Solar Electric Propulsion Mission Architectures

Thomas W. Kerslake
Glenn Research Center, Cleveland, Ohio
Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the Lead Center for NASA's scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA's institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA's counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and missions, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA's mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results . . . even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov

- Fax your question to the NASA Access Help Desk at 301–621–0134

- Telephone the NASA Access Help Desk at 301–621–0390

- Write to:
 NASA Access Help Desk
 NASA Center for AeroSpace Information
 7121 Standard Drive
 Hanover, MD 21076
Solar Electric Propulsion Mission Architectures

Thomas W. Kerslake
Glenn Research Center, Cleveland, Ohio

Prepared for the
Space Power Workshop 2003
cosponsored by The Aerospace Corporation, Air Force Research Laboratory (ARFL),
and U.S. Air Force Space and Missile Systems Center (SMC)
Redondo Beach, California, April 21–24, 2003

National Aeronautics and
Space Administration

Glenn Research Center

June 2003
This report is a formal draft or working paper, intended to solicit comments and ideas from a technical peer group.

Available from

NASA Center for Aerospace Information
7121 Standard Drive
Hanover, MD 21076

National Technical Information Service
5285 Port Royal Road
Springfield, VA 22100

Available electronically at http://gltrs.grc.nasa.gov
Solar Electric Propulsion Mission Architectures

Thomas W. Kerslake
National Aeronautics and Space Administration
Glenn Research Center
Cleveland, Ohio 44135

Abstract

This presentation reviews Solar Electric Propulsion (SEP) Mission Architectures with a slant towards power system technologies and challenges. The low-mass, high-performance attributes of SEP systems have attracted spacecraft designers and mission planners alike and have led to a myriad of proposed Earth orbiting and planetary exploration missions. These SEP missions are discussed—from the earliest missions in the 1960’s, to first demonstrate electric thrusters, to the multi-megawatt missions envisioned many decades hence. The technical challenges and benefits of applying high-voltage arrays, thin film and low-intensity, low-temperature (LILT) photovoltaics, gossamer structure solar arrays, thruster articulating systems and microsat systems to SEP spacecraft power system designs are addressed. The overarching conclusion from this review is that SEP systems enhance, and many times enable, a wide class of space missions.
SEP attractive for missions
- High Isp, mass savings

SEP Mission Review
- Past- Present – Future
 - Robotic
 - Human
- Technologies, Challenges & Benefits
 - Power Systems
 - Structures

Introduction

First Russian SEP Missions in 1964
- Yantar-1 / Ion thruster, Zond-2 / 6 PPTs (Mars Flyby)

First US SEP Mission 1968: ATS-4
- 20-W, 5-cm Cs Ion Thrusters, 300-W PVA

In The Beginning…
- Primary EP
- Reduced cell count, concentrator PV

DS-1: 1998

- Express-A #2/3: Induced plasma at PVA in GEO - 2000

GeoComsat EP

NASA/TM—2003-212456 3
Waste Gas Management, Reboost

4x500-W, 0.33 N, 100-500 sec Isp

Options: 10-kW HET (shown), 5-kW Arcjet
- Array shadowing/clearance, sputtering, PPU placement

ISS – 2001 EP Reboost Study
ISS – ED Tether Reboost (MSFC)

- Downward Deployed
 - Commercial spacecraft bus
 - 7 km long tether
 - Uses ISS Power
 - Significant cg shift
 - Ingress/Egress Interference

- Upward Deployed

Geomagnetosphere Science (Microsats)
High-Power EP Tech Demo
- 10 kW HET & VASIMR Thrusters
- 9-month, LEO to GEO spiral transfer

Balance s/c mass, rad dose, geoscience

RTD

1500 kg initial wet mass
ISS Inspector - PowerSphere

- PPTs, photography, microscopy
 - 1000’s sorties, precision control

ISS Inspector -- PowerSphere

Aerospace/AFRL

Water Electrolysis Thruster – “WET”

- Unitized PEM EL/FC, H2/O2 Prop
- Non-hazardous, low pressure fuel
Mars Sample Return (JSC)

- Shuttle launched/retrieved
- 10 kW Xe Ion Thrusters, Xe resistojet ACS
- 20 kg canister returned LMO->LEO

Mars ComSat (GSFC)

- 6-12 kW Ion/Hall EP plus Chem Prop.
- Enabled launch on Delta 7925
- Enabled Mars Orbit Maneuvering – KOZ Issue
- Enables Missions By Use of Smaller LV
- Faster Trips Times than All EP

SEP-Chem Missions

- 20 kW EP (1-AU) / Chem, 200-W at Jupiter
- PVA Challenges: radiation, LILT, pointing

Europa Orbiter (JPL)
HES, Multijunction Solar Cells

PV Array Performance: Venus to Jupiter
3-5 Cells

Heliocentric Distance (AU)
Temperature (C)

"1-Au Normalized" Performance

Wing Peak Power
Cell Vmp

1-MW EP LEO->HEEPO
Chem TMI Burn

80 MT Stage
80 MT Payload

Challenges:
- Thin Film PV
- Rad Harness
- High voltage
- Structures

Human Mars – 2020’s
- **400 kW Ion EP**: LEO to L1
- 30 MT Stage
- 30 MT Payload

Human Gateway-HPM-OASIS

AEC-Able Design: SRTM Heritage

- Thruster palette
- Outboard joints
- Outboard Mast
- Deployable Mast
- Deployed
- Stowed
- Open truss canister
- Root Joint
- Root Truss

Show LaRC SEP view.mov

LaRC/RASC

NASA/TM—2003-212456
Thin-Film Photovoltaics

- High efficiency (15-20%)
- Low mass substrates (0.1-0.2 kg/m²)
- Encapsulated for High Voltage Operations
- Low cost

Radiation Hardness

- Thin Film PV
- Entech SLA
High Voltage PVAs (D2)

- D2HET Program Plasma Testing / Modeling
- AEC-Able SquareRigger
- ILC-Dover NGST Sunshield

Gossamer Structures
The Future? Space Solar Power

- 200 kW HET per node; 20 MT LEO->GEO, ACS

Or The Future? “SolarBird”

Power generation satellite group

Mitsubishi Microwave beam directed at the Earth
SEP systems enhance, and many times enable, a wide class of space missions.
Solar Electric Propulsion Mission Architectures

Thomas W. Kerslake

National Aeronautics and Space Administration
John H. Glenn Research Center at Lewis Field
Cleveland, Ohio 44135–3191

This presentation reviews Solar Electric Propulsion (SEP) Mission Architectures with a slant towards power system technologies and challenges. The low-mass, high-performance attributes of SEP systems have attracted spacecraft designers and mission planners alike and have led to a myriad of proposed Earth orbiting and planetary exploration missions. These SEP missions are discussed—from the earliest missions in the 1960’s, to first demonstrate electric thrusters, to the multi-megawatt missions envisioned many decades hence. The technical challenges and benefits of applying high-voltage arrays, thin film and low-intensity, low-temperature (LILT) photovoltaics, gossamer structure solar arrays, thruster articulating systems and microsat systems to SEP spacecraft power system designs are addressed. The overarching conclusion from this review is that SEP systems enhance, and many times enable, a wide class of space missions.