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INFINITESIZ$@ GOMICAL SUP3R90NIC FLOW*

By Adolf Buse4a$3n

Conical f’lowfields .- Real flows always occur h
three-dhensional space. In calm%lat~ a flow, however,
one will greatly appreciate It if there are only two
essential coordinates. to deal with? F1oWS Of this .kind;
llmited to two coordinates, form the plane flow and the
flow of axisl symmetry. TM spa~e which Is filled out
by the stremillnes is represented in planes parsllel to
these ltnes; they contain certain streamlines to their
whole extent. In contcal f’~owfields, however, the
streamlines are cut through slantingly so that each
streamline is contatnad In the plane b~~t appears there
as a point only. These relations are made clesr In l’ig-
ure 1. If the fr5.ction is ne&leoted the shape M the
body leads one to expect a pattern that c&n be increased
or decreased ~eoraetrically. The fixed point P and the
direction of the three spatial axes, X, y, and X rematn
the same. All essantlal ch=’acteristics of the flow and
the Share of the body can be Lnferred from the plane
z = 1. A pl.mo z = 2 .r~~~~d,i~ li~t~i~.s WL~U do-~blod,. -
show identical values for gas conditions and velocities.
The Isobar planes in the spuce x, y, z are of conical
shape and have the cone vertex P; therefore these flows
shall be called abbrev$atedly conical flow fields.

Infinitesimal differences in pressure.- In figure 1
there shall be one more -rm~ti::yi~~flow field namel that the b~dy”~i

Iflow only to a S1 @t degree. fSo the conical sobars
reflect over- and under-pressures differing infinitesi-
mally from the pressure of the parallel flow. This two-
~old limitation to conical and infinitesimal, is not
actually ver

E
ts ringent Insofar as in the class of poten-

tial flows t ere are present onl the conical fields of
7axial symmetry and the inflnites mal conical fields.

other conical flows are affected by rotation. The hf?~-
tesimal supersonic flows, however, abo excel in @nether
wa :

I
the superposition of fields with different fixed

$
0 nta P is permitted In spite of tlhefact that the @ff-
erential equations ordinarily are not linear; thus the
applicability is broadened most gratifyingly.

*itInfinitestiQ1O kog61iCe ~erschallstrdrn
‘V
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Deutschen Akademik der Luftf’ahrtforshung, 194.2-4 : p. )+55.



..-. . . . ..

I

.“

2 NACA TM Noo 1100
y

Dtiferentia eqt.tatton.- There “are two ways to limit
the ditl’erent~al equation f’o~the potential Iq conical
fields to small additional velocities u, v, w, and to
limit the differential equation for nearly pargllel
spatial flows to conical fields; the first is the hist-
orical one, the second, ho,~ever, the simpler one.
Therefore here the second one la chosen. AS is well
known, the linearized differential equation in the
space- X, y, z, for the additional Polx$ntial Q over a
basic velocity W in the direction o~the
if the gas Iias the sonic velocity a:

axis z reads

The coordinates ~ ~d q o~-the conicsl
respond to the spatial coordinates” x and
plane z = 1:

(1)

current cor-
y In the

(2)

The additional potential V increases o% each ray through
the fixed point P in Froportioil to the distanoe. There-
fore, the potential divided by z Is invariant on a
single ray, and qrovides the potential
flow :

of the conical

The additional velocities u, v, w arc

ofthc i’ornorpotcacial.

-

1--- “ ,

----- 1? (5)

.

\

(4)

The clifferential equation for the new potential ~. is
determined from the old di~i’erential equation, ami one .
obtains: .
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It certainly is gratifying to recognize in the type of
this dl~ferentlal equation an old acquaintance trom the
plane gas flow: for tho sttioa,mf’unctidn of the plane flow
transformed according to Legendra end superimposed over
the components & the current d~ils~t~ produces exactly
the same differential equation. In ordinary geses, how-
ever, the Ganomlnator .l=is a local function; but there
1s a special gas With r3ctilinoar adiebatics in the
presGu3-%’olme-diagraA h wl~ich, as required, this
denominator also rex.sins c~nstant. This gas is a special
favorite where it in a mere question of numerical

, calculations.

‘-----=_

Regions of ini’lllf3nce.-The spatial difi’ei’ential
equation of the gas flow at supersonic velocity is of
hyperbolic chau&cter, es showriin cquatlon (l). That
mear.s: each point of t::e i’low dov.in&te3 a conical range
openin~ downatresn; eat:.10CUS, on the other hand, is
doninetod solely by those points ~S~ich are situated in
the ccme prolonged baclniard and opening upstream. Here-
with the relationships are divided definitely smong the
three possibilities:superlor, subordl.late, and independent. “.
lflachtscones in the supersonic flow considered es negione
of’disturbance of a small trial body make this fully COLl-

prehensible in a ph;~sic&l sense. It must seem odd at
first that the dependencies of the general spatial flow
are widsned as soon as one procoeds to a more limited
Snatial flow. But the above-mentioned difi’erentlal equa-
t?-onshows th~t inside of the circle with the radius A .
there yrevalls the elliptic character.

This behavior is easily explained by the fact that
all poihte of c ray starti~ frmn P are comprehended
as a whole. The relation or dependericies of two rays
results from the dopendencles of the shgle pointo. only
the character~stic “independent “ appears uniformly in
certain cases for all pairs of points (P itself is
excluded). The combination superior and independent
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becomes superior; subordinate. and independent become
subordinate. But if there are pairs of points of all
kinds on the ra s, then the rays me subject to the new
characteristic T‘reciprocally dependent.” Rays of this
kind fill out the interior of llachls cone starting from
point P.

Characteristics.- Hachls cone starting from P
intersects the-z = 1 on the circle having line
radius A. In the field outside of this’cone, i. e.,
outside of the circle in the intersectin& plane, one
gets rectiline~ characteristics of’the differential
equation (5) which are tangents of the circle. In fig-
ure 2 this is demonstrated by two wires, a and b.
The wire b is bent slightly upstream in order not to “
exclude cases of this kind. The range or disturbance
results ~rom the sum of sll of Hach!s cones starting from
all poi~.ts of the wire. It is immediately obvious that

, only the circle with.“theradius A ad. its tsngents can
form the boundaries of the area of disturbance. Outside

. . 01 Hac’hls cone starting f~om poirlt P these chmacter.
istics settle all questions; they can be traced back to
tne plsne case with a trar~sver3e couponent of the velocity. .. .
The essentisl and dii’f’erentpart of the conical fields,
therbfore, is concerned uith tim convex surface of lfiach~s
cone starting from point P, ~ld with its interior.

Tschapii&inls i?.lustratioll.-In the plane of inter-
=3. we findsecti?E7Z--- ins~f the circle with the

radius A the elliptic charactmr of the differential
equation (5). hem the center the differential equation
of the-potential ti~eoryis valid; in plsne cases, this
equation can be satisfied by analytic functions of the
complex variable.” In this circle, therefore, there only “
exists a mutual dependence but not yet a full equivalence
of s3.1loci. This is not surprising, because the analytic
continuation of the plane reaches to the outer range of
the circle. Tschapligin, however, has devised a geomet-
rical construction which so distcrts the field inside the
circle that equivalence ru~ardi~ tk.ediff’erentisl “equa-
tion will result. As Iigure 3 shows this distortion is
attained by tramferrhg the plane z = 1,

c=g+i~,
with the

ccmplex variablo through parallel projec-
tion to a sph9rc with tlis radilzs A, and by then pro-
jecting it from a pole Or th9 sphere on to a plane in
the distance. One will easily recognize that only the
inierior of the circle ~-:i~hthe rndius A will be c
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depicted; first it
L --half’-sphere on the,

new plane with the

wI1l be delineated from the lower
interior of the unit circle of the
ne”wcomple’xvariable -.6.; a second

time-it will go from the u&or half-sphere-on to the -
outer field of the unit cirole. In these coordinates
one can use analytic functions ‘for the solutions.

SOLUTION OF THIZDIFFERENTIAII ZQUATION

For eaoh of the volocitv components u, v, and w
one can
It will
for the
related

w=

equate the real part-of & Snalytic-fufiction f(c).
serve the purpose beat
component w, because
components u and v

A ● Re (f(~)) or w

to set up the equation
then the more closely
can be calculated jointly~

+i~= A.f(~) (6)

The completion rermesented htireby s is for the time
being c&pletel.y hoanlngless. A&ording to Tschapligin
there then results the complex velocity:

The ?messure in the current. with the aid of the den-
Sit~” ~~ results “from the ~elocity components as follows:

[

Ua+va+wa
P =-pvJ*w+

2. 1
} (8)

= -*@~ (f + r) + ~fi]

The right furmtion f(~) is to be selected with the aid
0S the boundary conditions. ,

●

s. “

Boundary conditions.- The outside of hlaclllscone is
snp9rior to llach~s c~lliself. Therefore, first, those
velocities u, v, and w on the circle of the ~-plane
(and the~efora on the uniform circle of the c-plane)
that rssitlt from the OIIUHI ticld must be ascertained.

%i-
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If the body does not protrude anywhere out of Mach!s
cone, the values u = v = w = O on the uniform circle
are given. If on the contrary no part of the.body 1s
inside of Mach~s cone, the values of w are to be
represented by an analytic i’unction i’(c) free of
singularities with the given bo-unclaryvalues o.1the “
circle. If f(~) does not produce a stationary value
df=o, then u and v accordin~ to equation (7) will
have a logarithmic singularity at zero. The many-leaved
function can be selected in a udque way by using radial
intersections with tineboundary values of u and v on
the uniform circle. The radial intersections produce
rotational layers, as is physically to be expected from
s lifting surface.

Impermeable bounderias
fei’red into the E-yip!neat
streamlines in the tield of

of the body can be trans-
the same time. They mu3t be
the relative velocity:

(9)

This condition is not always easy to comply with. IIow-
ever, if the body possesses rectilinear surface elements
passing near zero, the otherwise meaningless imaginary
part s of the function f(c) will remain constant on
these elements. lY the straight part goes ovar zero, a
statimary value for f Is to be stipulated at zero.
Conditions of thts kind arc especi&12y agreeable. From
the pressure equation (8) conditions applicable to cases
of given pressui’es or of given lifts are to be understood

The disappcmance of the real or of the imaginary
part of f on certain lines because of s~etry can be
atitainedin the well known way by reflexion, as the
examples will show.

Examples

1. The circulazz cone in the strai@t flow

For the only ax~e-1-s~etrical case, i..e., the
circular ccne with an infinitesimal. apex anglo~ the
right solution is,0? cowse s givsn by the statment



:
The pressure on the convex surface of the cone results ao--- - .In’the lmown way (f’i& k) and.c.onfo.qns..with.w Karman~s

t
values and mine.

) 2. The circular cone In oblique flow

; One succeeds, with the a~d of the relative velocity
according to equation (9), in solving the circular cone
In oblique flow. Herein the apex qgle and the angle of
attack may, though infinitesimal, yet bear a relation to
each other. The solution 5.Bshown in figure 5. If one
makes the angle of obliquity y zero, one gets again the
circular oone in straight flow. If one makes the apex
angle 2P disappear, one gets the pressure distribution. “
of a circular cone in an Incomyresslb].e current. The
co~ip~~son with I?errari is rendered somewhat dif~lcult “
by the faot that 11’e~rsrime~sures the velocity field per-
pendicular to the cme axis while it is here perpendicular
to the wild dii’ection. If the system d’ coordinates Is
rotato~ adequately, Yne conformity is complete.

3. Tip of’ a rcctaruqular plato

If a plana rcctqwlcu plate a~ infinitesimal thick-
ness is placed ilia flow perpendicular to tk.efront edge
wit-i an l~~finiteaimal e.ngloof ettaclc,and If the velocity
field is needsd only up to tlioroa edge of the plate,
one can place tb-ei’ixedpoint P at ti-eright corner
point of the front f3d~e. On the supposition of an
infinitesimal angle of attack

J
(with the x-axis

forml.ng the axis of rotation) le pressura distribution
will be represented on the quarter plane between the
positive axis (z) and the’negative axis (x). For the ,
plane z = 1 tho section of the body, except for lnfinl-
teslmal distances, Is then rendered by the negative real
axis ● Let the reduced pressure above the plate and the
increased pressure below the plate be adjusted to a unit
value outside of Machys cone. These values hold on the
boundary circle. On the left half of the unit circle of
the C.plkne correspondil% values ~or w are then to be
ass~gned. On the rlgk.tsemicircle the outer f~.eldis
undi.uturbad: hsre w = 0. For reasons of symmetry the+
Vallle w = O must dso result on the positive. real axis.
Along ths .negat?.vero%l axh, on the contrary,
s = lln(f(~)) mimt W fixed because Gf the fixad radial
hOUild~~. SiilCa 3 is given only up to one co:-tant,
cne ~an dsmmd hers s = 0. All conditions can be
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attained by reflexion if
conformal mapping on the
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one undertakes a prelhlnary
Plane ~ = W.

The solution is rcpresonted in figure 7. Figure 8
shows the pressure dlstrl.bution orIboth edges of a rec-
tangular plate.

& Supporting triangle

Every two radii starting from P form a triangular
plane as f- as tlieplane z = 1, when all potnts are
connected. Becausq of the required iltiinitesLmal dis-
turbahce of tho parallel current, however, the an@o of
attack must be infinitesimal, so that the plane of the
two rays will nearly pass tkrough the z-axis. Such
tri~les sre pos~ible completely inside of l,Iachlscone,
complct.el.youtside, an~ uni- unclhi-laterally protruding.
here we shall only consider the simplest case 01’the
supporting trian~lc outsido oi’Xachl u cone, although all
oti~wrcases can be ewily lnt~:;rs.ted.

Fi~e ~ SILGWS th!s suyportin.gtriangle. The
velocity com.poncnt w whiCL ~3i’GGornln&Xatly influences
the presmuae is clifz’oi’entfrol: zero or.lyon the short
arcs between ~1 wd & as -so ~~ and C=. The
value zero resul.ta i’ro~ilthe undisturbed state on the

. ri,ght,and also on tileLeft because of the pr3ssure
&djustment beh~nd thl~ tria@e, vhen cormlcieration is
given to the symetry with a positive and WIth a nega-
tive angle of attack, Figure 10 shows the rel ation3 in
the ~-plme. If one inbe?idsto let the rear edge of
the triangle tr,qvolwhile the front edge lies fixed, one
will at first tr;mal’cr only tho points ~z =ld ~a into
the e-plane. V!ith suitable regulation there must result
an increase OF w fro~ o to +’rrSt & and from
-m to o at r= (If one movec on the circle in the
dir~ction of increasing ar@es ). One can treat this
part of the solution independei~tly id’one assumes a
further singularity at zero. Physically apeti~i~r,one
then has a uniformly 10at!edt~ismgl.ebetween the frent
ed~e at c and the z-axis. InsLdo of ltlach~s cone,
bovmvGr J tK~s triangle is nat fl~t~ tiuliis twisted to
uni:azm or load.: AC coon as orw sup{jrir.posesat
the rear edge a noga-~ively lomlod tr5ai-aleand its influ-
enc.c between L~~ -and tihez-axis, the ~>artbehind the
ras.red@ will no lo~or In supper’:in& and the singu-
lufi-_!!yIn vf at tiw poh-m zero of t~.e ~-plane dlsqpears.
.-
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However, a vortex layer in the field u, v Is left.
The partial solution in the c-plane is represented in-..
fl$ube”-’ll; -.. .... . ...-.- . .. .

5. Superposition of two conic~ I!!ows

The hfinitesfmal conical f’lowscan bo superpcmod “.
without having the fixed point in common as in figure 4.
Therefore the relations in the plane plate can also be
represented when the plate has more depth. Figure 12
shows the isobars of the edge of the plate and also their
superposition after Machla cones have overl~ped. D~-
ferent boundary conditions for the partial solutions

. need be considered only when the conos roach the other
edge of the plate. The disappoaranco of pressure along
a straight line in just the dlotanco Et which the cones
arrive at the other @dge of the plate is remarkable.
The positively loaded part of the plate ends here. Fig-
urs 12 shows the li.~tdistribution oi’the positively
loaded part In perspective reprcsontation.

To find the velocity f’iol.dbehind a rectan~ular
plate cf finito depth O,lCcan emml the supporting pres-
sure difi’erencos of a plata of infinite depth by conical
fields having the apices on tho rear edgo of the plate.
If one superposes a nogativel.y loaded plate ~hifted
inflnitoaimally in tho dirGchion ,of the z-axis one
obtair.s a supportl~~. line as a lLniting case of’the
Support:hlg strip. The c,zsescalculated by Schlichting
according to Pr~-dtlls mctl~od me obtainod in this way.
Here, too, the confomuity is perfact, except for an
error oi’sign in the calculation of the integral equatioi~

SUM-MARY

The calculation of lnftnitesimal conical supersonic
flows has been applied first to the simplest axmnplos
that havo also been calculated in another way. 12scept
for the discovery of a lfliscalcul.ationin an older report
there was found the expected ~anformity. The new method
of calculation is llmited r.ioredsf’in5tely to tho conical
case; but, as a compensation, It is much more .convenlent
because the s~lut~oil is obtained yJy analytic funCtiOnS.
The fundumcntal recognition that there the hyperbolic
ch~anct~i> is replaced by the elliptic ono will lead to

~.—-.m ,. ,.. —,,.. .... .-
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more thoi~ou~h invest 5.gation of conical fields as special
cases in swersonic flows. (M course, one will be

——
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Figs.1,2

Figure 1. Coordinates in conical field’

\ \ \v
Z.1

Figure 2. Disturbance field of elements a and b

.
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Figure 3. Chaplygin’ s transformation
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A = tgct
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Figure 4. Circular cone in axial flow.
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Figs.5,6

-.

V = t~a

Figure 5. Circular c-onein yawed flow

\
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Fi&n.me6. Edge of a rectangular Flate
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v

f (v) =—
{

i ln(pvl)

-ln(u-v3)+

.

Figure 7. Conformal representation at edge of a
rectangularplate

t Lift

of motion of
plate

Figure 8. Pressure distribution on a flatplate

‘Y

w

rX4
Figure 9. The
lifting triangle.
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-’ln(v-v=

ln(v-v4)
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Figure 10. Cross section of the lifting triangle

Pd-fi.s= const.

Figs.10,11

Figure 11. Representation of the lifting triangle

in the e plane

Ilr
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R—’

/‘~ - A’

Figure 12. Superposition of edge influences for
the rectangular-plate at supersonic velocities

.

t

LIFT

Figure 13. Pressure distribution on the rectangular
plate at supersonic velocities
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