Mach numbers the effects of variations 
in the Reynolds number are of secondary importance in 
comparison with the predominating effects of compressi-
bility.

Pressure-Distribution Measurements 

In order to illustrate the changes in the chordwise 
pressure distributions caused by compressibility effects, 
representative pressure distributions for the 30-percent-
semisDan station are presented in figure 4 and similar 
data for the 95-percent-seinisDan station are shown in 
figure 5 . . The chordwise pressure-distribution diagrams 
for all the spanwise stations have been integrated to 
determine section normal-force coefficients and. pitching-
moment coefficients. These coefficients have been used 
to determine the spanwise variations in section loadings 
and moments. The spanwise variations in section loadings 
are presented in figure 6. The spanwise-load distribu-
tions have been integrated to determine the total normal 
forces and the moments of these forces about the root 
chord. The variations of the normal-force coefficient 
with Mach number and angle of attack are presented in 

-
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figures 7 and 8, respectively. Because the accuracy of 
the results obtained at a Mach number of 0.925. is affected 
to an unknown extent by choking tendencies and tunnel-wall 
interference, all curves obtained by the use of these 
results are shown as broken lines. (See fig. 7.) 

The slopes of the normal 
values of the normal-force co 
wing loading of 60 pounds per 
of 35,000 feet are presented 
Mach number. The lateral pos 
load on the wing in terms of 
in figure 10. These values w 
values of the bending-moment 
sponding values of normal-for 
centers of load on the wing I 
been determined for an approx 
were obtained for the various 
of attack corresoondin g to a

-force curves measured at 
fficient corresponding to a 
square foot at an altitude 
Ln figure 9 as a function of 
Ltions of the centers of the 
the semispan are presented 
re obtained by dividing the 
oefficient by the corre-
e coefficient. The lateral 
i terms of the semispan have 
Lmate 3g dive recovery and 
Mach numbers at the angles 
ving loading of 180 pounds 

per square foot at an altitude of 35,000 feet.(See fig. 11. 
The critical stresses may not occur at the root but at 
some outboard station. To illustrate the changes in the 
bending, moments that occur at the outboard stations, the 
bending-moment coefficients about the 60-•percent-semispan 
station were computed by obtaining moments of the areas 
of the section-loading diagrams from the 60- to the 
100 -percent-semispan stations and dividing the moments 
thus obtained by the total area of the wing. The results 
were divided by the corresponding normal-force coeffi-
cients for the complete wing to obtain design indices for 
the bending moments at the 0-percent-semispan station. 
Values of these indices are presented in figure 12. The 
variation of section normal-force coefficients for the 
30- and 95-percent-semispan stations with Mach number at 
angles of attack of 00 and )° is presented in figure 13. 

For all angles of attack and Mach numbers, the span-
wise variations in section moment factor are presented 
in figure lL. The wing pitching-moment coefficients based 
on the mean aerodynamic chord have also been determined. 
The variations of these coefficients with Mach number for 
various values of angle of attack are presented in 
figure 15. The pitching-moment coefficient is plotted 
against normal-force coefficient for various values of 
Mach number in figure 16.
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In all figures that include data for several angles 
of attack at a given Mach number (figs. 4, 5, 6, 8, 14, 
16, 18, 20, and 21), the average values of the corrected 
Mach numbers for the several angles of attack are listed. 
The actual values of the corrected Mach numbers for the 
various angles of attack vary by less than 0.003 from this 
average at a Mach number of 0.907. 

Wake-Survey Measurements 

The total- presure and static-pressure measurements 
made during the wake surveys at the six spanwise stations 
have been reduced to total wing profile-drag coefficients 
by use of the expressions presented in reference 12. The 
results are presented in figures 17 and 18. 

The profile-drag coefficients at normal-force coef-
ficients corresponding to wing loadings of 60 and 
80 pounds per square foot at an altitude of 13 5,000 feet 
for the various Mach numbers have been determined. The 
induced-drag coefficients for the same normal-force coef-
ficients have been computed. The variations of tie total-
drag coefficients with Mach number for the two wing 
loadings are presented in figure 19. For a wing loading 
of 60 pounds per square foot the induced-drag coefficient 
is 0.0083 at a Mach number of 0.600 and 0.0017 at •a Mach 
number of 0.890. For a wing loading of 80 pounds per 
square foot the induced drag coefficient is 0.01)4.7 at a 
Mach number of 0.600 and 0.001 at a Mach number of 0.890. 

The vertical variations of	 H/q at a typical 
horizontal-tail location, a station 2.82 root chords 
behind the 25-percent-chord line and 0.265 semispan from 
the plate are presented in figure 20. Part of the wake-
survey results obtained lJ0 root chords behind the 
25-percent-chord line of the 40-percent-semispan station 
are presented in figure 21 to show the rate of the 
vertical spread of the wing wake with distance from. the 
wing trailing edge. All wake dimensions are given in 
terms of the chords behind which the measurements were 
made.
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DISCUSSION 

Normal-Force Characteristics 

No erratic changes in the normal-force characteristics 
are caused by compressibility effects at Mach numbers 
below the point of force break, which varies from a Mach 
number of about 0.74 at angles of attack between O •and 
and 100 to about 0.80 at 00 angle of attack. Beyond this 
Mach number, the normal force for a given angle of attack 
decreases rapidly (fig. 7). As.a result there is an 
increase in the angle of zero lift and a decrease in the 
slope of the normal-force curve as. shown in figure 9. 

At angles of attack near the design condition, the 
changes in the normal-force characteristics occur at Mach 
numbers that are approximately 0.06 or 0.07 above the 
critical values, that is, the Mach numbers at which the 
local speeds of sound are e:çceededat some point on the 
wing (fig. 7). At the angles of attack at which a nega-
tive pressure peak exists near the leading edge, however, 
the changes in the normal-force characteristics occur at 
Mach numbers 0.08 to 0.25 greater than the critical 
values. The Mach numbers at which the break in the 
normal-force coefficients occurs at the various angles 
of attack agree quite closely with the unpublished results 
obtained during tests of a two-dimensional NACA 65-210 
airfoil section at Reynolds numbers approximately the 
same as those of the present tests in the Ames 1- by 3-foot 

high-speed tunnel. This agreement indicates that, the 
three-dimensional relieving effect, described in refer- 
ence 13, was limited to the tip sections of the wing 
tested and the effect of this relief on the over-all char-
acteristics is therefore negligible. 

The data obtained at a Mach number of '0.925 indicate 
sharp increases in the normal-force coefficients for all 
angles of attack when the Mach number is increased beyond 
a value of 0.907. Results obtained in an open-throat 
tunnel where choking effects were considerably different 
from those present during these tests indicate similar 
increases for other airfoil sections in the same range 
of Mach numbers (reference 11)
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The changes occurring above the points of force break 
will produce severe effects on the trim and stability 
characteristics of an airplane with the wing tested. 

Span Loadings 

The spanwise load distributions measured for low Mach 
numbers are nearly the same as those predicted by use of 
the charts presented in reference ]J.. (See fig. 6(a).) 
Figure 10 indicates that at angles of attack of 2°, L°, 
70, and 100 the lateral centers of load move outboard 
when the Mach number is increased from about 0.77 to 0.90. 
When the Mach number is increased beyond 0.90, the center 
of load moves inboard.. At a Mach number of 0.925, the 
center of load is approximately at the same position as 
it is at a Mach number of 0.80. 

Figure 11 indicates that, as a result of. the general 
outboard shift in the load, the bending moment produced 
at the root of the wing with a loading of the magnitude 
that would occur during a rapid recovery from a dive 
(approx, 3g at an altitude of 5,000 ft) is increased by 
5 percent when the Mach number is increased from 0,77 
to 0.90. This increase, produces bending moments that are 
only 2.5 percent greater than those predicted by the 
charts of reference 'iLL. A comparison of figure 10 and 
figure 12 indicates that for a given change in Iviach n'muber 
the bending moments at the 60-per cent -semispan station 
increase more rapidly than do those at the root section. 
If the maximum stresses in the wing structure occur at 
this station, this fact must he considered. 

At the lower angles of attack corresponding to level- 
flight conditions, the outboard movements of the lateral 
center of load are relatively large. Inasmuch as the 
stresses that occur at these angles of attack are not 
critical, such outboard shifts do not alter the structural 
requirements of a wing. These shifts would produce 
considerable changes in the dowñwasli at the tail for a 
given lift coefficient, however, and thus would cause 
changes in the trim and stability characteristics of an 
airp lane in addition to the changes in these character-
istics produced by the reductions in lift coefficients 
and the changes in pitching-moment coefficients.
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Pitching-Moment Characteristics 

Extremely large and, in some cases, erratic changes 
occur in the pitching moments when the Mach number is 
increased beyond the point of force break as indicated 
in figure 15. Large Increases occur in the negative 
pitching moments for all angles of attack when the Mach 
number' is increased to 0.83. At this Mach number the 
negative pitching-moment coefficients for the angles of 
attack corresponding to design lift, coefficients are more 
negative. When the Mach number is increased, beyond 0.83, 
the negative pitching-moment coefficients for the high 
angles of attack continue to increase, whereas those for 
the low angles decrease. At a Mach number of 0.907 the 
pitching-moment coefficient for an angle of attack of 7 
is -0.117, whereas that for an angle of attack of 20 
is 0.012. Figure 16 indicates. that there are only slight 
differences in the pitching-moment coefficients about the 
25-percent-chord line at Mach numbers up to about 0.76. 
At Mach numbers greater than 0.76 the slope of the pitching-
moment curve becomes negative. V.len the Mach number is 
increased beyond 0.83, the negative slope of the pitching-
moment curve increases rapidly and this change produces 
a large increase in the stability of the airplane. The 
data obtained at a Mach number of 0.925 indicate sharp 
increases in the negative pitching moments for all angles 
of attack when the Mach number is 'increased beyond a value 
of 0.90 (fig. 15). 

The neutral axis of most wing structures passes 
thromgh points near the L0-uercent-chord stations of the 
wing sections. The maximum measured twisting moment 
about this 40-percent-chord axis occurs at a Mach number 
of 0.600 for an angle of attack of 7. The changes in 
the twist due to the variations in the pitching moments 
will further change the distributions of lift on a wing 
with resulting changes in the trim and stability charac-
teristics of an airplane. 

Drag Characteristics 

The drag coefficient for a given angle of attack 
remains essentially unchanged when the Mach number is 
increased up to the critical value (fig. 17). At angles 
of attack near the design condition the drag starts to 
rise when the critical Mach number is reached and rises
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abruptly at a Mach number about 0.06 greater than the 
critical value (fig. 17). At an angle of attack of 00 
the crit:Ucal Mach number is approximately 0.74; the drag 
coefficient starts to rise at about the same Mach number 
and rises abruptly at a Mach number of approximately 0.80. 
The data are insufficient to define exactly the Mach 
numbers at which the drag rises at higher angles of 
attack. A rough interpolation of the data obtained at 
these angles of attack indicates, however, that the drag 
does not start to rise until the critical Mach number is 
exceeded by at least 0.08 end the drag does not rise 
abruptly until the critical Mach number is exceeded by 
at least 0.12. 

Figure 19 indicates that for a level-flight wing 
loading of 60 pounds per square foot at an altitude of 
5,000 feet the drag rises abruptly when the Mach number 

is increased beyond a value Of 0.80. An increase in the 
wing loading from 60 to 80 pounds per square foot does 
not change the Mach number at which the drag rise occurs 
by an appreciable amount. A comparison of the data for 
the two wing loadings indicates that, even for the super-
critical Mach numbers, the increase in drag coefficient 
produced by increasing the wing loading is less than the 
resulting decrease in area. The drag for a given lift 
would therefore be smaller for the higher wing loading. 

The results indicate that an airplane with a wing 
similar to the one tested cannot fly at Mach numbers 
greater than about 0.80 without a considerable margin of 
power above the value calculated to be needed at this 
Mach number by use of low-speed drag coefficients. In 
order to obtain level-flight Mach numbers appreciably 
greater than 0.80 without the use of excessively high 
amounts of power, the wing design must be changed 
radically. Until the present time the usual method of 
increasing the Mach number at which the rapid rise in 
drag coefficient occurs has been to change the wing 
section, in particular, the section thickness ratio. A 
reduction in the thickness of a wing with a plan form 
similar to that of the model tested to a value less than 
10 percent would result in only a relatively small. 
increase in the Mach numbers at which the rapid rise in 
drag coefficient occurs and would at the same time result 
in serious structural difficulties and, as shown in refer-
ence 10, in a large decrease in the maximum lift coeffi-
cient of the wing. The results presented herein indicate,
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consequently, that a Mach number of 0.80 is the practical 
maximum that can be obtained with a wing having a conven-
tional high-aspect-ratio plan form without the use of 
excessive amounts of power. 

The data presented in reference 13 indicate that the 
Mach number at which the drag rise occurs on a wing with 
a given airfoil section'can be increased by a considerable 
margin by decreasing the aspect ratio. A reduction in 
aspect ratio obviously also permits a higher structural 
efficiency if the same sections are used or it allows the. 
use of thinner sections for a given structural efficiency. 
The use of a thinner section would result in a further 
increase in the Mach number at which the rise in the drag 
coefficient occurs. References 15, 16, and 17 indicate 
that the use of sweepback or swee pforward also delays the 
Mach number at which the drag rise occurs by large incre-
ments. The use of lower aspect ratios, sweepback, or 
sweepforward therefore offers possibilities for efficiently 
attaining flight Mach numbers greater than 0.80. 

Section Characteristics 

The chordwise pressure distributions measured for 
spanwisé stations of 11-, 20-, 30-, L1 3-, 56-, 6L-, and 80-percent 
semispan are similar at all test conditions up to those 
at which the wing begins to stall. The pressures obtained 
at the 30-percent-sernispan station are presented as typical 
of the distributions obtained at these seven stations 
(fig. )). 'When the Mach number is increased up to the 
critical value, the pressure coefficients for the various 
angles of attack increase at rates that are nearly equal 
to those predicted by the Glauert-Prandtl approximation. 

When the Mach number is increased beyond the critical 
value at a given positive angle of attack, the pressures 
near the leading edge of the upper surface become more 
positive and the pressures near the trailing edge of this 
surface become more negative. The pressure coefficients 
on the lower surface continue to increase in magnitude 
gradually. (See fig. L(d) to fig. L(f).) The changes 
in the pressures on the upper surface, which are associated 
with the presence of supersonic velocities and separation 
on this surface, result in the reductions of the wing 
normal-force coefficients, the increases in the negative 
wing pitching-moment coefficients, and the large increases
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in the wing drag coefficients shown in figures 8, 15, 
and 17, respectively. When the Mach number is increased 
beyond approximately 0.853 at angles of attack from 00 
to O the critical Mach number for the lower surface is 
exceeded. The pressures nearthe leading edge of the 
lower surface then become more positive and the pressures 
near the trailing edge become more negative. The pressure 
coefficients on the u pper surface continue to change in 
the same manner as at lower Mach number (fig. L(f) and 
fig. )(g)). As a result of the changes on the lower sur- 
face, the wing pitching-moment coefficients become much 
more positive. When the Mach number is increased beyond 
a value of approximately 0.907, a large increase in the 
negative pressure coefficients on the rear part of the 
upper surface occurs. The mean.. negative pressure coeffi- 
cient on the lower surface decreases at the same time 
(fig. )(h)). Because of these changes the wing normal-
force coefficients increase (fig. 7) and the pitching-
moment coefficients become more negative (fig. 15) 

. comparison of figures ) and 5 indicates that at a 
given Mach number the chrdwise pressure distributions 
measured at the' 95-percent-samispan station differ con-
siderably from those measured at the 30-1percent . station 
which is typical of the seven inboard stations. At sub-
critical Mach numbers thee differences in the pressure 
distributions are due to two factors. The primary factor 
is that the sections near the ti p operate at local angles 
of attack that are considerably smaller than the :Local 
angles of attack of the inboad sections. A secondary 
factor is that the three-dimensional elievii.ig effects, 
described in reference 13, are stronger near the tip than 
at the inboard stations and consequently the pressure coef-
ficients at the outboard stations for a given local angle 
of attack are considerably more positive than at the 
inboard stations. As a result of these large spanwise 
variations in the chordwise pressure distributions the 
critical Mach numbers for the 95-rercent- semi span station 
are considerably greater than the critical values for the 
inboard stations. For an angle of attack of 00 the 
critical Mach number is approximately 0.74 at the 
30-percent-semispan station and approximately 0.78 at the 
9 5-percent-seinispan station. For an angle of attack of 
)i0 the critical Mach number is ap proximately 0.58 at the 
30-percent-II 	 station and approximately 0.65 at the 
95-percent-semispan station.
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Because of the higher critical Mach numbers at the 
95-percent-semispan station, the changes in the pressure 
distributions and section characteristics produced, by the 
onset of shock Occur at higher stream Mach numbers at this 
station than at the inboard station. The Mach number at 
which the normal-force coefficient for a given angle of 
attack starts to decrease is, however, approximately the 
same for both the 95- and 30-percent-semispan stations 
(fig. 13). This fact is at least partly due to the reduc- 
tions of the local angles of attack at the outboard sta-
tions that result from changes in the induced velocities 
associated with the reductions of the normal-force coef-
ficients at the inboard stations. A comparison of the 
pressure recoveries at the trailing edges of the 
30- and 95-percent-semispan station (fig. L(g) and 
fig. 5(c)) indicates that when the Mach number is increased 
to high sup ercritical values the increase in separation 
at the outboard stations is less severe than at the 
inboard stations. As a result, at these Mach numbers, 
the reductions in the normal-force coefficients are less 
pronounced at the outboard stations than at the inboard 
stations (fig. 13). Since these variations are limited 
to the ti p of the wing they have little effect on the 
over-all characteristics of a wing with an aspect ratio 
similar to that of the wing bested. 

Wake Widths 

Figure 20 indicates that for all angles of attack 
the wake width at a station near the probable tail loca-
tion increases rapidly when the Mach number is increased 
beyond the critical value. For an angle of attack of 20 
at a Mach number of 0.890, the wake extends to a point 
0.35 chord above the wing chord line extended. The wake 
extension is not beyond the region of tail locationsused 
on present-day airplanes. For the higher angles of attack 
used to recover from high-speed dives, the wakes extend 
approximately a chord above the wing chord line. In order 
to reduce the probability of tail buffeting and severe 
losses in tail effectiveness, the tail should be placed 
above the wake. 

A comparison of the results of figure 21 with those 
in figure 20 indicates that the wake widths behind the 
wing spreads rapidly at supercritical Mach numbers. At 
an angle of attack of 70 at a position l.L0-root chords
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behind the 25-percent-chord line, the wake width is equal 
to approximately 0.50 chord for a Mach number of 0.853. 
For the same angle of attack and Mach number, but at a 
station 2.82 root chords behind the 25-percent-chord line, 
the wake width is equal to approximately 0.75 chord. The 
divergence of the edges of the wake is about 100 for this 
condition. At a Mach number of 0.890 the divergence is 
about 120 ; at 0.760 it is only 30. 

CONCLUSIONS 

The results of the tests of a tapered wing with an 
aspect ratio of 9.0, an NACA 65-210 airfoil section, and 
undefiected ailerons indicated the following conclusions: 

1. Serious changes occurred in the angles of zero 
lift and the slopes of the normal-force curves when the 
Mach number was increased above 0.7L at angles of attack 
between i2 and 100 and above 0.80 at 00 angle of attack. 

2. Outboard shifts occurred in the lateral centers 
of load at angles of attack of 2 0 , )o , 70. and 100 when 
the Mach number was increased from 0.77 to 0.90. The 
outboard shifts produced approximately a 5 percent 
increase in the bending moment at the root section for 
conditions corresponding to a 3 g pull-out at an altitude 
of 35000 feet. 

3. When the Mach number was increased beyond 0,83, 
negative pitching-moment coefficients for the high angles 
of attack increased, whereas those for the low angles of 
attack decreased with a resulting increase in the negative 
slope of the pitching-moment curve. 

L. A large increase occurred in the values of the 
drag coefficients for the approximate lift coefficients 
needed to maintain level flight at an altitude of 
35,000 feet when the Mach number was increased beyond a 
value of 0.80. 

5. The wakes at a station 2.82 root chords behind 
the wing quarter-chord line extended approximately a chord
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above the wing chord line for the angles of attack.required 
to recover from high-speed dives at high Mach numbers. 

Langley Memorial Aeronautical Laboratory 
National Advisory Committee for Aeronautics 

Langley Field, Va.
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TABLE I 

DIMENSIONS OF WING-TIP SHAPE IN INCHES


See fig. 2] 

Plan-form contour 

Distance from Distance forward of Distance rearward 

tip t
25-percent--chora. of 25-percent- 
line,	 Xf chord line,	 Xr 

0 -0.360 0.360 
.026 .OL.l .963 
.053 •.	 .17( 1.168 
.079 .268 1.307 
.105 .337 1.413
.158 .L.36 1.565 
.236 .529 1.710 
. 3L1 .59.5 1.817 

.623
i	

1.868	
J 

Section contour 

Distance from Lower-surface Upper-surface 
tip,	 yt ordinate,	 z ordinate,	 zu 

0.026 0.02L 0.076 
.053 .oLi .093 
.079 .052 .105 
.105 .061 .	 .113 
.158 .074 .126 
.236 .086 .133 
.IL1 .094 .1117 
.L73 .098 .151	

1
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COMMITTEE FOR AERONAUTICS 



•. S .. .	 .	 . S •	 • S •	 S •I	 •S • .	 •	 S	 •S•	 I	 .ê I •	 S •	 I • •5 See I5S•••• •'	 •.	 S S	 S ••• SI 

NACA RN No • L6H28a 	 C	 27 

TABLE II 

ORDINATES FOR NACA 65-210 AIRFOIL 

Statjons and ordirites in percent of wing chord] 

Upper surface Lower surface 

Station Ordinate Station Ordinate 

0 0 0 0 
.1435 .819 .565 -.719 
.678 .999 .822 -.859 

1.169 1.273 1.331 -1.059 
2.1408 1.757 2.59a -1.385 
14.898 2.1491 5.102 -1.859 
7.3914 3.069 7.606 -2.221 
9.8914 3.555 10.106 -2.521 

114.899 
19,909

14.338 
14.938

15.10.1 
20.091

-2.992 
-33146 

214.921 5.397 25.079 -3.607 
29.936 5.732 30.0 6L -3.788 
314.951 5.9514 35.0149 -3.894 
9.968 
1.9814

6.067 
6.058

140.032 
145.016

-3.925 
-3.868 

50.000 5.915 50.000 -3.709 
55.0114 5.625 514.986 -3.1435 
60.027 5,217 59.97 -3.075 
65.036 )4.712 614.964 -2.652 
7 0.0143 14.128 69.957 -2.1814 
75.0145 3.1479 714.955 -1.689 
80.o1414 2.783 79.956 -1.191 
85.038 2.057 814.962 -.711 
90.028 1.327 89.972 -.293 
95.0114 .622 914.986 .010 
100.000 0 100.000 0 

L.E. radius:	 0.687.	 Slope of radius 
through end of chord:	 0.0814

NATIONAL ADVISORY

COMMITTEE FOR AERONAUTICS 
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TABLE III 

ORDINATES FOR CROSS SECTION OF SUPPORT PLATE 

Station	 Ordinate 

Distance from	 Distance from 
leading edge	 chord line 

(in.)	 (in.) 

0	 0 
.05	 .025 
.12 .038 
.25	 .05L4 
.32	 .060 
.62	 .085 

1.25	 .119 
1.88 
2.50	 .165 
3.12	 .167 
3.75	 .200 
5.00	 .227 
6.25	 .250 
7.50	 .269 

10.00	 '.301 
12.50	 .32 
15.00 
17.50	 .358 
20.00	 .367 
22.50	 .373 
25.00	 .375 
27.50	 .373 
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(a) Front view. 

Figure 1.- High-aspect-ratio wing mounted on vertical 
support plate in Langley 8-foot high-speed tunnel.
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(b) Three-quarter view of right half of wing. 

Figure 1.- Continued.
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