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INTRCDUCTCRY REMARKS

»

In his memoir Helmholtz (reference 1) showed the
possibility of mathematical analysis of those types of
flow of incompressible liquids that are characterized
by the formation of so-called rays (Strahle) or jets
within the region at rest, Following the work of
Helmholtz a rather large number of investigations,
devoted to the same problem, appeared in foreign and
Russian scientific literature, At present the fully

- worked out Joukowsky method (reference 2) permits the
solution of any problem on steady, irrotational flow
of an ideal liquid under the following coaditions:
first, the fluid throughout moves parallel to a certain
plane, the flow being bounded by plane walls perpendic—
ular to this plane, and secondly, the motion takes place
in the absence of external forces, (The same conditions
are imposed in almost all problems of this type,)

The analogous problem for an ideal gas has hardly
been touched upon, The author is familiar with only one
paper which deals with gas Jjéts; namely, the one by P,
Molenbroek (reference 3), Molenbroek set up the differ—
ential equations on which the prodlem of zas jet flow
depends and gave certain particular integrals of these
equations; these equations, however, hardly correspond
even to the theoretically conceived mction of the gas,

In the present paper a method is presented with the
aid of which it is possible, in many cases, to find the
solution of a given problem on the flow of an ideal gas,

*Scientific Memoirs, Moscow University, 1902,
pp, 1-121,. : ' ' ‘ '
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Here 1t is necessary to impose all the conditions which
are assumed in the analogous problems on an incompressible
liquid as previously mentioned by Joukowsky (reference 2).
But, in addition, the applicahility of the analysis here
developed isg further restricted by the speclal requirement
that the velocity of the gas particles must nowhere ex—
ceed the velocity of sound for the particular physical
state of the gas at a given point (local velocity of
sound), Corresponding restrictions are likewise imposed
on the limits within which the pressure may vary, If

this additional condition is not satisfied, stable ‘motion
apparently is not possibdle, It is assumed, however, that
with the aid of a certaln hypothesis, stated in this
paper, the prodlem can bte analyzed also for the case

where the additional condition is not satisfied, The
mathematical treatment of this problem, however, is left
to another paper,

A brief summary of the contents of this paper is
presented here,

In part I the differential equations of the probvlem
of a gas flow in two dimensions is derived and the partic—
ular integrals by which the problem on Jjets is solved are
given, Use is made of the same independent variables as
Molendbroek used, but it . is found to be more suitable to
consider other functions,  The stream function and veloc~—
ity potential corresponding to the prodblem are given in
the form of series,

The investigation of the cohvergence of these seriles
in connection with certain properties of the functions
entering them forms the subject of part II,

In part III the problem of the outflow of a gas from
an infinite vessel with plane walls is solved,

In part 1V the impact of a gas jet on a plate isg
considered and the limiting case where the jet expands
to infinity changing into a gas flow is taken up in more
detail, This also solved the equivalent problem of the
resi'stance of a gaseous medium to the motion of a plate,

Finally, in part V, an approximate method is pre-
sented that permits a simpleér sclution of the problem of
Jet flows in the case where the velocities of the gas
(velocities of the particles in the gas) are not very
large,
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A number of supplementary rnotes are appended at the
end of this report, the second c¢f which establishes a
relation between the analysis of part V with certain
problems in the theory of minimal surfaces,

A further interesting remark may be noted here:
The \results obtained in parts III and IV, at least
qualitatively, agree sufficiently well w1th test results,
although the experimental investigation of the phenomena
accompanying the jet fermation was conducted under con—
ditions very different from those assumed in these theo—
retical investigations,

. The principles of the method with its application
to flows presented here were briefly communicated to

the Moscow Mathematical Society at the beginning of 1896,

A more detailed presentation was made at the eleventh
session of the experimental scientists and doctors in
1901,

In concluding these introductory remarks deep
appreciation is expressed to E, A. Bolotov for his kind
help in proofreading the manuscript,
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PART I
GENZRAL PRIVCIPLES OF THE METHOD OF INVESTIGATIOY

An infinite mass of a perfect gzas contained between
two parallel planes is assumed and, 1n addition, bounded
by certain cylindrical surfaces perpendicular to these
planes, One of the lattesr is assumed as the coordinate
plane XY, Let the gas be in stabilized motion and let
the direction of the velocity throughout be parallel to
XY, The effect of external forces will be neglected and
it will be assumed that the veslccities have a potential,
Since it is desirable to avoid vorticity formation, it
is necessary to consider the pressure as a function of
the density, It is convenient to take

p = kp (1)

and thus assume an adiabatic procsss,

The magnitude Y equal, for atmospheric alr, to
1,4025 (reference 4) is the ratio of the specific heats,
It 1s preferred to consider the motion as constant heat
process In view of the small heat ccnductivity and radia—
tion of the gas particles, Because of this the adiabatic
process at large velocities appears most closely approach—
ing the true cenditions, In any case, the recult of tiais
analysis must be considered ag a first approximation for
the recason that no account is taken of the connecting
chalins between the particles and the resulting viscosity
forces, frictlion at the walls, and so forth, factors
which, in the case of gas flows, are possidbly of greater
effect than in the case of liquid flows,

Under the foregoing assumptions the velocity potential
¢p 1s a function of x and y and, for the components of

the velocity u, v, the expressions

u:E_CE' vz_o.‘g?. (?)
ox oy

With the density of the gas denoted by p the con-
dition of continuity is written
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opu opv )
~x t 37 <0 (3)

The Bernoulli law in this problem may, with the aid
of equation (1), be reduced to the relation

v2 E'V A (
= 1 -~ — 4
p QO ( 2(1/ )"
where
Y—1 1
CkYp
Ve = uf+vE g =-—~§f1—~, B = 7' Po~ constant (am)

the density at the point of the gaslié evidently op

where V = 0, °

Fer briefness,

so that

g
p = po(l~T) 1 (5)

Equation (3) indicates the existence of a function
V determined by the equations

. , , v
A A . (6)
Po oy Po ox

From equations (2) and (6) with the aid of equation
(5) a relation is obtaincd between the functions ¢ and
Y given by the formulas ’
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oV S
3y - T
(7)

The function WV represents the stream function,
the equation VY = constant ©being the equation of a stream—'
line, By assigning successive constant values C, and

C, to the latter, it is readily shown that (C, - C,)po
exnresses the mass of gas per second flowing through a
cross section of the Jet between the streamlines,.

Equations (7) are transformed by taking ¢, V, for
the independent variables and considering x, y as

. ]
functions of ¢ and W, The relations

ox Vv ¢ oV
D om = o, D R A

o oy Ocp dx
pOX . _ % o _ 2%

oV ey’ VY dX

From the foregoing equations the reciprocal of the sguare
of the velocity is obtained:

~

2 a
.-]:-. = ..a.f\, o+ <_§.X\ ( A )
&/

V= o/

Equations (7) become
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du
—_— ﬁ _____
(1 ) 0 \(1 ) 0# 00
. (8)

It is necessary to consider the derivatives with
respect to ¢ and VY of the variadbles T = V¥/2a and

0' oy . or
B O_a.rctgo -—arctgox——-arctggz (8";
oz do o

the inclination of the velocity to the X = axis 1is evi-
dently o, Differentiation of V® with respect to WV

results in
— (@ 0% +dy 0%
dp dpd} " dg W)’
or, on the basls of equation (8)
a(V?) dy 0% 9or Oy .
A= 2V( )1_ 2.
% R )
Differentiation of @ with respect to ¢ glves
R
% _ amgw _0b 999y 9} dpoy

9z dy o\, [og\f ’
¥ (5%)+(%)
or
®0___ dy 0% iz oy
GV UG 5 )
These relations lead to the equation
dlgV? M
L LeRPY ®
Further
. . dy
d? 0z d% _dy d%r
=yt ”V’(o? 35 )’

whence, with the aid ofAequation (8), there iz obtained

®_ ofdy Oy , 0z 0
5= o <o+ my o dw)
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S@ V= B@
—~2B—1 OF
= - ‘4‘;‘““ [1*(284’1)7](1-7) -86

By making the final reduction in the formula for %% and

substituting T for V® in relation (3) gives the
relations:

- -8
o= 21(1-7) 28
oy Cep
(10)
B+1
oT L - 27 _iiillﬂ__ °8
Sep 1-(2B+1)7 oW
Passing next to the independent variables T, 8 and

taking ¢ and VY as functions of the former gives the
formulas required:

% = el o
oL}
(11)
deo 1-(2B+1) T -8 aw
—_ e et (1-7)
aT 21(1-71) 26
2 Ly PRV L a-(zprayT PRV
= {ZT(l T) 57 + 2T(l~T)( i 0 (12)

Equations (11) and (12) constitute a2 solution of the

problem of the flow of a gas if the range of variables T
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corresBondlng to the flow is known, if the values of

on the boundary streamllnes are given, if everywhere

é!CD

e e e

within the plane T 8 the funvtlon v, tOgether with

’ -——

its first derivatives, is flnlte 31ngle—valued ard con—
tinuous and the magnltude ot does not exceed 11(25+l)
and becomes zero only at certaln points of the contour,
The 7, 8 region will be cecnsidered slngly connected

~and closed,

Ly

In order to show that the function ¥ is fully
~defined for the given conditions it will be proved that
 the contrary is nct true, Let it be assumed that there
exist two functions V; and VY, satisfying all these
conditions, It will be shown that V;- Vo = 0, The
function ws = wl—-wa everywhere in the given region of
values T, € 1s finite and continuous, satisfies equa-
tion (12), and at the boundary of the region assumes the
value ‘zero, Multiply the left side of equation (12) by
VdT1d6 and integrate within the iimits of the 1T, § re~
gion, If the result of the integration is denoted by I

substituting , for there is rcadily obtained:

PO, - -8 v, \ 1-(28+1) 1. 3V,
/] v (7)) tEamn e ( >}“”“

. -B v, 1-(28+1)7 Mg Y
F 2 - - < mm —_——dF =
+,/ { T(1-1)  Yymgrmae+ T Vo =g } 0

where the douvle integral extends over the entire T, 9
region, once over its contour, Since on the contour

V5 = 0 the equation I = 0 can be true only if the
double integral becomes zero, Under the above—indicated
conditions, however, the function under the integral sign
may be either positive or zero, It is clear that the zero
value must be taken, and this leads to the equations

‘ 8¢3

== =0, Vs = 0 and V4 = constant = 0
T 08 ' '

as was required to be proved,
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Anong the required conditions for the existence of
a definite solution it has been mentioned that throughout
the region of gas flow the inequality

1

—— ———— s o

28+ 1

must be satisfied, The significance of this requirement
will be explained, Turning to formulas (4) and (4!') for

&

T = -..Y- g --—}—-- = O, 17 (13)
2a 2B +1
gives
vE < _2a_.  y2 g BEVP'TD.
= 28+1 1+Y
where
Y- -1
VE_EE:{.EQ_.~_ T .—__......]:... .Y-‘l-—-p Y--1'(1_...‘]') py_-l::_z.-p—-g—-—-—.
i+ ] 2g+1’ ° ’ 1+Y
whence
V“’zls:*(pym1

or, making use of relation (1) gives

'V2=-§~V (131)

Thus the restriction imposed on T 1is equivalent
to the requirement that the velocity of the gas nowhere
exceed the velonltx of propagation of sgund for the
particular physxcal conditions at the point under con-
siaeration, It is supposed that such velocities, at
least for established flows, cannot even exist, (See also
reference 5, and the authors cited by him,)

The limiting value T = 1/(2B+1) establishes also.
the limits within which the pressure may vary in the region
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occupied- by the moving gas mass, Thus, if the variabdle
T is everywhere less than its limiting value, then

o] _— ——C—— R P P - — i
= Po < 2B+1 = o

But BY = ¥/(Y—-1) = 1 + B; hence

B+1 778
_p.-— E<—§_B._\ = (2\ = 0'53’ pO 1,89
2

P, g+1/ p <

if 1t is assumed that Y equals approximately 1,40, |

The auther turns to the derivation of other very
important theorems with regard to the motion under con-—
sideration to show, in the first place, that the velocity
potential o, considered as a function of the coordinates,
can nowhere, within the flow region, have either a maximum
or a minimum, To prove this, it might be possible to con-
sider only the following condition, If a2 point existed at
which ¢ had a maximum, there would then have to exist
about it a closed curve on which ¢ had a constant value
less than the maximum, In such case the gas would flow
through this curve from ocutside to inside the area bounded
by it, The mass, bounded by the curve would increase with
tine and the motion could not be steady, By similar con-—
sideration the assumption of a minimum of ¢ is likewise
shown to be impossible, But since the theorem on the func—
tion ¢ holds also for the function V¥, and in view of i
the fact that it is true also for the coordinates X, ¥y, |
regarded as functlons of the independent variables )
and another proof appllcable to all these functions

——— -

also will be given,

From formulas (7)),

Jl (1-1)" 22 o o (1-1)" 22 . ¢
tx oy oy

At a certain point A of the £1ow region let ¢ have
a maxirum (or minimum), About this point take a closed
~curve (C) along which ¢ maintains a constant value k, less
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than the maximum (or greater than the minimum), Mkultiply
the above equation in ¢ by PF(p)dxdy and integrate
over the region bounded by the curve (C). Integration
by parts yields

v, B! x, D!

(k) Jf / (1-7)8 %% dy + F(k) J / (1-7)B %2 dx
¥y, B : D

X

‘ ’ B~/ / .
ij."(:p) (1-1) \-§> 'Sy/‘ > dxdy = 0 (a)

B
where the symbol _/ indicates that the function under
B

B 3
the integral is the difference of the values (l-1) %%
at the points B' and B (fig, 1) and similarly for

D1
/ + Since, in the case of a maximum, ¢ increases
D

in vassing inward from the contour (C) at points B,
Bt the result is %9 dx > 0 1in passing within the

X B
region of integration, But since, at the first of these

points dx > 0 and at the second < O for the motion
along EBB', then

. BY
N ‘ ¢
<0i\ > 0, <§%) < 0 and // ?E <0
o ¢ 0
/ J/B' B
and similafly
D!
%9 0
ey
>
The function F(¢) is chosen so that F(p) and F'(p)
are, everywhere within (C), greater than zero, Turning

now to the above~derived’ relatlon (a) it can be seen that
all its terms are less than zero and therefore impossible,
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hence also the assumption of a maximum ¢, (If the author
assumed a rinimum, the signs in the substituticns would
have been reversed, and the function P chosen so that
~everywhere TF(¢) and P'(p) < 0, and again would have
arrived at the impossidility of (a).-

The same consideration prcves the correctness of the

derived theorem also for the other above—pentioned con-

ditions, forrzulas (8) being required for functions

x(o, V) and y(o,V).

With the aid of eqguation (10) it . is not difficult
to prove a similar theorem also f¢r the function T and
therefore the velocity of the flow likewise cannot have
a maXIAUW in the range of variable :g, Vi; a minimum may
ex1st but tae minimum value of 1 EE zero, In order to

prove this the following equatioa is constructed on th
basis of formulas (10)

g
0 1-(2p+1)T ( —B-1 v ¢ (1-71) B ()
F S te ov T ov

Assume that there exists in the ¢, ¥ plane a point
where T has a maximum or minimum, Take, about this
point, a curve (C) with constant value of T; multiply
the oguatiocn for T Dby a certain function f(T) and
intezrate the left part over the area bounded by the curve
(C). Integrating Yy parts yields the relertion:

~ B
JF / .i:iééiil: )~B‘lf(#) & dw4’g/ / i&%:l_f( )~~dw

¢

N: \2“

|

In quite the same manner, as in the above—~considered
cases, the impossibility of this rclation will be proved,
It is readily seen, however, that the procf will be valid

only for the conditicn: T

: 1 _ within the region of
2B+ 1 '
flow, and this condition has already.been assumed and its
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physical meaning explained, The ecase T = C 1is itself
excluded from the range of applicability of the above
considerations and for the following reason: At the

point T = 0, if this point lies within the flow mass, the
streamlines meet, It i's readily seen that in this cass

the coordinates X, y canndt be single—~valued functions

of ¢, V; the latter region will be represented, at least,
by & twowsheet Riemann surface not assumed in setting up
the double integrals that figure in these considerations,
It is easy to show, however, without any formulas, that

the value T = 0 is the minimum 'T, For this, it is
sufficient to remember that T = (uz + v2)/2a, and,

since this functlon is everywhere positive, the value

zero 1ls actually its minipum, In wkat follows, only

such gas flows for which the critical point T = 0 lies
on the bounding contour of the 7T, 8 region and the
surface of the ¢,V region, a single sheet surface will

be considered,

By setting up formulas (10) the differential equation:

( B+1 5
,_.e__ 7(1—- T>..B _.a.g + 0 I_}:_:Q..._._. _..9. = 0
o S oV 1-(2p+1)T 2V

and applying the above—described device it is found that
the function B8(¢,V) cannot have either a maximum or =2

il R L D

minimum, In the same way the absence -of turning values
also for the functions ¢, ¥, of T and 8, if the
latter are taken as the independent varlables is estab—

lished, 7For this purpose formulas (11) must be used,

From the foregoing theorems proved it is clear that
in the ¢, V region there cannot exist closed curves along
which the functions x, y, T, 8 maintain ccnstant values;
all such curves must end at the boundary of the region,
Similiar considerations hold for the T, § -region and
the curves ¢ = constant and V¥ = constant,

In application only such problems as correspond to
a T, 8 region bounded by concentric circles and the
straight line segments passing through their centers will
be kept in mind, The magnidutes T, 8 will be taken as
the polar coordlnatbs of the points of their region and
the comion center of the boundary curves w1ll be the pole
of the coordinates,
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For these conditions from the theorem on the im-
possibility of a maximum or minimum of T(¢,W) 9(¢,W)
it may be concluded that inner points of the T, 8
region correspond to iunner points of the ¢, ¥V region,
It may be noted further that by making use of the ab—
sence of a maximum or a winimum of the function V¥ (T, 8),
there can again be otbttained the theorem already proved
on the uniqucness of the fuuction if it ie continuous
within the T, 8 region and is given on its boundaries,
The series of its boundary values zay, in general, also
be discontinuous, '

A problem on the flow of a gas will now be considered,
Assuvme as known the correspoading contour of the region
of the variables .7, 8§ satisfyiung the conditien T <
1/(2g + 1); finally ¥ cn the contour is known, If it
is possible, from certain considerations, to conclude
that the given problem has a solution and if a2 continuous
function V¥ satisfying the given conditions is found,
then this function will actually represent the stream
function, since no othsr is possible. - Dbezause of the
theorem on the uniquencss of the solution of the diffar~
ential equations of the same type as the equations for
the function VY, (See also reference 6,)

Side considerations, as to the existence of a2 solution
are not, however, always a priori possible, and such beiag
the case, having cbtained a function WV and through it o,
it may Ve guestioned as to whether these particular func-
tions give & possible scluticn of the prodblem, In order
to remove such doubt it is neeessary to show each time
that the formulas for ¢ and ¥ determine T and § as
single—value functions of x and vy,

14

In order to clarify this point, the reasoning will
be. as follows, " Let a single—valued function WVW(T, 8) be
defined; then from the formula

ox %X, XDV

—— —

2T B 3T BV BT

snd similafly on the tasis of rslation (8) and formulas

¢X _cos 6. dy _ sin 9

Y D i
Ceop ~5/2<11_' Sep .V 2aT

.
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there 1is obtained

P -
v2aT —— = =L cos 8 — §~ sin § (1-7) ?
oT ‘ oT

and simllar cnes,

Thus the derivatives of x(7T, 8) and y(7,8) are
determined as single-—valued functions of T and 8,
I7 the Jacobian (x, y)/(T, 8) 1is not zero within the

region of 7, 8, these as is known, are defined as

iy | —t e

s1ncle~valued functlonq of k VY. Eut

@, v/ RN 0/

<___> EIRANNEN)

and from equations (8) and (11) the relations

x’y\ = (1"‘7)”.
¢,W) u

— ——— . et e e s et

fo, W B (VN 1-(2p+1)T -1 /3\®
\T’-Y) = 37<l——‘1'> C,T/ o (1-1) —6-6-

from which it is.clear that, if everywhere T < 1/(23B+1),
the equation (x,y)/(7,8) = 0 is possible only if both
partial derivatives of the function V are simultaneously
zero, This can happen at a singular point of one of the
curves V = constant if such singular point on the curve
exists, In general, to deny the exlstence of such points
is impossible, but it can be stated that curves V(T, )
constant will in no.case form a loop, since closed curves
V = constant would then exist within the loop, Hence, the
branches of our curve, after forring the singular point,
will support themselves against the boundary of the region
somewhat as shown in figure 2, 1If, however, 1t 1s known,
at least from the conditions of the problem, that all the
curves VWV = constant issue from the same pcint of the
contour T, § and again meet at another point of the
boundary, then the above~mentioned disposition of the
curve is impossible and therefore the vanishing of the
(x,y)/(7,8) 1is likewise impossible, The same is also
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true in the case where, starting from the same point of
the boundary of the region, the curves VY(T, §) = constant
then divide into pencils, each of them again converging at
one point,

‘An entirely different plcture will result if a steady
gas flow under conditions so that T exceeds the 1limit—
ing value 1/(28+ 1) 1is sought, The Jacobian (¢, V)/
(7, 8) in the region of T, 8§ where T 1is greater than
the limiting value will then be the difference between -
two positive quantities and will become zero along a cer—
tain curve, Consider, for example, the case where to
the boundaries of the ¢,V region there corresponds in
the T, 8 region the semicircle 40B and its diameter 4B,
the center of the semicircle beirg at T = 0; 1let

along this contour have some constant value,

Along OA evidently (2V¥/7T, §) = 0O; on the semi-
circle 4CB (2V/%8) = O, Therefore, in passing along
any curve from a point M on the diameter to a point ¥

s (VN gN®
on the semicircle, the ratic <= / : TE/ paesses through
0 c

all possible values from ©C to «; hence it follows that
if some value T, = 1/(28+ 1) is chosen for T, then on
each of the curves joining N and ¥ a point will bde
found at which the expression

/6¢Nf N 1-(28+ 1)~ 2\

22 e (1- oV
*To \37) €To (1=70) \35/

becomes zero, The series of these points in the 7,8
region will be on a certain curve, The point where the
latter meets the curve T = T, will be the point at
which there holds the equation

By, 2N® 1-(2pHL) /o\°
1mr)s (W@ o o (C¥Y L IZIEBELT 4y 1OYY Lo
(1=) Kﬁ,e) TG/ 2T ) \Go/

and therefore by the preceding formulas also the equation

/X9

[ Nud =

\".e/
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_BEvidently from the manrer in which one of these
points .is. obtained it must be concluded that they form
a certain cense curve, Thus T(x,y) and @6(x,y) will
not he single—valued as is reguired in a real motion of
the gas, Thus, if frcm the conditions of the problem,

it is p0531ble to conclude that the presaure of the gas

flow and the ve10p1t gf its particles eaceed the. llmlt
defined by the ineguality T _< 1[(284—17 then steady

—— e e et Bt e

motloﬁ is, at least, EEE always possible,

_ The author returns to the solution of the problen
“which was especially thought of in setting un this analysis,
The flow of a gas bounded by plane walls at which the gas
senarates and continues to flew in & region of coastant
pressure is considered, The probloms of the flow of a gas
out of & very largze vessel and the pressure of an infinite
gas Tlow at & plate will be studlied in greater detail,

Consider a particular solution of equation (12) of
the form

Uy = zpsin(2nd+ ay)’ (14)

where =z is a function only of T, To determine this
function, the ordinary differential equation

- k 1-{26+1)T -8

—y —

T J 1(1—-7T) ! n

is uvsed, or, explicitly

2(1-7) S Zny 1+ (B—-l)T]gEL—~n2 (1-(28+1)Tlzy = 0 (1¢)
arT arT
Setting
Zp = T y , if n>0 4 (17)

yielcs, for the determination of yg, the equation
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da ) . dy
¥n : n -
1-7) £.¥n, [on+1+(g—2n~1)7] =<2 + Bn(2n+1)y, =0 (18
T( ) qte [2n (8 )7] aT Bn( Yn )

This is a hypergeOmétric equaticn, Its integrals
are of the forn

(2) _-—=an

() =T K(T)

Y = X(T1), y

where X(7) denotes the series

, 2
Cog + €T +7Cc T + ...,

If it is desired to have an expression for V that
does not become infinite at the critical point T = 0,
in equation (14), it is necessary to take the integral
of equation (16), which remains finite for T = 0, It,
therefore is assumed that, by making use of the notation
of Gauss '
y. = ®Pla_, b, 2n + 1, T) (19)

n na»? n»

where a, and b, are determined from the equations

ap + b, = 2n—B, a;b, = — Bn(2n+ 1)

The question to be decided is which of the problems

of the above—indicated type may be solved with the aid of
a function V¥ expressed by the formula

W=A+BG+Zann (20)

where A, B, B, are certain constants and V, 1is deter—
mined by formulas (14), (17), and (19),

Tirst consider the boundary conditions of the
problems, Since the gas mass is to be bounded by stream—
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lines, then along the bounding contour of the 7,690

region ¥ pust assume certain constant values, If the
part of the contour under consideration corresponds to

a plane wall, the angle § formed by the velocity di-
rection with the x—axils should maintain a constant value
so that this part of the boundary will be a section of

a straight line passing through the pole T = 0, If the
surface of the jet is considered, there is along the sur—
face ©p = constant, and therefore, by the Bernoulli theoremn,
the velocity should likewise have a constant value "
But v®/2a = 7, so that T 1likewise has a constant value
T o It is clear that the part of the boundary of the T,
§ region corresponding to the jet will be formed of an
arc of a circle the center of which serves as the pole,

The problem proposed of the motion of a gas mass is
now connared with the corresponding prcblem of the flow
of an inccmpressible liquid for the same boundary condi-
tions (the same disposition of the boundary walls, vel-
ocities at infinity, and velocity at the jet boundaries),
The latter problem is solved with the aid of the well—
knoun Joukowsky method, By the use of this method the
relation between the complex variadbles 1g v /v + i§ =

lg /T,/7T + i6 and w = Py + iwl is found where o,

and VY, are the velocity potential and the stream func—
tion corresponding to the problem, It is assumed that

ws=f <1g "//:_?0- + ie> (21)

is obtained and that this function can be ekpanded in a
series of the form

—

T \ \2 .

w = k 4+ B <lg /,,_,9, + ie‘~+ an (-—-1 } eanle
| To / \To /

Then

n
Wl = A + B8 + IB, Kii\;'sin (2n6 + ay ) (22)

\To/
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s v m—— e it el e—

e e —————

T y
AU = A+ B8 4 3B, (=) —" sin(2n8 + an) (23)
o/ Yn,o0

where y is the hypergeometric series defined by formula
(19), ¥ , 1Its particular value with T substituted for
n

2
T and AN a certain constant,

o
The correctness of this statement may, in part, be

proved immediately, Thus, it is readily seen that for

T = T, the right—hand sides of formulas (22) and (23)

agree; hence if for T = T4 W; = constant, then like—
wise V¥ = constant, If, further, for any value 8 = @,

the function aefined by formula (22) does no:i depend on

T, this is true only if the conditicn sin(2nf,+a,)=0

is gatisfied for every .n under the summation sign; bdbut
then the right side of fermula (23) for the same 8 also
will have a constant value, Thus the boundary coaditions
imposed on the function VY are satisfied,

It is now noted here the the series V¥ formally

satisfies equation (12), since it is the sum of its par—
tial integrals, If now it is shown that for any T < Tg
the series (22) converses and for T = 7o tends to the

sare lirit as series (22), then the function expressed by
it actually will be the required strean function, If,
moreover, it 1s shown that this series converges absolutely
and uuiformly together with the series obtained by its
tern—by—tern differentiation with respect to T and 3

it will be Justifiable to consider the latter seriesg as
expressions for the partial derivatives of the initial
series, Then for a given w, making use of equations
(71), (8') and (11), ¢, x, ¥y, will be found,. As regards
¢, 1t is found from formulas (11) which lead to the re—
lation

1-(28+1)T —g—1
dep = — B-«w;;—mw—(l—f) ar
Bn . __B
4—;;——5———— [251n(2n9+“n)d92'n7(1~T)
To ¥n,o <

~ T —f-1
—2n(cos2n8 + a,)dTz imigéill~ (1-71) P }

n .
2T
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whence by use of equation (15) and the following ones
equation (24) ’

~8
-B B (1-71)
= C + B(l- - = | ————t— a7
¢ ( lT) S T3 —
- TN\ BTN
- (1-7) BZBn = P In 1+ 4 200 cos(2n6+,an) (24)
: °/ Jn,o n oy o
t
may be easily obtained,
TY', .
The functions 1 + Pl which, in what follows,
n

will be denoted by X,, Pplay a very important part in

this problem since through them are expressed the char—
acteristic constants of the various problems, Certain
properties of these functions and the methods for their
computation and likewise the essential properties of the

. functions 'z, and y of interest here will be described
in the following section, Cnly by becoming acquainted with
all these properties is the possibility obtained of demon-—
strating the correctness of these statments that remain to
be proved with regard to the fundamental series for
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PART II

CERTA I PROPERTIES OF THE FUNCTIONS =zn, ¥ypn, AY¥D xp.

 PROOF OF CONVERGENCE OF THE SERIES FOR Yy AND o,

The function 2z, is that integral of the equation

—

' dz 2 ~B—1
rdra-m SR awTl- e DTIA ST ey (25)

which docs not become infinite for T = 0. This integral

is of the form zp = Tnyn where n > 0O and yp 1is the
hyperseonetric function

vy, = Flap, by, 2n+ 1, 7)
the parameters ap and bp being definecd by the formulas

an + by = 2n - B, apdb, = —Bn(2n + 1)

It will be shown first of all that Zy So0es no

possess any real roots betwcen tne values O and ——-—-

e o e amors e o v = e i syt S o e g t5m 4o e e e e B + l

of the variabtle r. Assume the contrary to be the case and
let T = a be the least positive root of the function zp.

Since Zp becomes zero also for T = O, +then, between
the valucs O and a, a quantity b should exist which

a
serves as the root of the equation ?55 = 0, Thus the
T

function under the differentiation sign on the left-hand
side of cquation (25) will have the roots T =0, T =15,
and consequently its derivative should possoss a root

T =¢ where O < ¢ < b<a. In view of the fact that on
the right~hand side of this equation the coefficicnt of 1z,

cannot become zero for T L ——j;u—, it must be assumed
. 28 + 1 ~
that zp(c) = 0; and hence the function 2z must have a

Toot T = c¢c < a. By the same rcasoning it is concluded
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that in the range of values of the variadbles from O +to
a an infinite number of roots of 2z, must be included.

But then zp, could not Dbe expressed by a power series.

From the proposition Jjust proved, it follows that 1z,
is aa increasing function. Thus, since z', has no roots

.

less than 554;~1, Zy must always vary in the same sense.
+

Since it is positive for very small T, the same sign will

be maintained for all values of the variable within the
above-nentioned range. Thus 1z, 1ncreases for values of

T near zero, and hexce will continue to increase until g',

changes sign. It is noted that

Z' = 7 - Z—'..Il'. T Sty
n \ T n

where it is concluded that, for O < 7T < 35 1T the fune-—-

tions xpn have no roots and are always greater than 0

for within these limits z'y > 0.

Turn now to the function y,, the holomorphic inte-
gral of the equation '

vy ™1 ~ 1) 4+ vy l2n + 1)(1 -~ T) + BT)] + Bn(2n + 1)y, =v Yo (26)

or ite equivalent

&}

N -8 an -B-1
I R S y' + Bn(2n + 1)1 (1 - 7) v 0 (261)
ar n n

" Fron the theorem 'just proved, it is concluded that
In does not have any roots between the values of T with-

—— e — Y e e [,

in the range considered. The same. may be proved 1likewise
with regard to the successive derivatives of this function.
First of all, from equation (26') it is concluded that

what has been stated is trve with regard to the function
¥'ye Thus, if there existed a root of this function the
derivative
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1
< T < —=—, T : ! 7" ,
0 < R hus v, >0, y', <0, 7", >0,
y" <0 and the guantities y , ¥'y, ¥', numerically

decrease.
R e . —m
Gonsider now the function s, = y (1 = 7) . The
differential equation which this eguaticn satisfies can
be ensily derived from (26) and is of the form

,
N T e T CUEI DL NP RSN C-E A B
ar n L
+ n(n - B — 1) —~:——15 = 0 (27)

By setting m = Bn 1t is scen that for =n > 1 + L
the quantity within the brackets maintains the plus sign
wkatover the valune of T*%, If n 1s an integer this is
true for all n S 2; for =n =1 it will have the minus

n 1 ’

sign. It is nssumed that > + g R
By setting m = pBn for a suituble choice of W,
there is in the braciets a negative guantity for all values
of T if the exvressicn is negative or zero for the larg-
est cdiisasible value of T: namecly, —t . Tor this it
. 2B + 1
~

ig sufficicnt to choose W so that it satisfies the equa-—
tion

(L —p)(2n + 1) + & (upn - p - 1) =0
2B :

or, after reduction,
wen ~- 2p <Bn + 3 4+ L) 4+ 2(2n+ 1) =0 (28)
3 2B :
— ot - —— PR
¥githin the limits, of conrme, of 0 and ——d—e;
2B + 1

this. must be kXept in mind throughout the following discus—
sion. ' :
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d._.2nt1 -B
— 1 - 7T t
3T ( ) Y'n

wounld likewise have a root. 3But this is impossible because
| the second term on the left—-hand side of equation (261)

cannot become zero within the range of variation of T,

By differentiating m times equation (26), there is ob—

tained ‘

yn(m+2)7(l - T) + y‘(m+3)[(2n +m+1) (1 =71) - (m ~ B)1]

n

+ [Bn(2n + 1) — =(2a - B) — mejyn(m) = 0

or

be] T —_ + )
Ed}_, I L B yn(m Yoy [Bn(2n + 1) — m(2n — B)

_ mzj ,.r2”l+l'l" (l - T)m"‘B"l yn(m> = 0

, o, . m+ 1
whence, Treasoning as before, it is councluded that yn( )

cannot have roots within the range of variation of 7T if
I d . . . L]
y (M) does not have roots within this range. By setting
n

m=1,2, 3 ..,, the correctuess of this statement is
proved,
Setting T = 0, gives
g (0) = 1, ¥' (0) = =Bn, y" (0) = ——B2 _ [gn(2n + 1) — 2a +8 ~1]
n n n 2n + 2

_ Bn Bn(2n + 1) — 2n + B —
yl”n(o) = -

1 .
. Br(2n + 1) — 4n + 2B — 4]
. 2n + 2 2n + 3

Since £ is approximately 2.5 and n is a positive
number, the signs of the .above quantities alternate. The
same will be true for any T satlsfying the inequalities
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The maximum value of p is obtained for very large
n (n = ®); in this :case p = 2. In general p < 2;
thus, for n =2, B = 2.5, W = 1,083; for n = 3,
p o= 1,181, ‘

With the above choice of the quantity m the func—
tion g!? canrot have a root diffcrent from zero within
the range of variation of 1.  This can be proved by the
same rcasoning already more than once applied,

It is noted that s,(0) = 1 and from equation (27)
s'p(0) = m - Bn is obtained. For m =Bn, s'p(C) > O and

therefore the function

—ufn . \
7,(1 = 7) : (29)

increases with the variable and will exceed unity. If

Bn - B -~ 1
n
1 en + 2
and this magritude for n > 1 + = 1is a negative gquantity.

m = B2, however, é'n(O) = 0, but s"n(C} = -3

For this reason s'n(T) likewise, as a decreasing function,

should for T >0 Dbe less than zero; hence it is concluded
that :

y (1~ TP (80)

fer n >1+ i is a decreasing function and represents a

proper fraction.

For n <1 + é the quantity within the brackets in
equation (27) will be less than O for m = Bn; s',(0) = 0,
s",(0) >0, and therefore 's',(T)> 0 and"

ya(a =) | (291)

will be an increasing function,

The smaller root, denoted simply by W, of equation
(28) will te less than 1, It can be readily shown that if

m = pBm and O < T < 5_*—-3’ the coefficient of Sp
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in equation (27) will again be of consiant sign, the
latser being positive. Therefore s'n(T) > 0 is obtained
since s',(0) > 0; and hence it is concluded that the
function

v, (1 = TyReR - (301)

decreascs with increasing T. Thus, for example, for

n=1, Be=0.93 (B is taken equal to 2.5), and there—
fore with increasing y,(1 - T)_B, v, (1 - T)-O’Ssa will

be & decreasing function,

The above—mentioned properties of y, give limiting
functions within which y, 1is included: namely,

for a > 1+ %, (1 - T)Bn >y, > (1 - T)uBn
. Bn Bn
f or n<1l+ %, (1 - 1) < ¥y < (1 - T>u

where @ is determined by equation (28) and is equal to
the smaller of its roots.

It may be noted further that the function

IS R

increases a fortiori, For =n < 1 + % this is evident;
for n >1 + %, on the basis of what has been said adbove,

it may be considered as the product of gwo inecreasing fuanc—
tions y, (1 — TTPER ang (1 - mTiE Bu_ Hence if the

greatest value which T assumes in the given problem is

denoted by T, and the corresponding value of y, by

Yo o1 this will give the inequality
¥

yn(l - T)

< 1
~2pPn
yn,o(l - TO) .

or
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“\ 2Bn
Ia_ o (1= > | (21)

1+ T .'X_‘Il
. . . D ¥n
on which, as has been shown in the foregoing, depends the
comnutation of the very important constants of interest in
the various prcblems, The differential equation which the
function =xp satisfies ie first set up. It is obtained

Last to be considered is the function X, =

fron the hypergeometric equation (26) by setting

T

Xpn—1
/ﬁ—§~~ndf
T

v, = e ©

Thus,vit is found that

' 7(1 = 1) + nx (1 — T) + x, BT - o[l - (23 + 1)7] = 0 (32)

This equation, together with the condition x,(0) = 1,

fully determines the function xp. It has been shown
already that the function xp, for a change in the vardiable
within the limits under consideration remains always
greater than zero, It will be shown that it decreases with
increasgse in 7T, For this purpose equation (3_7 was differ—
entiated; there wes obtained

x"nT(l - T) + x'n[zp(l - T)xy + (B - 1)7T+1 - 7]
= nxp°> — xuf — n(2B + 1)

Substituting in the brackets for X, its value 1+T Y

len
and nultiplying the equation by T20(1 ~ 7)) Byn , reduces
it to the form

2n+1 —L+1 =2 2 —_
g% (1 - 1) Yn x'n = [nxn - x, B — n(28 + l)]Tzn(l - T) By

2
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. 1

But x, is less than 1, since x, — 1 = Z3%a is a neg-
. n ¥n

ative magnitude on the basis of what has been said with

regar( to the signs of the function y, and its deriva-

tives. Hence, the right-hand side of the obtained equa~—

tion is a negative gquantity of constant sign. If x!,

equal to —-B for T = 0, had a root within the range of
- a 2n+1 —-B+1 2
variation of T,,'then =7 (1 - 1) yn x'y would

also btecome zero for a vaiue of T less than this root,
a result wvhich is impossidble., But x'p, everywhere

finite, as can readily be shown, cannot change sign except
by passiang through a root. Thus x', remains less than
zero and therefore x, decreases. '

The next step is to seek to obtain functions that

limit the value of For this purpose the following
theorem will dbe proveg If, on substituting in the equa--
tion determlnlng Xp, a holonorphlc function kn, there

is obtained on the left side a 9051t1vn value of constanﬁ

sign, then kn > Xpi the 1nequa11tv sign will be reversed

if the result of the substitution is less than zero., For
T= 0, k, may be equal to 1. PFrom the assumed inequallty

: 2
K'yT(L = 7) + nk,“(1 = T) + kBT — nf[l = (28 + 1)1] 2 O (33)
subtract equation (32), which leaves

(k’n‘— xt )T (1 ~;T) + (ky, — xp)[BT + n(1 —'T)(kn + x,)]120 (331)

By setting V-
| B2 nar
1 .

l
, = 1 + iwg; l, = e > 0

B3

then, oun substituting in the brackets for kj and x,

their values in terms of In and yp and multiplying by

v 2n-—1
the positive factor y,i,T

tained

(L - T) , there is ob—

L (e, - 21 (1 =) iz 0

aT
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Integrating this inequality within the limits 0 to T
yields :
B

2n

- >
(kp — xp)T (L - 1) ynln < O

whence the required inequality is obtained

.

Ky 2 Xn

It vill now be shown how the function x, may be com—
puted to any degree of accuracy by transforming it into a
continaued fraction, In differential equation (32) the new

. : T .

indepencdent variable s defined by s = y-=—r is substi-

tuted; when T varies from O to §§J:—I' s wvarles from

0 to —=. The differential equation for xn' will beocone
P ‘ . .

x'. s(l + s) + x Bs + nx ® ~n(1 - 2Bs) =0 (34)

n n

From equation (34) is found x,(0) =1, =x'4(0) = -B. If
any function kp satisfies inequality (33), then on sub-
stituting in (34) there will be obtained

k', s(1 + s) + kyBs + nk,- — n(l — 2Bs) Z 0 (35)

whence follows as bvefore thae relation ky 2 x,, for
kn(O) = 1. "

Tquation (34) together with inequality (35) will bve
written as

. 2 ’ =
x1 s(1 + s) + xpBs + nx,” — n(l - 2Bs) 5 C (36)

which is to be understood as follows: If, on substituting
any finite function within the range of variation of s

and equal to 1 for s = 0, the result is zero on the left-—
hand side of relation (36), then this function is the exact
expression for Xp3 if, as a result of the substitution.

a pogitive quantity 1is obtained, the substituted function
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is always greater than xn3 1in the contrary case the sign
6f the inequality is reversed.

- Bs .
N el (37)

where c(n) is a new function to te determined. On reduc—~
ing and changing sign, there results from (36)

1 SRY-
() sl + s) + c(n) (en + 2 - Bs) ~ (&n + 1)c(*7) s =nB+B+1Z0 {37")

where it was necessary to reverse the inequality sign.
The meaning of the relation is as follows: If, after sub-

stituting in the left—hand side any function in place of
¢c'®/  the result is a negative guantity; then replacing
c<n) in formula (37) by this value thore is obtained an
upper limit of the function x, - that is, a function

el WIS WY — -

greater than x,.

Further is set
o (n) . v
(n) o] ( )
° TR 58
l -9 s

(n) o o(ndgy o B 28 % 1

2P 7=, and the function 0

where cg on 4 5
n

[AV]

satisfies the relation

2
b(n)l s(1 + s) + b(n)[zn_+ 3+ (B + 1)s] - b(n) s(2n + 2)
~(2n+ Ve, B ~pZo0 (381)
whence is obtained
(n) - (a) B . 28 + 1 2B + 1
L e B T R P

Next, setting successively
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d (n) c (N) (”) \ o(n)
")—- M= b, ) e 2 ’
A PG Rt wx S Rl ey
(39)
({4 r) Kl " [ () (")
€= i_—'d g’ 9= l—r gt

yields, for the determination of ¢, 0,, ¢z, d,...,
the relations:
¢,"'s(14-5)4-¢, 0N 2n+-1—Ps)—(2n4-3)c,™*s —
—9,M(2n4-2)+p412 0. .
d,"'s(1 +s)+41,("’[_'?.n+5+(ﬁ+l)sJ——-(_2n+4)d, g
r—c, (243 —pZ 0,
¢, s(14-8) 4,020 4-6—3s)—(2n4-5)e, iz
—d, (- 4) 120,
4)2(")’.,‘(1 +.s-)+:12(”)[‘2n-+—7+(ﬁ+1)3]_(2n+6),,2(")2s_

— e, () —B =0,

Moreover op ﬁ 284 +
” {) 0@_*_1 0 +1 (" = 2 1 2‘5 1
cf )1.'0 );14—) ’ll+1 » 0 ) + 4)”+4 b 2nt-5’
,, 2L B B 2] 0p]
=G inn — i =8 i

With the aid of these formulas it 1s not difficult
to set up equations for the determination of c(n).
b(n)m, and formulas for c(B) , ofm) The

_ m,o m,o
latter are of the form

™, = p_{.m(m—|—1) ,nf,—f;_*_l ())l+1)22)1;2?%! s

) 2p4-1
0"",,,.«,=g+(’”+‘)2)n +B ,_,t 5 — (n-Dnt-2)5, /.L_B;:z—{—i

or, after reduction:
w P, (m41)2n4-m4-1)
), .= 2 ‘_(')B+1)(‘Zn—{»2»1—1‘—1)(2)2—‘7—2»:—{»2) ’

N (m4-1)(2n4m-41)
0(’)"""_ 2 _(')B_T— )(2n+2))1+-2)(211+'_’m-{-.‘i) )
The equations for determining ¢y and 9oy are
the following:

C(”)'ms(l'*'s)"{"('(”))u q'l+°7)l+-) "#'5) —("?l+ ')))I+ l)c(")ﬁms_
n(") - 0(2n+ m)«Ha—}—l =20
o s l—f-3)+d("),,,[?n+ 2m—+-3+ (B4-1)s]—(2n —{—2»2 +2)o"E o

—w”mo@n+2m+4)—ﬁ 0.
All these relations can be readily verified by the
method of passing from m to m + 1,

(49)

33
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The sign < . in the last of the foregoing relations
holds until the index m _exceeds a certain limiting

value: namnely, while c(nm Ois positive; if c¢\% <0
m,o

then in the relation for B(n)m the sign < must be Tre—
placed by >. This is because, among the simplifjcatioas
which were made in transforming the above relatidy, there
occurred division by c\R

m,o"
By collecting the results, X, is finélly’expressed
bty the formula:
Bs
Xy = 1~ Ty
1l ~ cTnTOs
NEY) :
1 -0 s (41)
1l - c(n) s
1.0
1—6<n71 os,c-.
where c<n)m o and é(n) are expressed by formulas
(40). ' m,0
(n) Wow consider the magnitude of the quantities c(n)m o1
() ¢ It is not difficult to seo that they are always

containcd between B/2 and ~A. The first of these 1is
obtained for n very large (n = ®); the sccond,in general,
differs little from —1/4 and is obtained from the minimunm
of the expression

(28 + 1)k(2n + k)
2(2n + 2k -~ 1)(n + k)

c(n)

LB
_—1'0 2

as a function of k. This minimum occurs cither for
k = Enq/4n2 — 1+ n(2n = 1), or k= En/4n° - 1

+ n(2n - 1) + 1; these values for integral =n are equal
to

4n® —n -1 and 4n° - n
. +
The cocfficients of EETT—E in the formula for c(n>k_1,o

corresmondingly receive the values
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1 1
and
2

2n -~ 1 ' 1l
2 - 2(1 - ——---—~-)

2 2
(4n —= n = 1)(4n -1 + n) l6n - 1

the second of which ig larger than the first, Thus tne

mininun o n
ininun value of ¢ k—1.0 I8

2B + 1

4 <1 —_ ——— >
16n -1

mlm

It can further casily be shown that the continucd
fraction (41) is always convergent. The contrary could
be the case only if the expression

(o] (n)os
1 - anyos
1 - c(n)

S
1.0

approached unity. But even in the lcast favorable casec,
for n = o, this quantity becomes :

and its maximum valuc, obtained for the maximum value s =
is

Ve s mem bt
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As rogards the signs of ¢ and 3 (for simplicity
in writing, the indices are omittod) those for
which m is equal to C, 1, 2 ... up to a certain limitiag
value will be positive, all the remaining ones negative,
providéd that n has a finite value. The limiting value
of 1l 4+ m is obtained from the inequality

(2n + 2k - 1)(2a + 2k)

[ACR Res)

or, on reducing,
k® 4+ (2n + B)k - Bn(2n - 1) > ©

This inequality is satisfied as soon as m+ 1 = k
exceeds the larger of the roots of the equation

o% + (2n + P)o - Bn(2n — 1) = O

The limiting value of m will therefore be expressed by
the formula '

m = E‘{~n - % + Jga (28 + 1) + %; }

If only integral values of n are considered, the
folloving limiting m and () | will be obtained:

n=1, m=0, c(l)o = ~.%
= - (2) - 1
ne=2, mn=1, ¢ 1.0 % ™ 55
3) . . - f assumed equal to 2.5
n=3, n=3, c( )3.0:::...._.}.2_.?_. !
4X7%13
n=4, m=4, &) o _5_ (42)
4.0 BX4X 7

m increasing with n as required, The quantity a(n)m,o
likewise bgecomes negative, but only for large values of

m, For oin m,o U0 be less than zero, the inequality
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k(2n + k)
(2n + 2k + 1){2n + 2k)

- (2B + 1)

|

must be satisfied, or

¥ + (2n — B)k - Bn(2n + 1) > O

The limiting value of m denoted by m; 1is expressed
by the formula

2
my = E{:~ n + % + J/ng(BB + 1) + %:J

But if p>g9 and p = B(p) + 8, q = E(g) + ¢
where 6 and & are proper fractions, then p - q = E(p) = E(q)
+ 8 — 393 thus

E(p — q) = E(p) — E(q), or I(p) - E(q) — 1

Therefore, comparing the obtained values of m;, and
the limiting m, it will be found that n will be equal
to the limiting m for the coefficient cin) o Dlus

m’
E{B), cr plus E(B) + 1. Thus

(1
n = 1, my = 2, o} >2.0 = 0
n = 2, ml = 4, 5(3)4 o = e —:‘-]‘—-
* 28
(3) 1 B = 2.5 (43)
n=3, n;=5,.9 5.0 F — ——
76
- (e)
n =4, my =7, O = e 2
LA 7.0 100

A1l C(n)m;o starting from that which corresponds to
the limiting value of m like all b(n)m,o for m 3 m,

(n)

————————— l—c(nj

of the continued fraction is expressed in the usual form
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1+ a .
1+ D> +,its numerical value being contained
1+ c¢c ¢ o
between ‘1 + a and 1 +-a___ .

Of the functions xp the one that is particularly

simple is x;, -which for the assumed value of B is ex—~
pressed as a fraction of two polynomials of .the third

degrees For n = 1

() 1 () 7 (1) _ 7 (1) _ 3
¢ o T T g 3 o ® 35 © 1.0 T 33 0 1,0 58
(1) - . 5 (2) -
e\t Fr 3, =0 (vy (43))
e, = 1~ —88le_
1+ s/4

et e g e e W g oy

—————

1 + ss/1a
or, after reducing,
32 — 64s - 14s° - 28° (44)
(4 + s)(s® + 25 + 8)

Xy =

With this formula y, 1is readily found. For this

purpose the previous variadle T = E~E—~ ~is substituted
+ s

which gives
y'y _ 32 — 1607 + 21072 - g471°

vy 32 — 80T + 7072 — 2173

Xl::l‘f'T

whence, sipce v1(0) = 1, there is obtained

32y, = (4 — 37)(8 — 14T + 77°)

(447%)
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The preceding simplification results only from the rounded
values: B = 2.5, ¥ = 1.40. The more accurate value of

Y for air is 1.4025 and B is somewnat less than 2.5,

In this case all x, are expressed by infinite continued
fractions.

. To employ in the applications the exact formulas Tor
x, appears impossible, since this would foer very great
difficulties which have not been overcome. However, by
using even the simplest proper fractions, xpn 1is obtained
with sufficient accuracy. ZEntirely satisfactory results
are obtained even in the case limited to the third proper
fraction and x, 1s expressed by

(45.1)

s et . o e e e e e

or, after reduction and substitution of the values of the
coefficients '

Bs®(2n + 3)(Bn — B — 1)
Xy = 1 — Bs — (45)

(2n + 2)[2n + 3 — (28n ~ B — 2)s])

‘The error for such computation of =xp is greater the

greater the value of s. The magnitude of this error now
is estimated, considering only the integral walues of @ n.

With the exact value of x; for n =1, a direct

comparison of the results of the computation of this func-—
tion may be carried out by formulas (44) and (45). The

computation will be made fdr maximum s = gg cr s = 0,2,
assuniang as before B = 2.5. The exact value of x; will
be

776

—— = 0,5253893

1477
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x, = 0.525510
The difference is approximately 0,00012,

For other values of n 1in estimating the error, it
is necessary to proceed otherwise., It is noted,fitst of
all, that for all n > 2 formula (45') gives & function
greater than x,; the contrary is true for n =2, In
ordgr to show this, turn to equation (38!'), deterumining

This equatlon may be written as follows:

. | ,
B(n) s(1 + §) + d )[2 + 3+ (B+ 1) s] - B(n> s(2n + 2)

(2n + 3)a<n)o = 0

a(n)o £ a(n)

or y glves

a(n)os[e + 1 - (2n + 2)a(n)oj

or, after substituting in the brackets for B(n)o its
value by formulas (40)

2n + 3

a(n>os[1 —pp 4 {28+ 1)(2n 4 1)] } a(n>os[2 ~ B(n-p) 2028 + 1)

-For 1n > 2 +this value will be less than O. But from this,.

asg has been said, it must be conéluded that on replacing
a\n in the formula for x, by a trial value, a function
greater x, 1s obtained. On the contrary, for n = 2 in
the brackets, the quantity

2 - 2§§?F~l > 0

which shows the correctness of the reversed inequality
(xz 1is greater ,than the value that would be obtained on
substituting o'®/, for 32 in the formula for xg) for
the value n = 2, o

As regards xz, the lower limit of the function will
be the following proper fraction. Thus
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Bsgc ?)
1 - Bs - - Q < x5 < 1 — Bs
1 - (c(e/ + 6( ) Vs
- ps2o (*)
1 - (cof )o + 5(2)0)5 - a{2)ge(2)) o 2
1 = of(2) .8

By computing the values of the limiting functions for the

case of the greatest difference in taeir values, when
! - . ) oo

§ % == = 0,2, there is obtained

28
0,47034 < x,(0.2) < 0,47037

b(n),

In t%o)case n> 2, assume in the equation for
n ‘
b(n> = ~é~~—Q, where k 1s a constant to be determined,
and k is chosen so that the result of the substitution
ig greater than gzero for 0 < g <« 35 This regquirement

leads to¢ the inequality

k(2n + 4 — Bs) — k®s(2n + 3) - (2n +'4)c(n)1 0 =

The smaller rooct on the left-hand side of this in-
equality is expressed by '

T TR
r2 - B2 Jn o+ 2)0 - 28s) + 4s(n + 1)(28 + 1) + B2
(Bn.+ 3)s
Its maxinum value corresponds‘to s = gg = 0.2 and is
equal to
n+ 1.75 V/ééiﬁ_g_ll + %é
5 — : (46)
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o>

If kX 1s equal to this value, the above ineguality will
be satisified. - :

It is now possitle to indicate the limits within
wihich xn 18 included. The upper 1limif{ is cxpressed by
fornula (45'); the lower is obtained by substituting in

B(n)o. After reduciang, finally

1 —Fs -~ >x, > 1 — Bs
28n - B - 2
(un + S) '\/l — —————— s e g)
N 2n + &
8s®(Bn — B — 1)
- ' = (47)
- 28Bn — — 2
(2n + 2) (1 - 22 s - Ks°>
\ 2n + 3
L2 28 + 1) (2 1
whero A = —Z120 Q_q, 50 - E _ (28 + ) (2n ), and  k
1 - ks 2 (2n 2){zn 3)

is deternined by (45).

The uumerical valucs are given for s =
limiting fvnctions feor =x, for n =3, 4, 5, and 6

0.4348 > x,(0.2) > 0.4343
0.4095 > x,(0.2) > 0,4073
0.3905 > x (0.2) > 0.3872

0.3755 > x,.(0.2) > 0.3704

[S)

It is thus secn that the error increases, or more accurately,
may increasc with. n  but nevertheless is very small for
small wveliues of the latter, For sowewhat large values of

n tle 1liwits of error widen. Thus

n o= 12, 0.326 > x,,(0.2) > 0.308
n = 24, 0.293 > x,,(0.2) > 0,251
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This unfavorable circumsténce is offset, however, to sone
exteat by the fact that the functions =x, with large n

enter the wore removed terms of the series and the coeffi-
cients of these terms are relatively small,

. The limiting functions for Xn also will be given
with large n. These functions will be useful in computing
the limitg within which the remainder term of the serics
for the gas Jjet problem is included. Azain, in the differ-
ential equation defining =xn .

x'ys (1 + s) + x,Bs + nxgn ~ n(l - 2Bs) =0

Substitute on the left—hand side the expression

J I — 2Bs + 2us®, and choose the function w so that the

result of the substitution is greater than zero. Then,
by the theorem proved adbove,

'/1 —~ 2ps + 2us§r> Xy

This. substitution gives on the left-hand side of the equa-

tion for x, ‘the expression

_ wle(l + s) + 2ull + (1 + B)s] - B(2 + 2B) + Znuﬁ - 2Bs + 2us® o2 (47)

J 1 - 2Bs + 2us?

which, as can 'be seen, will be greater than zero if

w =g /B0 + 28)7  5%/a5
2n° 2V n"

Thus, for this value of u, /1 — 2Bs + 2us?® is a decroas—
ing function of s; the product, however, of this root by

L
2B B
equal to (1 + 2B)B, and therefore the quantity k remains
positives On the other hand, it becomes negative, whatever
the value of s, if '

2nu for the maximum value c¢f the variable s = is

u é Eﬁl +'2B)
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gince the numerator in the expression for k in this case
is equal to zero for s = O and, as a decreasing function,
will be less than zero for s > O. Thus :

3, BT . oaNe . 27

1+ 2 s®(1 + 28)

v/; -~ 2Bs + 2Bsav/gi—~~~~gl~ > Xy > ~/l -~ 2Bs + Bs”( P
: 2n® . _ n+ 1

By reaising somewhat the upper limit of the function
Xn, the first part of the double inequality also can be
trarnsforned into

e 3 2 '
ST« 28 1+ 28)g 5 x
: n
and therefore x, can be expressed by the fornula
N 3/28%(1 + 28B) |
X, = o 1 — 2Bs + s - (49)
where A 1s a proper fraction.

It can be casily shown that xp for the same value
of the variable decreases with increcasing n. This is
clear from the equation for =xpip:

X'pams (1 + 8) + xpppfs + (o + m)x®.p ~ (0 + m) (1l — 2Bs) = O

Substituting on the left x, for Xpup, there is obtained

on the basis of the equation for xp
nlx®, - (1 ~ 2Bs)]

a magnitude greater than zero due to incquality (48), and
therefore it is concluded that

*n > Xn4m (50)

whatever the positive number m,

Tow with the properties of the function x, that

are of importance for what follows, two inequalities
which the functions Yy, must satisfy willl be noted

(48)
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further. The first of these will be derived in the focllow—
ing manner: Set up the differential equation determining

vy
'ﬂn = 3;-—-
n

(', + n2)7(1 = 1) + [(en + 1)(1 ~ 7) + Brlny + Bu(Rn + 1) = O

' 2
Also set npy = €y — —;EE—, which gives

; - T
(61, + £207(1 = 1) + [(2n+ 1)(1 = 1) - Bl4n - D)7]E,

— Bn(2n + 1) + %EEE(ZBn ~B—-1)=0 (51)

To this equation, as can be easily seen, the theorem
proved for equation (36) for the function xp 1is appli-
cable., If on substituting for §, any holomorphic
function there is obtained on the left-hand side an
expression greater than gero, the substituted expression
will be greater than £,. If 2Bn is substituted this result
in fact is obtained, and therefore £, < 2Bn.

Substitute, further, in the equation defining £ 4
in place of fn+m the function Ep. The result of the

substitution, on the basis of equation (851), which is
satisfied by. £, reduces to '

ml - (234-1)7[2£n(1 _ T) ~B(sm + 1) — 28m] - (2B + 1)2BnmT
1 -7 1 -7

This expression is negative for any T, since it gives a
result less than zero on substituting for ¢, the greater

magnitude Zﬁnr.‘Hehce tn< Enem, or

! 2Bn ! 28(n + m)
I o, < Y ntm ‘

Integrating this inequality from T to T, and passing
from logarithms to numbers, gives
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In (1 -7 )JBn 5 Jatm ( oI 535 e (52)

1 =T, Yn+m,o0 0o

In,o0

where ¥y, o, by the assumed notation, denotes yalTo).

—2Bn
3 - T o
Thus the function JJn. (1 - ) dnereases with in-—
Jn,o - To

creasing n.

The second inequality which it was proposed to derive
follows from relation (50). ¥From the latter is -obtained

'y > V'nim

In Yn+m

Integrating within the limits s “and sg, &ives the
result on passing from logarithms to numbers:

Y y
n < n+m ] (53)

In,o Yn+m,o
’ ?

‘ NEWN
Thus, the ratio ———— increases with increasing n.

It 1s necessary to proceesd to the proof of the con-
vergence of the series giving the sclution of the gas jet
problems. In explaining the general method of solution
of this type of problen (see pt, 1), the following for-
mulas for expressing the stream function and the velocity
* potential were arrived ati

m
- ; T y .
y=B8 + ) By <73 > —=B_ sin (2n6 + an)

In,o
-8 3 | -8 a1
= B(l - 7T - = - T —
P (1 ) : (1 ) =

BT , " .
-~ (1 -7) SﬁBn (;; T—Q—xn cos (2n8 + ay)
i 0 Jn,o
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These are formulas (23) and (24) of part I. The indices
n eateriag them increass as the terms of an arithmetic
prosression. It wili be shown the preceding series are
absolutely and uniformly convergent fecr any 7 < T, if
thisg is true of the serics

n
Yy, = B8 + }jBn I ) sin (2n8 + ap)
. o L
0w, = B -~ B /4t _ EjBn (%Q cos (2n8 + ap)

expressinrg the stream funetion and velocity potential for
the corrcsponding problem in the case of incompressible
liquids. The series y; and ¢; will evidently be
lim 3B,

absolutely convergent if -—* < 1, where n and n,

n = o By, :
are two successive valucs of n., It will be assumed that
this corditicn is satisficd. On the basis of relation (31)
it can then be stated that the terms of the series Y are
corrospondingly less than the terms of the series

[ia - "

(54)
"o (1 - To)aﬁj

Sﬁ[Bn]
Y

which is an absolutcly convergent scries for T < T, if

To < _~j;~—; for in that case

28:+ 1

T%_—T(l - T)QB = [1 - (2B + 1)1](1 - 1)25”1 > 0
T(1 ~ T)EB
T (1 - 1) %P

and thercfore is a proper fraction,

The remainder term of the series y

n= o

n
Rn = Bn ("T—> _.,ZE,__, esin (2n9 + Q:n)
o Yn,o -



48 NACA TM No, 1l06Z

is numerically less than the term R', of the series (54).

n= o

n
- : T(1 ~ '|')2s 1
RV, = §[3nj{

B To(1 = 14)°M

n=n

but R', approaches zero with increasing n no matter

in what manner T is less than T,. 7From this it is
concluded that the series Y is uniformly convergent.

Since the series entering the function ¢ differs
from the cne just considered by having cosines instead of
sines and the successive terms multiplied by & series of
decreasing positive quantitles, the theorems Jjust proved
likewise hold for the series ¢. Furthermore, it can be
easily seen that the same properties are possessed by the
derivatives of the functions ¢ and VY with respect to
8 and therefore also their derivatives with respect to
T, since the latter are counected with the former by the :
linear relations (11) of part I. A consequence of these
theorerns is the corntinuity of the functions ¢ and
and their derivatives within the range of tie variables
T, 8 wunder consideration., (See vol I, p. 310 of refer—
ence 7.) ' \

It wvill be shown, finally, that as T __approaches the
limiting value  To, .the series__® _ _and V¥ _approach limits
which are the values of the series obtained on substituting
To for T. TFor this purpose, consider the sums O ‘and
o' of p terms after the nth in the series ¢ and V.
Let 1n;, g 0o n be successive values of n; then denot—

ing the fractians

T 1 -7 ) 2B yp 1 =T >-88n
0 Yn,o0 N1 = To

correspondingly by £ and n,, these suns can be trans-
formed into

o

n

o]

-B :
o == (1 - 7) By gnnnxn cos (2n9 + ay)

o]

n :

n .
ol = }%Bng N, sin (2n8 + ap)
n, .

5
-~
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The expressions

n

By £ cos (2n8 + ay), 3By, - sin (2n8 + ap)

will now be denoted by wup and ‘u'p.

" The series Zup and gu'p wuniformiy converge for
any ‘£ less than unity, since they coincide with the
series enterirg the functions ¢; and VY,;. It is assumed
that they converge also for ¢ = 1; then from a known
theorem in analysis their value for € = 1 is the limit
which they approach as § approaches 1 (and hence T-—>T,).

But. in this case n can be given an increasingly large
value so0 that the sums ‘ ‘

i
=

are included between any values ¢ and & as small as is
desired, whether the quantity ¢ is less than or equal to
unity. 4nd, since on the basis of the properties investi-
gated in this section of the functions x, and yp, the

quantities mny,, x, entering the expressions o 'and .o}

are greater than zero and decrease with increasing n,
then by the theorem of Abel, o is included between the
limits

—

' -B
- (1 - T) §Ny, and = (1 - 7T) €Ny,

Tor the same reasons o' 1is included between other
arbitrarily small numerical limits, and the proposition is
thus »roved. :

Ags a result of all the properties which have been
demonstrated of the series ¢ and  the conclusion is
arrived at, which was the obJject of the investigations:
namely, that the formulas obtained are an actual solution
of the provosed gas flow problems. '
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PART III
THE FLOW OF A GAS FROM'AN INFINITELY WIDE VESSEL

The method described will be applied to the problem
of the flow cof a gas from an infinite vessel with plane
walls, the simplest cnase being considered — that is,
where one wall is a continuation of the other.

Consider an incompressible liquid flowing out of
such a vessel (fig. 4): AB and A'B! are the traces of
the walls of the vessel; OX is the trace of its plane of
symmetry; BCC'B' is the escaping jet., If the quantity
flowing out per second is denoted by Q, the velocity
potential and the stream functioun, respectively, by <o,
and V,, considering ¥ = 0 on OX, then in the region
of flow ¢ varies from -+~ o to +» and y from

- % to +* %. Trhe complex variabdble

wo= ¢ t iwl

will be connected with another complex variable u (ref-
erence 2) through the relation '

. u
7= < 1 —
L & ci

The region of variation of w then corresponds to the
upper half plane of the region of wu. In addition, the
logarithm of the ratio of velocities v,/v at the jet
surface and at the point of the fluid considered will be
denoted by 9, and the angle of the velocity direction
with the X axis by 6. The problem is then solved if

3 + 16 = i arcsin =
u
For, on the boundary ABC ¢y = - %,- » varies from ~o

to 4+ and u passes through the negative part of the

real axis from O t0 =~ 8 = o> 9 >0 if

o4
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0>u>~c; ¥ =0, v=yv,, g >8>0 for —-c >u >-om
On the boundary A'B!C' vy = %, ¢ varies within the
" same limits; 6 = — g, >3 >0 for O<u<e; 9v=0,
v =v,, - T<e<o if c<w < oo The point u = 0
0 2 :

thus corresponds to the infinitely distant point of the
vessel where o = o and the velocity becomes zero; n = o
gives the part of the jet at infinity. Finally, for

8 = 0, u 1is purely imaginary and ¢ = O and the center
line of flow coinciding with the X axis is obtained,

From the preceding formulas is found -

e s
v o= - g'lg'(i sin 21 180
™ i /
or, if 4% + 16 1is denoted by o,
C O _ =0 qQ
T = ;% lg i sin 3 =-—% lg ° L = —— (o - 1g 2)
i i i 2 T
~ % 1g (1 - e FO)s (55)

™

It is noted tkat ¢, = O .at the points where the jet
separates from the walls; o in these cases has the
T
2 '

By expanding the logarithm in formula (55) in a
‘series, there is obtained:

value =i

—2zn9d

[oo}
+ iy : o
R R lg 2—- (3 + i6)+ j; & —(cos 2n8—1 sin 2nd)
Q — n
n=1
whence

*In the case of a Qessel with the walls meeting at
an angle it is necessary to replace in this formula o

by € and in the succeeding relations ¢ by 3, 6 by

q q
Q. The angle between the walls in this case will be equal
q

to qr,
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e 2]
7 ~2nd
- \Ul = 0§ - ‘;——9-—----— sin 2n6
Q . fa— n

1

Substituting in this formula the variable T deter—

-2
LI lg_ = e 3 results in the

o Yoo

mined by the equation

required expression:

o]
n
- 1/ 7
= -0 - = = in 2ne¢
Wl . . En\,ro/ 5] n
1
Since this series is absolutely convergent, therefore, by

the method given above, by use of formula (23) an expres—
sion is arrived at for the stream function % defining

the flow of gas from a vessel of this kind; there is ob-

tained:
T\
\To/

0o

o

B_ sin 2né (56)
n,o

ﬂlw

O3

Hf /18
°

All curves V¥ = constant in the T,8 region start from
the point T = O and meet again at the point T =1T,,
8 = 0.

The velocity potential by formula (24) is determined
by the relation:

T o=ca .1_f.._~_@_1_.__ (1~ )P
Q Q- T(l__‘r)ﬁ :
©
SANE \n ¥ '
+ (1 - 7)) > B /:; 3. x, cos 2nd
) n\:fo/ ¥ - ,
1 n,o

With the formula for ¢, it is not difficult to
set up the equation of the jet, By formulas (8) of part I
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cosf or dy siny _ dy,
Viza 07 RPN

whence
— - R a!
V‘.Z'.a;‘g = sinOZ—; +Q1 —-.)—“cosfid—(,f-

If use is made of the formulas for ¢ and , there is

obtained
oo

QV°’“3(, —2(1— )_“Z<'O> yj" (cos2nficosh - x,sin2nbsind) — cost(1—1) 7. .

n.o
Integrating with respect to 68 yields

"4y [sin(2n4-1)6 | sin(2n—1)0
J,“,[ 7w e

o o\
YER=0E—(1—) 1< )

o

e Uy sin(2u4-1)0  sin(2n—1)0 il ] e —5

+01—=) rZ< >.7;-0I[ ST i P sinf(1—sz)—",
1

Since, for © = 0, it should follow that y = O; therefore
®(T) = ¢C. Thus, finally,

o FAy(I—s) = —sini+

oo
=\"y,  [sin(n410  sin(2n—1)0
+Z <‘:U> m.r"[ ‘ln—{—l—_ - 2n—T_]_
1
v 0
VY= " Yy b“1(’”—-1) Gm("n—[—l)()
Z<T_o) UM u[ 2”""1 "n+—1 (57)

The series
oo

Z(E‘)”h sin(211—1)0+siu(2,z—}-_1)0
%! Upol  2n—1 on4-1
1

may be out into the form

ue [SIN(2n—1)0 | sin(2n4-1)0
Z" ’n[ 7—2”’—_{— + '——Q_n'_T_l ’ (58)
where
S e Yu(1—3) "
E 0(1 5 )-" <1 z" Yn. 0(1_70)—23"

By the theorem proved at the end of part II ([, represents
a series of magnitudes decreasing with n. Thus the expres—

sion
Z;,‘ sin(2n—1)6 | sin(2n+4-1)0
l T 2n+1_]
and § approaches 1, or, in other words, as T approaches
Tor» tends to the value

Sovesten it e e - o e
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’ Z[sm(?n—l)o sm("n-{-l)ul
- m—1 -1 |
and the same limit is approached by the more complicated
summation (58) entering the formula for the coordinate .
Trangforming I 1into

sln(2n—-1)6
I.._——sm0+22 o1
yields
o . ~ —(2n—1)({+ )
sin(2r—1)0 e =
2" = Rlim %) o — =
1 1
+ —1—ib 1+cos6—tsm0
_Rhm,_ozlg -~ — = B{ 4 _c_os_b_-f-zslu5

where R 1indicates that the real part of the expression
must be taken. It can be readily seen that, for a con-—
tinuwous change of @ from O

’
l+cos0 —isind \/lico'éﬁ —i
[ 2,
——cos’):chmé 1—cos
N

stm(?n—l)f)

2n—1

and therefore
S
b = §-,

1
depending on the sign of 6; thus
I = =3 —sin®.

In view of the importance of the relation obtained,

more rigorous method of its deviation will be presented.
Starting from the equation
m

sin2mf

2005(2” —1)0 = W
1
and integrating it within the limits O to @ results in

d0.

o1 O sinl
1 ]

m )
Zem("n—— 10 <in2m) 0

m ‘ (]
. em("’n—l)o 1 sinud 0
lim,, o TToap—1 =~ 9 hml‘"‘ 0 —ll-l-o
1. ’
But this limit, as is known, equals Izl if 0 1s positive

=]

and -

Pe 233,

3 if it is negative. (See reference 7, vol. II,
) Hence, ‘
o

0110 _ -
I=—sin0+228m(2,:'_11) =—s1n0-}-"hm,,,_«,Zsmg;"___11)—0 == 2 — 8in0,
1




NACA TM No. 1083 : 55

The second series in equation (57), for T = T,
approaches the expresslon

X

"sin(2n — 1)8 _ sin (2z + 1)8 ]
. ,

“ 2n — 1 Zn + 1 )

which is a convergent series for all values of 8. This
can be shown by considering the remainder term of this
series:

. |
_ i ~ _ oy
Ry =‘§ﬂxn .513(2n 1)8  sin(2n 1)9]
E = 2n —. 1 2n + 1 R

Substituting in the preceding equation for x, its ex—
pression given by equation (49) yields :

R

- /T —37s sinfen - 1) 9, S Mpisin(2n—1)8  sin(2n+ 1)3}
oY 2n - 1 - 2n -1 2n + 1

wvhere k 1s a finite number and A, a proper fraction.
Hence 1lim,__ Ry = O.

By now putting T = T, 1in the formula for the coor-—
dinate y, the equation of the jet boundary is arrived at

+§1 iéin(zn + 1)8_ sin(2n ~ 1)8 |

@’20‘."’0( 1 ‘—To Xn o) ]
e T 2n + 1 2n - 1 -
1

W g

. -
8]

™
where the upper sign of ‘5 corresponds to 0 greater

than zero.

If the width of the infinitely distant part of the
jet is denoted by .2b, then

2bJ2aTo(1-To)B==Q

for «2aT, is the velocity at infinity, » = p,(1 ~ 7)5

sin(2n — 1)8 _ sin(2n + 1)8 'x, (59)
2n — 1 2n + 1

2D

[oe]
7T -7
Iy - g >
e L.
1 , o
In order to determine the jet contraction, it must

be noted that, for the condltlon under considération

(=,

\ Z _g} 1>,’ the contractlon occurs at infinity as
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in the case of the outflow of an incompressidble 1liquid,
Thus, if the maximum contraction were at a finite dis-
tance from the orifice, it would then bYe followed by an
expansion: The streamlines would be turned by the con-
cavity toward the inside of the jet; the pressure would
drop from the surface inward and would reach a minimum

at a certain point on the line of symmetry. At this
point the velocity would receive its maximum value, which
result is impossible., Thus the contraction will be equal
to the ratis of the width 2b at infinity to the width
2a of the orifice of the vessel, This ratio is deter-—

mined from formula (59) by substituting 6 = g, y = —a,

and taking the upper sign of the first term on the right—
hand side, Then there is obtained

=, .
Ta _ T, n~1 4n
—— I am P -1 [
2b .- 2 L./_J( ) 402 o 1 n,o

1

‘whence the contraction is

b m - (s0)

a N n
N - 0

+ 8 (=1) 7 Bl —
T 8;~( 1) I X5, 0
1
=@ .
= o
The series § = ) (1)t 2 Xp must be. con-

= 4n° — 1 ' ©

vergent since it is an alternating series with numerically
decreasing terms. Another way of proving it is by substi-
tuting for =, o its expregsion, formula (49), of the pre~

ceding section. Thus the remainder term S of the series
is found in the form

- ”
Lot Au A
R: = ) (=1)%Y B /1 T 2Bsg + ks, ) (=1)°7 2B
no 4n2 -1 ° ° n%’3
n n
n—1 T . 'y
1./ (-1)7"7° n-31An
= 2V )l - 288, m—e— + ks (~-1) -1
4 ° 2a-1 °2~ nt’/3
. : n :

where it is clear that it approaches zero with increasing
n, for k s a certain constant and A, a proper frac-
tion. ' S
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For 719 = 0, Xy = 1 and this leads to Firchhoff's
formula
b m o
- = e——_—— = (0,51

a T+ 2

This will be the aprroximate value of the contraction for

small flow velocities, To ccmpute

=[>78
-
Sy
%J!
!
o |
»
=]

for finite velocities and finite difference in pressure
between the reservoir and the medium into which the dis-—
charge occurs, use is made of the approximate formula for

Xpne
The limits between which the quantity > is con-—-
: a

tained are found by taking an even or odd number of initial
terms of the series

(o)

N \N—1 n

S e .
L .

1

In the first case the positive terms are replaced by the
lower limiting values, and the negative terms by the upper
limiting values; in the second case the reverse is done.
This computation will be made for the limiting case

To ——-=-—— considering only five terms of the series

for determining the upper limit and six terms for deter—
mining the lower. Use is made of the values of x,,.
Xg computed in part II, and the upper and lower limifs

n—-1
of zz (-1) ——3—— Xy are denoted by A and B, respec—
4n - ¥
tively, to find
0.5254 _2 X 0,4703 + 3 % 00,4343
3 15 35

B =

5 X 0,3872 6 X 0,3755
g9 143

+

. 4095

4 X O
64

whence, with an accuracy of 0, 001,
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B = 0,128
By rejecting the last term and adding the possidble errors,
A is obtained. The errors will add up only to 0,0003
and will have no cffect on the accuracy desired. Hence

A = 0.128 + 0.013

Substituting thése limiting values of the summation in
formula (60) yields

or, if the computation is carried out,

0.73 < 2 < 0.75 /
a

is approx. 0.74.)

plo

Thus the jet expanis with increasing pressure in the
regservoir to the iimiting value, Its extreme dimensions
in width are 0.81 X 2a and 0.74 X 2a where 2a as

before denotesthe width at the orifice.

An approximate functional formula for the contrac—
tion is obtained by making use of the approximate.expres—
sion for the function =x, given by equation (45), which
may be changed to '

2

. Bs
x. = 1 - f8g - S~ K
n B 5
. 7here S
X N
K =1+ 1 &
n+ 1 2n(l - Bs) + 3 + (g + 2)s

The coefficients L, M, ¥ do not include the parameter n
and have the values =

L= ._...._5____. | M= ~ 2E+ 3
1 ~ Bs g 1+ (3B + 2)s
N= 2(2p + 1)[ 1-Bs __ 3 ]
1+ (38 +2)s 1T - Bs
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1f, as before, it 1s assumed that B = 2,5, there is
obtained finally

53 97 )S 1 ,s— 1 ].F)S.3 2 1
Tw=1 =3 — {35 T 3510 nFl T n+#[(2—58)* - ‘-’+f95],
where +
64-Ys
H =T T0s

The series S entering equation (60) readily can
be computed by setting
N

n— M i BT 255 Y—
o =Z(—l) l4nf—1""=[1‘“2_‘4(2 55)}2( R T |
1

(61)

15s yr— ”
’—+—19SZ( (1) (@*—1) +

+ 1')82| 2)\) ,+11 !""J IZ(_I)N—l(n-}—y.)E;?t’—l)’

where for simplicity s, 1is replaced by s, The first
summation im equation (61) for S 1is of the form

It 1s necessary now to return to the computation of

v N1y " .
=) (1) i —=1)’
The particular case of this series corresponding to the

value p = 1 will be the second summation in the equa—
tion for S, And o(n) may be expressed in the follow-

ing form:

oYl ot
o(w) = I Z(—-l)”“ it
The seriesgs under the integral aign can be summed, Thus
m”ﬂ*——l tl*—l = 8o g
__1\n—1
Z( v [t+ +— = -7-—-g+....].
Since the series within the brackets 1s absolutely con-—

vergent for ¢ < 1, the order of ite terms may be
changed and this gives

8 <
n+p—1 u-E 1 2 g Z'
_ n—1 "% _t g ¢ t t2
(—1) = 2
n—1 4 3 5-—77{-“.. -
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3 3 5
t“—g( % 5 g e )
—_— L v —t -
4 E) + +T - 3 [1 - Vt_—arcthtJ-

Thus

3
,_‘__

1
1
46(w) =— Z__ n—1 n _ _ o
(W) =4) (-1) @ =] = » ft (1 t)arctgV tdt,
0
or, by integrating by parts,

1
W‘”M
46(#) 2("‘*"1 4!“ 1 + 1+t ’ (62)

whence
9 ' 4 -
40(1) = =3 + glg2__——0,:)437.

When the results are added, there 1s obtained for the
contraction

b___ =
a =88
258 15s?,
88=2—>5s,— 0(2__03)-{-0 +19 L (1,0874—8a(w)]+ | (63)
30s%,
+(2—5s'07’8 (o)
6 + 98
where | = — _EL, o(l) 1is determined by equation (62)
and 8, Dby the ratio of the pressure in the vessel to that
To

which by the formmlas of

in the free space, 8g = — ’

1 -1,

part I is
7

B =1 (1) (15,

Of greatest interest 1s the jet contraction for a pres-—
sure near the limiting value — that is, for which the veloc-
ity of the escaping jet is equal to the velocity of sound
propagation in a gas at rest of the same physical state. This
limiting pressure corresponds, as has been shown, to the value

1 1 1 \M*P
To = - 8g = — and has the value pg, = p1<} +
28 + 1 2B 2B
= 1,89 p, - that 1s, 1.89 atmospheres — if the pressure in
the free medium is equal to atmospheriec. 1If
6+4-9s,
k=1 108

is set in formula 8y = gg = 0,2, the result is u = 3,9,
To compute accurately the definite integral,
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1
e
; d
3 (W) =u[\ P___at
s 1+ ¢
for such value of L 1is rather laborious. In view of the

fact, lowever, that this entire computation is of an approxz-
1mate cnaracter the problem may be simplified: namely,
comnute J(4) and j(3.,75) and then because of the near—
ness of the values of these integrals, find j(3.9) by
simple interpolation (assuming proportlonallty between the
increment of the function and of the independent variabdle),

There is readily obtained

4
s .
jla) = jf Y st =124+ 152 = 01402
1+ ¢ 2 3
, 0
1 1174 , -
i(3.75) = JF Y at = \_ - l +3; T +/2 1g cotg T
+
Jo1s 3 1/ . /3
= 0.1500
whence j(3.9) = 0,144; and by equation (62)
40(3.,9) = _8_ _ T + 15.6 0,144 =.0,212"%
8.8 8.8 X 6.8 8,8 X 6,8
Substituting this value of o(W) and the correspond—
ing so in formula (63) yields
8S = 0.5 + 5. X 1,087 + lﬁi X 0.424 = 1, 08 (64)
29 145

the mean value between the limiting values ¢f the series
88 obtained. The contraction then is given by

v

o o

=0,

™+ 1, 08

74

*The procedure
the accurate values

for checking is
40(4) = 0,2079

whence by interpolation again it is

0.2124,

a value agreeing with that

as follows: Compute
and 40/(3.75)= 0.2193
seen that <0(3.9)
already c¢btained.



62 NACA TM No, 1063

This coefficlient decreases with decrease in the pres-—
sure in the reservoir because of the increase in value of 8§,
This decrease is sufficlently uniform, as may be seen from
the table:

s, 19,2 | 0,182 | 0,154 | 0,137 | 0,117
Lo l1g9) 1,79 | 1,66 | 1,56 | 1,48
T , (65)
- 10,74/0,73 | 0,71 | 0,70 | 0,68
3,90| 3,50 | 3,00 | 2,75 | 2,50

Finally, the expression for the quantity of outflowing
zas 1s given by
b
E=2a. 2V¥x755,(147,)P,
where p_  1is the density of the gas 1n the vessel (at a

far~removed region from the orifice) 2a, as before, 1s the
width of the orifice and a 1is defined by the formula

by o

.,__1907 l’

o =
where
‘(=1,40=1+%

It i1s necessary first to consider the case of the

o —— S e

into a space where the pressure is constant (e. g., into
the atmosphere). Then

1 1
X . », +8 (P, 1+8
_—1 pl hd n’ 1 .()_ <‘)|)> ’ s“+1 o 1)1)

and the final fo:mula o _ ,
l/ B—1 N
_ b P B+1 P 1+8
=2 ~ —{ :
peeap b NZxal () [=() 7] e
, 2gain, 1f ¥ = 1,40, 2

B = 2.5
3
E=2aVp, .T.(), ]/< ;’:’ly [l'—(& >

) ]:_()

o= —

or

(66")
P, ]', ”
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]
therefore deperds on the ratio gg, with constancy of
1
the ratio, the discharge quantity of the gas is propor-—
tional to the square root of the density or inversely
proportional to the square root of the temperature.

b .
Since the contraction - is a function of s and

Now supnose that the state of the gas in the reser—
voir remains unchanged and consider the flow into a me-
dium of varying pressure. The velocity of sound in the
gas corresponding to the same physical conditions at =a
great distance from the orifice is denoted by c¢q4. Then

BN g e
Co = J/g 5% - A/’k'ypoy F=Vy - 1Da

arnd the formula for the dischearge may ve given as

)T -

S TS ISR PN |

E = 25 [ g = — il (=YY 57
% /y 1Pea v s/ 1t Asoy | (67)

1.4

or, by substituting ,

o
ST s
2

] (671)

N

E = Zacopol/%

i

\po/ [ B \po

In this formula for ¥ only the last two factors
that depend entirely on the pressure ratio vary.

As regards the jet contraction or the discharge
coefficient as the magnitude b/a also will be called,.
it is accurately determined by formula (60) and approx—
imately by formulas (83). For an approximation of accu-
racy up to 0.01, numerical values havec been given of
this coefficient for the limiting pressure and several
other smaller pressures, It is found that a vractical
result of the same accuracy is obtained if, instead of
the cumbsrsome.formuls (63), the following expression

o

is taken for -~ = A\

]
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_ b- ™
A = — = (58)
a T+ 2 — kso _

where . ¥ .is a certain constant, This formula gives very
good values of thc contraction for small difference in
the pressures between reservoir and free medium - that is,
for & near zero; for sg = 0 the values of b/a by
(60) and (58) azree with the Kirckhoff formula for the

jet contraction, The constant k 1is so detcrmined that

for §. = 4 = 0.2 the results vy (86) and (53) agree.

o 2B
For this it is necesgsary thnt

(2~ x)(0.2 = 88(C,2))
and, sinrce B85 has becn found (iz equation (04)) equal
to 1.08, X = 4.6 The values of 83 for the values
of sO given in vle (55) are correspondingly equal to
1. 08; . 153 ,28, 1.33' 1. 44, To these correspond

1.08; 1.17; 1.2%; 1.37;-1.45

numerical values of the binomiai 2 — 4,8s, entering
formula (58) in vplace of 8S.

Such difference Las no effect on the results for the
second decimel accuracy which has teen assumed.

The agrcement will be even tetter if the discharge
coefficient is expressed by the formle

TT
N =0 = . o (89)
a T+ 2 — 580 + 28q

The series of values of the function 2 — Bsg + Z2so  fOT
the same s, will, to an accuracy of 0.0l, be equal to
1.08; 1,153; 1.28; 1.35; sad 1.44, wkich are eqgual,
respectively, to the above obtaincd approximate velues

of 88 entering the exact contraction formula. Thus,
formula (59) or (68) for k = 4.6 4quite well exnresses
the function A and may very convenicently te applied for
practical purposes. The discharge formula (67) for the
assumed round values of v = 1,4 and R = 1/(y - 1) = 2,5
tak a sufficiently simple form if the variable s, is
introduced in it. The latter, as has been shown, is con-
nected with the procssure ratio pg/p,:
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T—1
- %)L1—<p>—1 (70
k <pl , », )
the discharge

By transforming equation (67) in this manner
formula is obtained as follows:
—

T} Wo, LOES&

1R

NaCA

i Vos
F=2acp h—=" . ¢ 71
upo (]+80)3 ( )
It 1s noted that of the two simplified formulas for
1s the more rational, Thus, to turn for

A

the second, (69),
a moment to formula (60)
w

A=
o n
w8 Y )
the trinomial

and substitute in it for Xn o
]
2

I?l(“)+80r (0 ,’I!(O)‘

expresses approximately the function From the equa-

Xp.
tion for x, v
st 1+3)+I,,ﬁs+n1‘n"’——1a( 1—2fs)==0
xp(0) = 1, x1 (0) = —p
S 241
M=—1F { o Bry pePTT
W0 ? n+1 ‘5_F[n4—l

Substitute these vaiues in the above trinomial and compute
entering the denominator of the formula for

which gives for

the series §

s—Z(—— ! ( — s,
n 1,

\‘__ N1 1
(=D i =5

2
Lsu

2B+1 n
; JZ C2g2 _1yr—1 .
2) +8 9 % Z( 1) (4n*—1)n4-1)’

P S
1t—={(1+-1ﬁ mr@\f)%

1
n,—-l____n . AN H—1 nt"’”
Z(_l) (4nt ~1)(n4-1) —JL(_” an*—1"°
S0 0

or carry out the integration

T S S P st S
42( h (4n* 1)(71—{—1)_3]5' 5 =0,0437;
whence
y B2
: 83:&(Lmﬁg—JQ%?+ﬁQ&+hQM3hf

B = 2,5, which gives

Assume as before
85':.'2——580*}“1,9502

and '
T
X == P ¥ N 7
K+ 2—5s -+1 Us,7
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Limiting to an accuracy of 0,01,consider this formula
identical with (89),

It is considered of interest, finally, to call the
reader's attention to a very simple connection between
the variable s, by which all the characteristic con—
stants of the problem and the temperature of the Jjet is
expressed, For the density and the pressure within the
gas flow the formulas are:

B8
p = po(l~T)

Y o Y By _ By
p = kp = kpo (l—-T) = po(l-—T)

hence

and since by Mariotte and Gay—Lussac's law p/p = RT,
where T 1s the absolute temperature at the point con-
sidered, the foregoing equation may be rewritten as

since s = II— (see pt., II), Applying this relation to
—T

the part of the Jjet remote from the orifice and denoting
the temperature of the gas there by T, yields

To— T To—- T
T, = 2222 s = =272 (711)

0 Tl

This investigation on the outflow of gases will be
supplemented by comparing the results obtained on the one
hand with approximate theoretical formulas applied for
computing the discharge and on the other hand with the
results of tests, Purely empirical formulas are not dealt
with although some of the latter well express the phenomenon
within certain limits, as, for example, the formula of
Parenty (reference 8),
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. For a.rational basis of the approximate theoretical
treatment the adiabatic law was assumed (also in this
investigation) the assumption being made that the out—
flowing jet at a certain distance from the orifice has

the maximum contraction and that at the points of this
contraction the velocity of the gas particles is constant,
As a result the following formula is obtained for the
discharge formula:

/
/

/r“~ y V1
/ Y

—_ J 2 p \\ (p > ]

E=Sc p N /2= fEY 11 (21

oPo J Y1 V/<po»/ {l: P, (e7a)

where § is the orifice area and A the discharge

coefficient egqual to the ratio of the area of the con—
tracted cross-section to the area of the orifice.

2|

The above egaation does not differ in form from
equation (67), the only difference being that the dis—
charge coefficient was not determined for any, or even
for a particular shane of orifice, It has usually been
assumed that it has a constant value depending only on
the shape of the vessel and orifice, Such assuuption,
as 1s seen from the problem solved here, is far froa
true, In this case this coefficient, for a change in

P < R . .
=L from 1 to the limiting value 0,53, increases from

P ;

C,fL to 0,74, The increment thus constitutes more than

21 »nercent cf the lower limiting value, If the orifice
were round and not in the form of a slit, as in this case,
a still sharper difference in the values of A should be
expected, for then the lines of flow would converge toward
the orifice from all azimuths and not from two as is true

in tkhe present case, TFor this reason, when it was atteapted
to apply the discharge formula with constant A to the de—
ternination of the true discharge, experiment did not turn
out tc be in agreement with the theory, In view of thisg
Parcnty (reference 8) relying cn the tests of Hirn (refer—
ence 9) assumed that to apply the formulas based on the
adiabatic law of pressure change to flow discharges fron
orifices was incorrect, BHowever the results of Hirn's

tests which he presents show precisely the increase 1n the
discharge coefficicnt A which is predicted by the present
theory, The possibility of such a variation was foreseen

by Parenty but having remarked con it gave it no further con—
sideration since he had no means of making a quantitative
estimate of the increase in A,



68 RACA TM No, 1063

Another fact is censidered here that is of interest,
Having obtained the discharge formula (67a) Saint-~Venant
called attention to the following paradox, If this for—
mula were applied for any ratio of pressures in the rec—
ervoir and the open medium, the discharge, increasing fronm
zero, would pass through a maximum for a certain pressure
ratio and thereaftér should again decrease, becoming zero
at p,/po = 0. The value of P for p,/po ~corresponding
to the maximum discharge is determined from the condition

hence

v B+1
P = /._3..,\\'Y”1 =(1 — -——}—-——- = 0,03
\Y+1/ 2p+1

"This is Just the limiting pressure ratio correspond—
ing to the instant when the gas in the contracted part
of the jet moves with the velocity of sound propagation
at that point, as remarked by Hougoniot (reference 10),
This condition,cannot of course occur in practice, When
Srint-~Venant conducted his tests on the flow of gases he
found that on lowering the pressure in the free medium
and varying the ratio pl/p0 from 1 to 0,53 the discharge
increases; but on further lowering p, the process becomes
regular, there being no further increase in the discharge,
This surprising result was long locked upon with doubt but
Hirn's tests, conducted not very long ago, confirmed the
results of Saint-—Venant with the difference, however, that
Hirn observed an increase in the discharge beyond the limit
indicated by his predecessor, According to Hirn's tests
the discharge reaches the maximum value for p,/p, = 0.26,
approximately, The change in dischargc on lowering pl/po
from 0,53 to 0,26 is, however, insignificant, for which
reason this may not have been noted by Saint Venant in his
lese detailed observations, -

If it was attempted to apply formula (70C) for A
determined by relation (69) beyond the proper limits of
its applicability the same paradoxical result would be
obtained except that the maXimum discharge would corre+—
spond to a value of p,/p, somewhat less than 0,27, a
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value very close to Hirnt's 1limit, This interesting agree~
ment shiows that the nresent formule exXpresses sufficiently
well the investigated phenomenon in its essential features,

It is now natural to inguire into the character of
the motion in the case where the pressure in the free
medium into which the jet discharges is lower than the

i . .o P1. e s ,
limitingy, thet is, if ~= < 0,53, If it is assumed that
Po
flow Temains steady with continuous change in the velocity
and oressure within the boundaries of the moving gas uess
‘the region of the variables T, 8 would be in the form of

a sewmlclrcle of radius :é&z, This is the very region.
<g+ :

considered in part I where it was shown that steady metion
of the type that is of infterest to us was not included in
the number of possible motions, Hougoniot(reference 10),
--states the following: if p, < 0,53 p, the escaping jet
is divided by the surface over which the velocity of the ,
particles is equal to the velocity of sound, into two parts,
the pressure in passing through this surface changing dis-—
continuously; sbove this partition surface in the jet the
pressure is equal to 0,53 p, and below jit is equal to p,,
(This phenomenon reminds Parenty of the separation from
solid bodies,) But the flow of the gas is considered asg
steady in both parts of the escaping jet and the surface

of pressure discontinuity as everywhere normal to the
streamlines,

This latter supposition appears highly improbadble
since the character of the motion in the upper part of
the flow should radically change immediately after the
pressure in the free medium passes beyond the limit of
0,53 pye In fact, first of all it can be easily shown
thet the width of each elementary tudbe of flow will be
a minimum at the point where the limiting pressure occurs,
This is because the cross—csection is determined as the
retio of the quantity of gas ¢carried dy the tube divided

by 04 A/ 2@70(1-70) . and this denominator passes through
a maximum at T = §§:i'. Therefore taking the tubes of flovw
noraal to the line T = Egii a minimum discharge of :zas

from the vessel shall be ootained for the case where this
line is a segment enclosiung the orifice, The discharge
coefficient will then evidently equal 1 and, therefore
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in nassing through the limiting pressure in the receiver
this coefficient and the gas discharge should immediately
increase by more than 30 percent, a condition that is in
entire disagreement with reality,

It is assumed on the other hand that the phenomenon
could be explained in the following way, Together with
the authors referred to it is.supnosed that the jet is
divided by a certain boundary surface on passing through
which the pressure changes very sharply, It may be .
imagined that the trace of this surface on a plane parallel
to the flow as a curve supported at the edge of the orifice
further on the curve resembling the contour of a tongue of
flame moves into the open medium, Above this limit (inside
the vessel and the adjoining part of the jet) the flow will
be stable and the pressure drops from at the far re—
moved parts of the vessel to 0,33p, on %he described
boundary curve, - At the remote part, however, the jet
formg waves,* Tiasse waves have an enveloping boundary
curve, In a very thin layer of this part of the jet ad-
Joining the curve the mean pressure will be < 0,53p, and
the velocity of propagation of sound c_, < ¢; being the
same velocity for the bhoundary layer lying beyond the
bovndary curve, The lowered pressure tends to be prop—
agated beyond the boundary curve, following along the jet
in the form of a plane wave, But this wave is carried
backward by each infinitely thin Jjet element and since
the velocity of the gas particles 1s also ¢, no waves
are observed in the upper parts of the gas flow, In order
that the boundary curves may serve as an envelope of tae
waves approaching it, it is sufficient, as it appears to
assumne that the velocity of the waves normal to this line
is the same whether the wave moves upward or downward, If
A denotes the angle formed by a Jjet element with the bound-
arv curve passing through a given poiant, then having deter—
mined both normal velocities by Riemann's rule equating them
ant apphlying very simple hydrodynamic considerations there
is obtained o )

*These waves havs been obscerved and studied recently
by Emden, The rcsults of his tests are described 'in refer—
encec 4, The waves anpear immediately after the pressure
in the reservoir drops below 0,53p,; their length increases
with the lowering of the pressure in the regervoir, ZEmden
also gives a theory of the phenomenon which, however, is
entirely unfounded, It is sufficient to say that noetwith—
staading the existence of waves Emden considers the pressure
throughout the jet as constant, which of course is impossible,
and wakes this assumption the basis of his analysis,
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R Cy— C.
sinA = ——t =

c. (1 Ei\
P2/
If the pressure and density varied, even very sharply,

but continuously, p;, ¢ py = 1, Thus 1t is seen that

the tubss of flow intersect the boundary curve at a con=
stant angle,. '

With this hypothesis steady flow above the boundary
curve may be determined strictly mathematical regardiess
of what occurs in the remaining part of the jet, It is
not difficult %o show; namely, that on this curve, given

by equaticn T = T, = EéLE the relation holds
S+

B . .
@tgh(leo) + W o=

O

one sign correspoanding to the left half of the toundary
curve, the other to the right half end V¥ and ¢ denoting,
as before, the stream function ﬁnd velocity votential, In—
cluding this relation among the boundary conditions it may
be shown rnext that, together with the other conditions, it
.igs entirely sufficient for the determination of o and VY
in the 7T, 8 region, Having found ¢ end V¥ it is easy
to determine the gos discharge per second, It appears that
if this discharge were strictly constant or changing slightly
with change in A from zero to its limiting value, the
explanation Jjust given would be near the truth, Incidently
it may be said that the limits within which A may vary sare
not wide; this angle will not bYe large, For this reascon

the relation previocusly given between WV and ¢ in all
probabiliity will give a result not deviating too much trom
that wiich would be obtained by simply taking V¥ = #Q

along the boundary curve, A small variation in the dis—
charge may also be expected from the consideration that

its value will depend on JSsinAds extended over the

boundary curve, This integral is evidently equal to the
total length of this curve multiplied by sinA, and its
length will decrease with increasing A, It may be noted,
finally, that in assuming the above explanation of the flow
phenousena there is obtained an entirely continuous transition
from the problem sclved above to those cases where the given
analysis 1s inapplicable, A mathematical treatment of the
proposed hypothesis is intended in the near future.
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PART IV
PRESSURE OF A GAS‘JET‘ON A PLATE

he study of pressure of a gas jet on a plate will-
begin with the congsideration of the impact of a gas jet
on & plate perpendicular to the initial direction of the
jet, assuming that the jet is symmetrically divided into
two parts by the plate. Again the corresponding problem
for the case of an incompressible liquid is used. The
solution of this problew is given in the paper by _
Joukowsky (reference 2). By use of the same variables
as in part III, ‘

w o=, t 1V,

z = x + iy, 1gvc%§=a+ie
. R -
sin m i
. lg {1 - — | (71)
P 1 :
2T L s§in® (0 -~ it‘)—?

where m is the angle of inclination with the X axis at
distant points of the two parts into which the jet 1s
divided by the plate, TFor the X axis the line of symme-—
try of the jet is taken, the initial direction of the
jet being in this case parallel to the X axis.

It will be shown that forrmula (71) expresses pre-—
cisely the required ligquid flow., - Attention will be
directed first to the range of complex variables w  and
§ + 16 ‘which correspond to the flow sketched in figure
5. The region w 1is bounded by two strmight lines par—
allel to the real axis, symmetrically placed with respect

‘to it at a distance - 2_ In the sketch the outer bound-
aries of the‘jet EA' and DC! correspond to these straight
lines., The flow boundaries CBO and AYO correspond to the
upper and lower sides of the positive part of the real
axis of the region w; .the point C corresponds to w = 0O,

The regionv 4 4+ i0 is bounded, in the first place,
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by the segments of the straight lines parallel %o the

i ' il
axis and having coordinates 8 = 5 and 6 = — 3 lying

to the right of the imaginary axis; in the second place,
by the segment of the imaginary axis lying betweeon the
above—mentioned parallels. On the gketch the straight

line 6 = g corresponds.to the right-hand part of the.

plane and the line 6§ = — g to the left-hand part. The

segmént of the imaginary axis included between the points

TT N
eu:.g and 8 = m corresponds to the boundary YA of the

flow, for here the velocity is v,, & = 0. The segment
sypmetrical to that just mentioned corresponds to the
curve BC, Finally, the boundary C'D is represented in
the & +'186 recgion by the segment included between the
points- 6 = -m -aad 08 = O of the imaginary axis and the
curve EA' by the segment bounded by the points 6 = 0
and. 6 =-m, ‘ . o -

Now,'proceedigg along the boundaries of the ¢§ + 18
region, the author will show that the voint w will then
describe the above-mentioned boundary of the w region.

With the point 0 = %, 3= ® as the starting place, it can
be seen.from equation (71) that for these values of ¢§
and 6, w = 2kmi, where Xk is an arbitrary integer — it
will be taken equal to zero., If now the point J§ + 1i9d

moves along .the line 6 =T, then w moves along its

feal axis at the upper side of this axis, since for 6 =
.g - €, then, at infinitély small ¢, V¥, = k ¢, where X
is some positive quantiﬁy; When the point § + i0 arrives

‘ ai
at the position 8 = 0, 8 = é, w will have -passed =long
the segment of the real axis from O to ¢i'=——; 1g(1l~ sin®m).
As 4§ + 10 moves farther along the imaginary axis, the

point w will continue its motion along the o, axis in. -

the same direction up to ¢, = » corresponding to 9§ = O,
8 = m, In passing through thke point & = 0, 6 =m, the
logarithm in formula (71) receives an increment -— Ti and

for 4 =0, >8>0, w will move forward along the



ma NACA TM No, 1063

straight line w = i% from +aw+% t&mwmdg; this position
7 corresponds to 8 = 0. In passing through the point
3 = 0, 8§ = 0, the logarithm of formula (71) will receive

an increment 2mi and v will pass discontinuously from
the upper boundary of its region to the lower and will

move along it from -«nu—-i% to + w— i% ag { + i@
moves from O to — im, Further, as ¢ + i6 moves
through - im, the logarithm increases by -Ti, w Jumps

_to the point + o and along the lower side of the posi-
tive part of the ¢, axis returns to its initial posi-
tion as o + i8 moves from -—im to ~i.g and from
-—i.g to e —i.g along the boundaries of its region.

&

Thius the fact is shown that formula (71) is an ac—
tual solution of the problem of the impact of a liquid
stream on a plate. In order to solve this problem for
the gas jet, it is necessary to proceed according to the
rule given. The expression w 1is expanded into a series
and its imaginary part separated.

" Thus,

Q
.Z_.T.T.“‘.’ 2 lg sin ?....i....i_'._e.. - 1lg <sin2 E._i_.ilg. — . gin® m>
. i i

i

=2 1lg sin ﬁ;ﬁ_iﬁ - 1lg <c052m — coszﬁ_i_ii + 1lg2
3 : . | .
i
i o) i — 8 +
= 2 lg sin ﬁ,ﬁ_iﬁ - lgsinfjlig——iﬁ-lgsin1”+ia im
i i i

Introducing exponential functions in place of the trigo-
nometrical transforms this into '
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.
__1(_ '—‘)l“1 1.___(

¢

259y

!U)——Ig(l—e_?s : 2/(9-—,,,)) .

= —ony
— 959, € ..
—lg(l—e T +"'))=Z—TI—-{m»s?n(’)——m)—'zsm‘ln(O—mH—

=1

: ('o.\".!n(’)—{—m)—i.\'in?n((i—{-m)—‘2('05‘27&04—‘.’/’&112710} .

or, after reducing,

— 203
Z————— (1-—co2n m)(cos M) —isin2nh),

end, finally, for V¥,

— 203
¢

:“!/ TRy 2
0 S 201 ——cos 2.

Sinc>e e ‘———\/—, (v = '/-2__07;)
oo
TSHE

This 1s the expression of the gstream function in
the variables T, 8 for the liquid flow, Hence for the

) sin2n0(1—cos2num).

"I'l

S

gas flow the same problem should dc soclved by the formula

nu

o

w_y! In Gnont

0 Z - ( I > y sin2n0(1—cos2um;). (72)
1

According to formula (24) of part I the following
expression is obtalned for ¢:

(3 o]

P — 1 < <\ Jn
A ) z,c0s2n0(1—cos2nm). 73
Q ( Z Yuo ( ) (73)

75
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If it is assumed that = 0, then, as in the case

c
of the liquid flow, T= 06 =0, ¢ =0, and V¥ = O,

The series for ¢ and VY are absolutely and uni-
formly convergent for any T < T, as is clesr from the
general considerations of part II, and therefore the
problem is solved by the relations (72) and (73),

The width of the plate and the pressure on it will
now be determined. The width of the plate will be de-
noted by 21. Then 1 1is found by substituting in the

™
expression for the coordinate y the values 6 = —,
T = T
But .
! 3 e
Y vy
dy = dg + —— dv, y = (de> "
2
and, since for 6 =X, V= 0 = constant
2
=1
o) 0y 0 ;@ gind
(dy) = 9y dp = oy °2 aT = ——— °y art
dep dep OT Vfga} T
e_-

By substltutlng the formula obtained for ¢ and noting
that

. _T
T—TOs 6*5

YA

there is obtained

To
- -8 __ Sﬁ{'( 1) n—-1 1 — cog 2nm /’ (1 - 1)~ -8 <T 7y
2 gt s nTg" ¥n,o ., a7
4
n+ 1
| S ar | wa
* v Vel (74)

In computing the integrals entering this series, it is
noted first of all that
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N

d 5 [ ne ", 1 d _
(’E (1—""7)_"7('t ]yn + ; Yn > =;l '(1_77(1—7) ﬁz,n

and on the basis of the equation for =zp,

Lo
=1 — @D — P

Hence
=] I_
T)= f d-(1—~>—ﬁ-( 0 )=
dTT ——‘r(l—-r)“ﬁz =- \/'ro(l—— 2o+ (75)

1 ((1—7F
+2*’5J ——-—‘-/-_-:—”IIT.
0
On the other hand

Yo
(1—1 Pz (1—=)?
LIRS P
J '/1_ '/_:" n.o+

1 (1—(264-1)=
+§ ‘ —(—_gf._-t—l (l-—:)"ﬁ_'z"(l‘:;

0

and sizce on the basis of the differential equation for
the function =z,

1—(2641)7 o 1 d e
DT oyt = ) 0,

therefore
Ty '3 ﬁ
‘(l=7)"F¢,, 1=z 1 (I d =3y —
J A T
(1— —-‘)—
= '/_— 2y, o+ Mm J(_o)
Comparing this relation with (75) results 1in
4” 2 =) =(1— M R O ) (76)
V=,
or
dn S L Y Yy -
J@)= gy 9 Zi;""/'-—*&n"’—d(l 2z z”./ lg«”/:
Ty
Since 1z, = 7nyn, 1+ 3 3;3 = x,

J(=)== yrmie i -y“( 14202, (l—-.)"/5 (76")

&4
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With the aid of formula (76'), equation (74) can be
written in the form

e 1—C082nm
'~f2a-ro ‘ Z (=1 4»'—1 +
(77

N
. 1— cos?nm
+Z(_l)" 5 ni— "0}(1
1

The first of the summations entering the above formula

ise an absolutely convergent series. It 1s computed as
follows:

o =}

2( e

=1
1

[ ]

. _q\—1 9_092nm
Z( A o
1

Y =il —5+sti—i
—rht)=i(5-1)

C aam—1 cos2nzn n—y COS(2n—1)m
Z (-1) T =cosm Z (-1 7y
1

___ e SIN20—U)m
sinm Z (=1 e

It is readily seen, hovover, that

__, Cos(2n—1)m—isin(2n—1)m
K=Z (=1 ( 4n*—1 ( o

——f Z (=) 2'2- 7 [cos(2n—1ym—isin(2n —1)m]dt =

0 1
1 o
_ "1 :-2»——1
= [t L
1

0
wvhere [ = te—iRm
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viN-—1
Since Z( ! ‘;n = , the integral obtained

is expressed as follows:
1 1

1 1 2 —ilnl
K= f tarctgte —'"dt = 5 aretge™ " — § f—t—e——:(Tt; =
A A 14-t¢
1

~oJ

arctge "™ — + fl +t"’e—"""

im

1 o .
=3 (14-€*"")arctge—"— e2 ;

and since

arctge” " == < g

\ l+bmm

1—sinm ’

o1~
—

yomt
therefore
cosm sm?m _14-sinm

+ 8 °1 smm+

sinm | 1-4-cos2m 1+smm)
2 + 8 5 T—siom

= § (14-cos2m)—

+i ( sin2m—

Returcing to the initial formula for K, it is seen
that the first row of its new expression gives the expres—

, Cos(2n—1)m
—_—

3
glon in finite form of the function ) (—1"— —
— m-—1 °

1
and the coefficient of 1 1in the second row is equal to

(o ]
_Z(_l)"—l S'L‘(f;';:—i)’f; then (78) yilelds

s SO (% o —
Z( —1) yPE 2<2(:osmu l),

and, finally.
, 1— o
Z 1y °°“’_?’_”_"=Z<1—-cosm>- (79)

Making use of this formula, equation (77) is finally
transformed into the following relation
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L=

(1—cosm) 4

w] B}

l==

ol

[

=
Nre \

(80)

+Z (—1)" }:}f:_—?i (1—cos2nm) }(1—:0)—3.

The series in the above formula must be convergent. In
order to prove this the remainder term is set up, making
use of formula (49) of part II for x,. There results

— . 8
zn,«):Jl'—?ﬁ;;'{—k"n ;:3 ’

@

R,= 'l——‘.’.,gsoz (= ! —éﬁ—l— (1—cos2nm) +

—1)"(1—cos2nm)A’, |
+ Ks, Z( )T« - L

3
n

It is clear that the linn=a Rn = 0, since kn and kn

are proper fractions.

By passing to the computation of R - the resultant
pressure on the plate — the pressure behind it 1s denoted
by p;, and it is noted that

_2f(p—p,)dy—2f L/ = 5—3 }—— g,l;

T
Q=

2

But
p=koT=lp,"(1—)f +', B1BCE smp (1),

hence the integral entering the expression for R - it
is denoted by T — on substituting the value of the
function ¢, DbYecomes

‘J’V Yo 2 : N 1 —CO0S 2’2”'
T Pkl { ( ] )'n—] C X
ny

T
) o, ( _ " Mt d=
X'v((l—‘r)p*-l T..: (1—-') ﬁ <‘: Y, + —J”) ‘/ } )
0
Further, using the expression
T

7o = [7. (1“'°)_[3<T w5 >":

[)
0
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there is obtained
- r ”+I d'.
se) = [ 0= " 2 A=~ (S + Sw ) =
0

Te

= [ T+ D) [ T
0 "0

By (76)
70 = gy A= e b
hence

Se)=(1—=)f i) + 2D n,

Substituting this expression in the sum to be conputed.'

yields

o)“*‘ wy 1—cos2nm
e T Z(—) Ty e+

n7 oYn.0

4 4 ETOIE ﬁ+1)-~kr iy~ Z( 1y 1—cos 2nm

-'T_— ’

Phe first of these terms on the basis of (74) gives the
magnitude

k?().l(l _To)ﬁ ¥ 'lx])ll,
and therefore making use of (79) and noting that

"'5 I(1+ﬁ)— 1 90 —“."m

there 1ls obtained

T“"'pll + Qm‘/

—0(1— cosno
The above formula for R ylelds

R=Qp,y227 (1—cosm). | (81)

81
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By making use of equation (80) and considering the rclation

J2xT, = v, — the velocity of the jet at very distant

points, po(l - To)_.B = p1 the density of gas at the
same pnoints, the required formula for R is obtained:

: 2 ﬂ
= 2lp, vo© —- X = N (82)
¥ | S . — 'Sﬂ(—l) ~45349~ (1 — cos 2nm)
1 - COSIHLT 4n” — 1

The angle m may be determined by equation (80) in
which all magnitudes except m are given. Thus

————— _ : y ~ ’
Vo —V/oaTo, a = k . - Poy 1. Y _ P, Y P1 . 1
Yy -1 Y-1p, Y-1lp L -7,
where Dp, ard p, are the pressure and density at the
critical point of the branching line of flow; whence
2 2
piVv ! T (Y - l)plv
To = ° y 8o = Q = - 9 (821)
o) 1 =T :
Plvoa + ’;,_é’.'_y_.i P (o} 2Ypl

1

Finally, the difference between the values of Y on the
jet boundaries (a magnitude will be denoted by Q) is
deternined from the condition

B
Qpo = Bpybvy = Bbvo(l - To) Po

where 2b 1is the width of the jet at infinity. The mag-—
nitudes b, vy, py and p; should, of course, be consid—
ered as gilven.

The resultant pressure, after m has been found, ig,
of course, most siaply computed by formula (81). It may
be remariied here, incidentally, that this formula may be
derived very simply from the mowmentum theorem. It will
then be found that the formula in no way depends either on
the shawne of the plate, provided that the latter is sym-—
metrical with respect to the center line of flow, or on
the relation between the pressure and the density. Thus,
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denote by M the momentum of the gas enclosed in the jet
bounded on one side by the perpendicular section of the
initial Jjet at a very large distance and on the other side
by two similar sections passing through the distant points
of the branched jet. The increment in M in the infini-
tesimal tine interval At 1s esvidently equal to

2bp, veht{cos m - 1)v, = Qpovolcos m — 1)At, since 2b
is the initial width of the Jjet and Qpo 1is the quantity

of gas passing through its cross section per second. The
impulse of the external forces is given by -BAt. By the
momentum theorem there is obtained

Qbovo(cos m~ 1)At = -RAt

and this equation, after simplification, leads to formula
(81), Tor this purpose the less general formula (82) is
of more inportance. By using it the second fundamental
problilenn of the investigation may be solved approximately:
nanely, the pressure of a boundless gaseous fluid on an
obstructing plate.

The approximate sumazation of the series is started
by entering the denominator of foruula (82), For this,

the approximate expressions for the functions X5

already used may be used again in the problem of the out-
flow of a gas from a vessel (in deriving formula (61):

. OF g 2 2
2xp = 2 = 55 — ———<282 _ , _ B0s L
2(2 - 5g) 2+ 19s n + 1

, _80s® 2 _ A ]
n+ ue(2 - 5s)2 2 + 19s
where
p, = —-s._t....g..g., 8 = _-...I-n..
4 — 10sg 1 -7

Denoting for briefness the computed ¥ dy L yields
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oL = [2 2-:2-53)] Z(_4nl') ': (1—cos2nm)4

o v}

30> © (—1)"""n ,
+ "-}—593 2("-({—1)()41:- —1) (1— cos‘.’nm).{_ (83)

1 )"——-l . .
+303 [(‘)—'N) 2+198] Z’”-{——'L)-a;;:——_) (1—cos2nm).

The series of the first, second, and third row will be
denoted by ¥,, Nz, N3, respectively, and it will bde
noted that after computing Ny and N,, N, is obtained
by substituting p =1 4in ¥N3. Then N, can be con-
sidered as the limiting value of the magnitude N,!':

n=nL
——Z( 1)"—l o (1—coszm); N, =Jim N,
N=
There is obtalned:

n=k n=/

n—I 1 ey €OS2nm
Z (=1 <2n 1+"n+1> — Z Gl A,

n=l| n=:1

n=k
Z 1y cos2nm
(=1 on4-1"’

n=1

The first of these sums has the value

1+{-—U“_'§f;j

tha sernnd may be given in the form

k k ‘
_cos(2m—1)m . ey SID(2n—1)m
cosmz (=)' = snnuz (=1 S v
1

and the third in the form
L1 k41

cos(2n—1)m sm(2n-—l)m
— COSM Z(—l)” ! —(QT—L— — mmZ( 1)"— "n—l

By the use of these formulas there is obtained for 4N,!
the expresslon

1— cos"’l:» —, sin(2n—1m
Z (__ , 1

. 4N/=(—1 ) — 4-2smm

m—1
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whence
- v sinm  lim Z "—T1 Sln( n——l)m
Ny= T k== (1) Im—1
But
k m I
- 2) — A »
Z (=" \—IL;):'_—_II—)"—tz I Z (—1)" " 'cos(2n—1)m .dm,
01
8 ]‘
1
Z(_l)""cos(?n—-l)m: 3 cosm Z(——l)"—'(co52nm+
1 1
4+ cos(2n—2)mj= ”cos}n[ F-(—1)*"cos2km ),
hence
113
sinm dm £, Sinm (" cos 2km
N, = 1 cosm+hm‘—V( —1) e f W(l""
0 0

The last term is zero. For

m

Eo_s?_lin dm I cos(2k—1)mcosm— sin(2k —1)msinm I
cosm —. cosm (m=
. )
‘"l
sin(2k—1)m "msinm sin(2k—1)m
=y — dm,
2%—1 cosm n ’

G
and from the properties of the Fourier integrals

m
msinm sin (2k—1)m

lim, dm=0*
k== ] cosm )
0
Hence
n
cos2lm
T [ — (=0,
k== ) “cosm
0
Thus
1]
sinm {* dm
== D' = (l—cos 2nm) = -, ~ | —— =
Z (—=1) 4n' -1 ( )= . cosm

0
(84)

sinmn

lowcot <'.': m')
4 ogcoig 4 5)

85

*See reference 7, p. 233.
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Now turn to the computation of Ny,
N

I)Hr—l .
Z = 1)(1——cos°rcm)

1

n4u—1
= [ Z (-—1)”““ ”t (l—cos’mn)dt

The function under the integral may be expressed in

finite form through the lower transcendentals. TFor this

purpose, conslder 1t ag the real part of
t" +u—1
2 (_ )n,_l (l_e.nm:)

The integral Nz may then be expressed as

I

where R 1is used to indicate the real part of the com—

Plex gquantity following it. 3But

4

T e

* - -— - —_—
—% +.. .]: VtarctgVt— {}—t (arctgVt —\t) =

1—¢ -
=1— —V—farcfg Vt;

ni"e anmé 1— omi

te :
n—1 —_— = —— —— ., "”.
4 E (—1) yPe e 1 e arctgyte

Thus
3

Bz . —_— -
4N, =R f t e —te")ardg e ™ —(1— arctgyt | dt.

By applying integration by parts, there is obtained

= f e —1e™ )arclgyle ™ dt =

€

) 1
—m em) ; 40_ t"‘—l
= -——"1' — T \ardgcm + U.(2U-+1) 4'1, -—1 f l+t ,"”dt
w—3 #t73

-

1063 .
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but
e ™ €' 4cosm  Suisinm
1 17 40™—1 4pi—1"
2—5 trts

-

arctge™== '+ l colg< ’;),

1

e (1-4-tcos2m)t ! “ t'dt )
e = f 13 Btcosem = N2 | o m Ayt
0

thus

COSM- -~ 'JJ\"””/ ~ m
Jm: 4';‘—-?—— -+ dlgeoty <Z — % >] ——

1 1
_ 4p (1+tcos‘.!m)t*‘__' 4u.¢stm thdt
4 ~1 l+2tc0sm+t" dit 45 4 — l+"tcosm+t‘

The integral in the formula for N3 1s equal to Jm for
m = 0, Finally, there is obtained

1 ,
=(cosm—1) | dusinm T m dp  (¢'dt
WNe=—"1) gttt L i t470) T
0
1
du " (14-tcos2m)t* ! dt:
T 4w’ 1) 14-2cos2m4-£*
V]
4N, 4u sinm T om\
TI—cosm  4u’ 1+4u 11 cosml"wtg(4 2)
(89)

Su(l-}—(osm) t*(1—t)di
fu'—1 (1+txl+t 4-2tcos2m)
Setting in this formula p = 1 ylelds finally the value

4N, (Wp 1is the second sunmation entering the formula (83)).
4.V, sinm

= m
i—cosm™ 3 + 3 1—cosm lgcotg(z - §>—

(86)

8(1-4-cosm) ] H(1—t)dt
T3 f .(1+t)(1+t-|-2tcos2m)

The definite integral in the above equation is easily com-
putedg 1t is equal to
cos2im

mcotgm 4+ T cosom lecosm-~Ig2 (87)
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Tverything required for the computation of 2L by
formula (83) has been developed and the expression for the
force on @ vlate for any gas Jjet can be set up. Yow, con-
sider the case where the jet is infinitely wide — that is,
the problem of the action of a boundless gas stream on a
plate, For this condition m = O, since the flow after
passing round the plate must finally resune its initial
directvion,

Therefore compute

lim - 8L

e s e e s i e e

m= 01l - cosm

where the cxact value of L is given by the series enter-—
ing the denominator of formula (82) and the approximate
value by relation (83). Using formulas (84), (85), (86),
and (87), there is obtained

lim ___fi‘_" = i, lim _*_ﬁi___ = Elgg - f_i_ﬁ = 0.32907
m= 0 1 — cosnm 2 m= 0 1 — cosm 3 12
. 1 " :
1im N, ) 24 _ T _ 4 t (1 - t)dt
m= 01— cosm 4p2 — 1 4(4p2 - 1) 4p2 - 1 (1 + t)°
and since
-8y, el o AR s '
@+ t)® 4 J/ 1+t
Iy 4
therefore '
3 1 —
lim N, 4 Lt S i
m=001= cosm 4u® -1/ L+t . 2p+ 1 4(4p® - 1)
o}

Next, by (83)

8L 255° 30s?

lim 22 = 4 — 10g - + 1.3163
m= 0 1 — cosnm 2 — b5s 2 + 19s
. .3 1 pu—1
s 3033[ 2 _ - 1 ]?( ibu t dt
(2 - 5s8) 2 4+ 19s4:Mp - 1 1+ t
‘o

- T s ()
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where

L ] L e= T, = s, (s8t)

R = 2lp,vo? ——Tmz (88)
Toom

s, being determined by formula (82'):

(Y ~ 1)pyve®

0
2Yp,

which may be rewritten as
2
© 5c¢®

by substituting the #elocity of sound c¢ at the distant
points of the flow and the value 1.40 for Y.

Tor s = O the expression found for R gives the
formula of Kirchhoff (in reference 2):

R = 2lp,vo2 —Tem = 0.44 % 21p,v,?
: o+ 4

applicable for the pressure of the flow of an incompress—
ible liquid., This value is approached by the accurate
fornula (82) for s = 0. The greater the velocity, how—

ever, the greater the magnitude —~E~§, and therefore the
m

reaction of the gas flow with increasing velocity increases
somewhat more energetically than in the case of liguid

flow, HYow, compute the coefficient ;—E-E for the limit-—

ing value of s equal to 0,2 and for values near the
limit, to an ac¢curacy of 0,01,
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1
gt

Setting s, = 0.2 ylelds i = 3.9. fl-{-tdt-'J(u’)-O 144;

16
k([“) 1.7( ) 2u.+l '.‘__;—]:
Pi0,2=1+4 35 0,857 4 3 . 0,459=2,28.
==0,58;

-+P

Yo = € the velocity of sound at the distant points of the

gas jet; if p,, the pressure in taat region is equal to
1l atmosphere; then in the case of air ¢ = 333 meters per
second,

2
For s=p; -=0 1818; w==3,5; v—c\/——- about 3187/,.;
Kw)=0,1625; k()==0,508;
1,818 = 3.1,818°

P(0,1818)=4--1,818— 1.1,001 + 5151 0,808 4
3.1,818° =
o+ i 0914—- 0,102=2,42; .+P ==0,56.

| . W
For 36—'_—'1‘77 == 0,1176, p=2,5; ty = \/ﬁ = 205"'/0«:’

K)==0,2375; k(u)=0,676.
1,1762 , 3.1,176%

PO, 1176)md—1,176— s -~ 0,640 4
3.1,1762 . T
+ gy - 0135=2,9% =062
' 2 - -m
Yor Su:f = 0,069, u=2;v¢ ----\/T9 c=195,"/,,.

J(w)=0,3069, [(11)==0,8085;

0,69* 3.0,692 .
4.1,65;’) 33’11 . 0,.)0:5_{_

. 3.0,69* T .
+”1""6‘§’E“. 0,162=3, 34 ——— == (), 48],

110,069)=4—10 69 —

2 ; ,
For s=,,=0,0377; u=1,75; r"=\/ 53c= 144,6™/,,.;

Je)==0,3578; k(u)==1,8925;
P0,0377)=4—0,3774-0,010=3,63;

- +'1" = (),464,
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It is thus seen that the coefficient of the formula
for the wressure drops sharply with decrease in velocity
near the limiting velocities; after which 1t drops more
slowly. Thus, when the velocity decreases from 333 ne-
ters per second to 318 meters per second, the coefficient
drops from 0,58 to 0.56 —~ decreasing by 0.02 - that is,
3.4 percent of its value. The same numerical value for
the drop 1s obtained on changing the velocity from 196
metors per second to 145 metors per second, although the
difference of these velocities is 3,4 times greater. It
may be noted, moreover, that at a velocity of 145 meters
per second the pressurs coefficient is already near the
value which is comouted bty the formula of Kirchhoif

~-T . = 0,44; the differences of these values is equal to
0.024, adbout 5 percent of the greater of them. - The total
increnent of the coefficient 0.58 — 0.44 = 0,14 is about
32 perceant of its lower value,

e coefficient in

Thus, at not roo large velocities th
the fornula for the prassure on a plate, or what is equiv-

conditions the resistance of the medium follows approxi-
mately the square law. When the velocity of motion of the -
plate is near the velocity of sound, however, the resist-
ance increases in a very marked manner, This conclusion

is entirely confirmed by the available experimental data,
as 1s shown later.

it of a »nlate increases very slowly. Therefore under these

Further is noted a relatively simple formula which
for the assumed accuracy of computation gives results
entirely agreeing with those obtained by formuls (88):

IJ(SO) = 4 - IOSQ + 7502 (89)

Compute P(s,) Dby (89) and by (88); and for comparison
write the results one below the other. The following tadle

is obtained
56 0.2 0.1818 0.1176 0.069 0.0377
P(s,) vy (38) =2.28 2.42 2.93 3.34 3.63
P(s,) by (89) =2.28 2,41 2.92 3.34 3.63
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The difference obtained in the value of P Dby these
foruulas in no way affects the value of the resistance
coefficient for the assumed approximation.

Thie final resistance equation now assumes the form

R = — T 3L91V02_ * (90)
M+ 4 = 10s, + 7s,°
where
2
5, = 22
5¢®

where ¢ 1is the velwcity of sound nropagation at the dis—
tant points of the flow, equal to 333 meters per second

if the notion of the mlate takes »lace in the atmosphere,

If v, 1s not very large /Vo <A7%€>, the term 7502

\

is negligible within the limits of accuracy; then

At . '
T+ 4 - 2-2- o
03

The approximate formula (90) may e obtained from the
exact exvression for the pressure of the gas Jjet on the
plate in exactly the same manner as the corresponding for-
mula (69) in the previous section. It is not difficult to

show that if in the denominator of relation (87) "x o 1s
?

replaced avproximately by

. s
xn(O) + sox'n(O) + —g* xo"(O)

the comdutation is carried out and m is set equal to O

~formula (9C) is arrived at, The difference will be only

) ; . . -
that the denominator will be fourd cqual to m+l-10sq+ 7.254,
but this is of .small significance for assumed accuracy of
computation,
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Investigation will now be made to find what formula
(60) will vield if it is attempted to apply it in deter-—
mining air resistance to motion, using it beyond the true
limit of its applicadbility..

‘The fundamental factor to be considered is the coef-
ficient KX

T .

2

mT+ 4 - 10g,. + '7SO

0

As long as the velocity of the plate does not exceed the
velocitr of sound this coefficient increases at first very
slowly, then much more rapidly with increase in velocity,
as has been shown, the limits of its variations being
given by the extreme values 0.44 and 0.58, This increase
continues evern after sy goes beyond the value 0.2 cor-

responding to the equation v, = c; thus for

v, = %c = about 500 meters per second, sé = 0.45, K = 0.77;
for s, = %, Vg = §~/$E = about 629 meters per second; K
attalias 1ts maximunm valuebO.BS, twice its value Tor small
velocities., ZFurther on K <decreases and for v, = 2.5c

= ahou® 833 meters per second, s, = 1.25, there is o0b-—
tained X = 0,56,

The avbove results qualitatively are in sufficiently
good arsreement with test results. This is all the more
interesting in view of the fact that the tests were con-
ducted under conditions very far removed from those of
the theoretical prodlem considered since, in fact, ¥ . was
computed from observations on the flight of artillery pro-—
jectiles. The results were obtained from ballistic tests
by Zabudsky (reference 11, pp. 47-57, table 4, and fig. 30)
and vere mainly used for the purposes of comparison. The
change in the coefficient K for velocities not exceeding
240 meters per second is in fact almost inappreciable; it
thea starts to grow very rapidly, iancreasing 2,8 times for
a chonge in the velocity of the projectile from 240 to 420
meters wer sascond; thereafter it remains at the same level
until tae velocity exceeds 550 meters per second and then
drops, giving for 11C0 meters per second the same value as
for 340 ueters per second. Thus the actual change in K
stands out with great sharpness: the law of the proportion-—
ality of the resistance %0 the square of the velocity
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clearly applies for. velocities not too large,while for
velocities near that of sound the coefficient increases
much more rapidly, This phencmenon might to a certain
degrce have been foreseen. Thus in the theoretical prob- .
lem tie tuves of flow separate from the moving plate in
only two directions, while in the flight of an artillery
shell they separate in all meridional planes. If in each
of these planes the motion took place as in the case under
consideration the resistance coefficient should vary as X%,
Actually the deviations are not so large. This is because
the tubes of flow springing from the vrojectile spread ocut
and therefore should press less strongly on the body of
the nrojectile near its contours. Better results could
not be exvected for the reason that applied formula (90)
is outside the liwmits within which its applicability has
been proved.

Agide from whe above reasons there is yet a further
deviating factor: namely, the viscosity of the air and
its friction at tre side of the moving body. Owing to
‘the viscosity there should be formed behind the plate vor-—
tices which lower the pressure in this region; and hence
lead to an increase in the resistance. This condition
already shows up at the smaller velocities such that, as
shown by the tests of Tibot, the ccefficient. K 1is equal
approxinately to 0,64 instead of 0,44 if the velocity
fluctuates within the limits of 0,5 to 11 meters per second
(reference 11, p. 14). TFor large velocities the effect of
the viscosity would presumably be not so large.

In concluding this part, a method is indicated for
deriving a theoretical formula for the resistance in the
case where the velocity of motion of the plate exceeds
the velocity of sound, In this case, for the same reasons
as for the case of a gas flowing out of a vessel, no con—
tinunous steady motion should be expected. As in the
previous case, a certain partition surface should be fermed

~dividing the region of the flow into two parts in each of
which the otion possesses a different character. This
surfoce, consisting of the two sheets shown in figure 6,
will be considered as enveloping the sound waves. Within
the comwressed and heated air layer separated by the sur-—
face from the atmosphere the motion will be steady and the

variable T will everywhere be less than ———;-—; on the

surface itself T = ——d—— and the relative velocity of
o 2B + 1 -
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the air particles penetrating the layer is equal to the
sound velocity which would be observed at tlhis place in 2
gas ot rest and which is egual to the velocity of the mov—
ing »nlate., On passing through the boundary of the layer
into the outer atmosphere, & sharp drop in pressure. is
encountered; here the motion will be unsteady. Under the
same assunption as in the case of the outflcw from a vessel
it is found that the angle at which the flow tubes in their
relative notion (for stationary plate) intersect the bound—
ary of the region of the condensed layer will be constant
at all moints of the partition surface. This additional
condition is sufficient for a mathematical analysis of the
mobtion within the separating air layer and, therefore,

also for %the solution of the problem of the air pressure

on the plate. It may be remarked that the very existence
of the partition surface and condensed air layer are by

no means tc be considered as hypcthetical, since the ex—
istence of these phenomena has been firmly estavlished by
Mach and other careful investigators. :
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PART V
APPROXIMATICN KETHOD OF SOLUTION CF GAS JET PROBLEMS

If the velocities of the gas flow are sufficiently
below the limiting velocity ¢ determined by the equation

T = -2 _ the solution formulas may be presented, approx—

imately, in a more simple arnd compact form by introducing
a certain complex variable,

In part I the following fundamental equations connect-
ing the derivatives of the velocity potential and stream
function with respect to the independent variabdbles T
and €& were derived:

RS gf(Lxﬂ"B gf
X o7

to | _ 1-(2B41)Ti ) B By

T ey

aT 22T(1—T) 39

These are formulas (11) of part I, The follow—
ing notation is introduced:

To B
sl (l—-T)
J ————t— dT = ¢o (91)
T T
where T, is the maximum value of 7T corresponding to

the btoundary of the Jjet, The preceding formulas then can
be expressed by

6@ - ol
o8 oo
—E-Q—P-z:K.éE
Poled o8
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where

1-(28+1)7
K:..,.(_B )

(1—-1)

2B+1

In tne region of flow the ccefficient. K varies;
but if the velocities of motion of the zas are not near
the Llimiting velocity X is confined within very narrow

First it is shown that X decreases with increasing
T, ZTFor this purpose the derivative dX/4T is obtained:

ax _ _ 2B(2e+1)T
aT (1~T>‘&+2

It is clear that the minus sign is retained, what—
ever the positive value T, so that the foregcing state~
ment is correct., Hext the values of K for the extreme
values of T admissitle in the problem considered is
computed, Then ou the basis of previously mentioned data
XK will be included between the boundary values thus
obteined,

It is necessary to proceed, for convenience of the
computation, from the variadble T to the variable

s = T/(1-T) +to obtain, for K, the value

PR 25
K = (1-28s) (1l+s)
or if B 1is set, as before, equal to 2,5
. 5
E = (1-5s8) (1+s)
whence 1s obtained
12B 30

S = ~i— = =, 1> K> 0,987
148 35
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Sy = —— = 4, 1> X > 0,090
168 40

s, = —i- = &, 1 >X > 0,9920
188 45

8, = —= = = 1 >X > 0,9957
248 6O

SO = ..l- = .—-l— 4 1 >X > 0"9976
328 80

s, = i = i, 1> K > 0,9992
508 125

§ = ko o= L 1> K> 0,99995

° 2008 500

The corresponding values of the maximum velocity v,

are determined by the formula v_% = 5¢®s_, where c is

the velocity of sound for the physical state of the gas
at the boundaries of the jet, For the preceding values
of sg, if it is assumed that near the boundaries of the
Jet mean atmospheric conditions prevail, the following

values are obtained for Vol

138y 1c6; 118; 11l1; 9€¢; 83; 66,63 33,3 meters per

second (the figures are rounded for simplicity; ¢ is
assumed equal to 333 m/sec),

The approximation which is now made consists in taking
K egual to unity, - Then there is obtained:

A - oV
0o 08
ep Vv

- - ——

08 bale]
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and,therefore

w=q)+ 1 ?F(G"F 19) (92)

where o is determined by formula (91),

It is well to consider again the corresponding motion
of an incompressible liquid for the same boundary condi-
tions, together with the problem on the gas flow; plane
bounding walls, flow extends infinitely in certain di-
rections, behind the walls at which the flowing mass
separates the pressure is constant and the liquid or the
gas is at rest, The problem for the case of the incom—
pressible liquid is solved by the relations:

vodz
w1=<pl+i\lll=F(13+iG), 6+19=1g-2—-
dw,
where 9 = lg Ig’ 8 1s the same angle of the veloclty
v

with the X axis as in the gas—~flow prpdlem, Over all
the boundaries Wl has some constant value; at the

at the bounding walls 8 = constant;and at the jet sur-
face the velocity 'v = constant = v,; and therefore
¥ = 0, These are the conditions imposed on w,;, a

function of the complex variable ¢ + 19, The method of
obtaining such function is given by Joukowsky in refer-
ence 2,

It is clear thas after the funciion F 1is found,
which solves the given problem on the incompressidle
liquid, the required solution of the same problem on the
gas motion is obtained by setting

(p-#i\{l:F(O"l‘ie)

that is, simply replacing ¢ by o; then Qhen the variables
¢ and o pass around the boundaries of their region, V
will receive the same constant values as V,; where & = 0O

of course o = 0, -and, therefore, 7T = T,

’ 1

After the function ¢+ iy 1is found as a function of
o + 168 the coordinates easily can be found as functions of
the variables o and §, the contours of the jet investi-
gated can be obtained and the constants characteristic of
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the;problem determised;-namel&, the quantity of gas carried

by the jet and the resultant force on the plates,

To determine, the dependence of the coordinates on o
and @ T 1is expressed in terms of o, From formula (91)

il 1 -d= (l— )—ﬁ

cds 2T ’-/- de /- o
4 a—yf <H4r g K
s J= 2= s ds™ 2’

and since it is assumed that

Rel1— (23417 : (=941,
there is obtained

@111 eeCer —Tf G —Ce”
ds® y== =7 = 2 ’ V= - 2
Setting T = T, yields
('|+C CI— J‘ﬂ_(l-:tt);ﬂ
"_ﬁ” TR

. (93)

(93)

Turn now to formulas (7') and (8), part I, that gives

the derivatives of the coordinates with respect to
Ox cosh -~ dy il |

Va0 Vi
@é me—e)ﬁ dy cmWL—ﬁ f

U'L VO 2= 4]"( v2 -

¢ eand V¥;

whence, by taking into account (93) and setting x4+ iy = 2,

@ + 1y = w, ¢ — iV a w! there is obtalned:

— v o —dz
2./213—_;_ — ./'IU"+IO+U._.8—‘+'9-; 2'/21(')—":: - ,((/I(._'l"' ’J_(’v.:(‘_

dw

QJZG—'—‘ (1 KL /Al d,. + (1 —s+ e’ .

1IG

— 0z 4o the W T -
Wi = = (0 — 4
/ o T Yl Oy on 7

9/21 2 =C, J l""""’:/u'-{-o_- ‘ e o,
The integration now may be carried out, since
c w=f(e+ i), w'=f (5— i),

where f; 1s the function conjugate to f,

7+i0);

(94)
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Consider, for example, the approximate solution of the
problem of the pressure exerted on a plate by an infinite
gas flow, or otherwise eXpressed, of the resistance of =&
gas medium to the motion of a plate, It is assumed here
that the direction of the flow forms a certain angle A
with the normal to 'the plate, 3By making use of ths Joukow-
sky method the following solution of this problem for the
incompressible liquid is readily obtained:

The regions of flow correspond, in this case, to the
upper half plane of the variabdle 1w, The boundaries & = 0
which determine the streamlines CA and - BD, correspond
to the segments of the real axis of the u region from
u=4+*®° to u=1- sin\ and from u = - 1 — sinx to
u = - the point uw = *To gives 4 = 0, 6 = — A, The
part of the plate where 8 = m/2 corresponds to the segment
of the real axis of the u plane bounded by the points
u =0 and u = 1 - sinA; finally, at the boundary O3B
8 = —m/2 and wu varies from 0 to -1 -— sina,

’

On the other hand, for u real VY, = O and
varies from O to + o© as u varies from O to 4™, The
imaginary axis of the wu region likewise gives VY, = 0;

¢, increases from — < to 0, while u runs through the

values from +*®i to O0; 9§ and 8 wvary correspondingly
within the limits O and + «, — A and 0, It is clear,
from this, that the imaginary axis of the wu half plane
corresponds in the plane of flow to the streamline, EO
branching at the plate into O0AC and CBD,

On the basis of the foregoing rule, the solution of
this problem of the gas flow is obtained by setting

o + iV = ku®, 222 = sinn + sin(6~ic) (95)

The exXpressions for the coordinates in terms of o
and 0 now will be sought, MTurning for this purpose to
the last of formulas (94)
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W22=C,e" w4 C e+ — ¢, f we” P (e4-i0)4
+C, J w'e=?t Vd(c— ).
Setting, for briefness, under the integral signs
e F =t ¢ =

and substituting the expressions for w and w! from (95)

glves
- . e . - ( tdt
2/&15::0167'*"0"'—*—('2(‘—'+"Ill' —A4k( IC()SJ/\ [ (‘)Si]l) f—+—’1‘.—lt:)" —

Idt
— 41:C,e0s's J (’sm/t—{—z—rt 5
Integration ylelds

itcos27. 4 sin

b =3 7+ 0. '_’+’Y/ v’ ) o .‘."/ ?
2y202=C,¢" " "uw4-C, w' 4-2keos*1.C, ST +

- c0s27 +sm/ t4-¢ zam/

kcos*A L, ‘{ — 2ikcosrC urct

+ 2kcos"A 2sinnt’4-i— Cyarcly ~o</
V4-esina

' — 2tkeosnCarcty —cl:051 4+ L

Or by substitution of the sum "and difference of the
arcfangents in the foregoing equation and multiplication of

' the entire equation by i:

QY2xsi e COS'A s €O,
-k =C, [sm/‘+s1n(0—u-)| +C.,1e [sina+sin(0 +i0)]"

----- P

o cos27 —isinle 7=

c0827. — #sinie

— Cioos™ sxnk-{-sm(()—m — Cyoo8%% sin/-+sin(04-is) +
) (96)
. (&"-e—2)e - 2isiny. cosi.|
(C.4-C)ar { {ere Je -
F cosh(C,4-CJarcly cos2A+e""-}-ism/\_(c"ﬁ-e'f.’)er‘ K I+
e’ ]
Je COSA
ﬂ.C-— Li,
Foo ( J)mctg{ mn/\(e’-{-c"”)e"‘ T

It is not difticult to show that doth arctangents enter-
ing the foregoing equation everywhere vary continuously; that
as o approaches o, whatever the value of 6, The first
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of them approaches — 3 + A and the second 5~ A, and

therefore, L (the arbitrary constant of integration)

may hte determined so that for o = o, ~z = 0,

It is noted further that the first of these arctan—
gents nowhere attains the value m/2, since the denom-
inator of its argument nowhere becomes zeroj; the second
passes through m/2 on the curve defined by the equation

2sind + sina(e®+e™9) = 0

‘

The expression for the length of the plate 21 1is
now set up, For this purpose, by formula (96) there is
determined 21 = —iz, + 1z, equal to the difference in the
results of the substitution in the expression —iz of the
values o = 0, §=mn/2 and o = 0, 8 = - nw/2, It may be
noted that on the basis of what has been said of the vari-—-
ation of the second arctangent of formula (9¢)

i@ :
cCoSsA

I
|
3

- ( o -—O')
e —e e
/ arctg
i-ie*?? *

+sink(eo+e"0)e

The same substitution in the first of the arctangents
gives zero as a result, With this in mind, it is found,
after simple reduction that:

21 ,./2a C, + C. C,—-C
. A 4 1" 4 ncosh —2——-2
k 2 2

whence, from formulas (931)

[ 501 -
21 2aTo . 4 4 meosh(1-T,)

_______ e
k g

Turn now to the computation of the resultant force R
on the plate, For this purpose use is made of the formuls
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f +
P = po(l--T)B '

where Po is the pressure at the critical point; it isg

determined in terms of Py, the pressure behind the plate
and prevailing over the entire gas medium at rest by the
formula \

p+1
po(l~To) = P,
For determining R
1; o |
R = k/1 po(l~T)&+ldy +J[ po(l—T)B+ldy'>' —~2p, 1
o 9=% -1, ) 9=—--1-;- :

where 1, and 1, denote the corresponding lengths of.

the parts of the plate OA and 0B from the critical poilnt
to the ends, .

By carrying out the integration by parts there is
obtained '

B+1
R=p (1=-1)" = (1 ,+1.)-2p 1

TO 5
rerp, [Genarty -y )
0

™
e‘=—11 . 8 alas g
2 - <

Substitute, in thls expression, the variabdle 6; from
the relation between T and o (formulas (21) and (93)),

‘ g
(1-T) dT = - 27dg = — — - do
(C,e +Cge”7)

and the limits of integration with respect to @ are o
and C; moreover it may be noted that the first two terms
in the formula for R cancel, since 1,+ 1, = 21,

P, To P,. ence
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(s o

R=8G+n, [0 —v ) T FaeT

or, integrating by parts,
N
cnI ) . 1
Y e
4(d+])l’a /(y s e=~_A",) C,C"'—}—U:_*_
()]

0
92

= —

2
Substitution gives the result 21/(C,+C.),

)~ e

With regard to the remalning integral, §$ equation (94),
if 6 = n/2 and it is remembered here that

— dy _ dr
2/2x <£> = (Ce+Cpe™) (d:> ‘
R 0 - _f 9-
For 8 =-mn/2, V¥ =0 there is obtained
dy o L (1o
2/2a (dc>e=_n=— (C,e°+C.e7°) (dc) .
v Oe—=—

iy,

Making use of these formulas and integrating again
by parts, in the expression for R, reduces it to the form

C,R{2x _ 42 -
2(ﬁ+1>po—c',+0+/ @ +9 _f +

2

o

,+f(? +?e=_ ;>e"d6-

T
0 b=35
From equations (95) there 1is

Leos'y keos'n

o= (sm) + - +e_> ‘

L .. 67+CL—1 B
=—y | NiD2 — 5
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and, therefore, by substitution, and introduction in the

integral of the variable £ = e °, there is obtained:

1
Rf3x 4% 5
3GBLyp, O+ C, —20(1-sin*P)4-4kcos 2 (1+ ok’ .+

1393
+ 4kcos*n f AFe—atsmy

These definite integrals have, respectively, the values
1 {sin7\—cos2_7_k sinh ) }
9cos’h | 242sinh + cosh\4~ 2

1 sinA+-cos27. A
9¢cosA {_ 99k + sini+- COSA < +§>} ’

and hence, on adding, give

1 T
2c0s”2. <— 1+ ‘.’cos)\) !

Substitution of this expression in the formula for R yields

and

CRZx 413

3(8T)p,— C+C, —4k-+=kcosh.
Since
CHC— '/2_0, 91 .V Fra=—dkrheosh(1—z,) 7, (cu. (97)),
—)*
C— 1+(1/-; )"
therefore
’=F— Feost/,(B-F1)p,. (98)

From the formula Jjust given for 21:

ko 21./-
2 a1z P ’
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Moreover

—-B
= ap, (1-7,)

Since from the definition of the constant o {(See pt, I.)

and the density at the jet surface Py, eqmal to the
density of the distant regions of the flow, is connectead
witih the density at the critical point p, by the foruula

: 8
pl = po(l*.ro)

Finally by taking into account the equation J’zaTo = v,

the velocity at the jet surface and at the infinitely dis-—
tant noints of the moving gas mass, there is obtained fron
(98): :

TTCOSA . -
R = — 21vo©p,y

8
4(1—-T7,) + mcosA

This formula for B = 0O passes over, as it should,

into the formula of Lord Rayleigh for the flow of an in-—
compressible liquid, and for A = O gives the approxinate

soluticn of the problem of the pressure of a symmetrical gas
3 TTCOSA
'4(1~To)s+ﬁébsh
for the values of s, assumed at the beginning of this
part and for which this approximate method is applicabdle

and considering only the case of symmetrical flow leads to
the following result: For a change in s from 0 +to

flow on a plate, Computing the coefficient

—~0 e L

i and flow velocity from C to 136 meters per second
128 . - - T -

the coefficient ———————g— luctuates within the limits
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0,440 to 0,460, the increase at the end being greater

than at the beginning, Thus for s = A rand v_ = 98

° 248 °
meters per second it still equals only 0.449, Hence for
not very large velocities the law of the proportfonality
of the rcsistance to the square of the velocity is found

to be almost exact,

SUPPLEMEINTARY REMARXS

1.

Part II: It is of interest to note that the function
¥, Wwill always have real roots within the limits of the
variation of T from its critical value :%:I to 1, pro—

2
vidasd n is sufficiently large., Thus for functions with
intesral n it is true for n > 1, The number of roots
inercases infinitely with n, These results are obtained
from Porter's article (reference 12), It is readily con—
cludod that the solution of the problems on the flow of a
gas out of a vessel and the resistance of o moving plate
in air, given in parts III and IV, are not applicable out—
side of the limits indicated in this paper because of the
divergence of the searies e¥pressing the stream function
and veclocity potential,

2

Part V: The expressicn K =[1 — (28+1)T](1~T)"25'1

which, in presenting the "approximate method," was accepted
as cqual to unity actually will be egual to unity in two
cagas:

1, If B = 0: This is the case of the motion of an
incompressible liquid, since the formula for the density
p = poll=T) reduces to the eguation p = constant,

1%
2. 17 p=-—1i In this case D = kp b= x/p, If

the moving matter is an ideal gas, then in order that this
condition may be satisfied, it is necessary, in some manner,
to reaove the heat from the flowing mass of gas, To create.
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such a state of motion of the gas is not actually possible,

The problem, however, arrived at on setting

interest from quite another viewpoint,

2

109

is of

The initial equations (7) of part I is considered,

-
\o*

substitution in them for T 1its value g;
200 equal to —1 is taken and, for briefness,
of ¢ are denoted with respect to x and
respectively, The equations then become

I N -\ . S -5
o i g e e oy - Y e o e———
J1ep“+q® W J1+p3+q? ox
dy— gdx
E“:::':g::::: = \U
J/1+pF+g”

Hence it is clear that if we put o =

of a minimal surfeace,

the derivatives

J

z 2
Yy, 2 will be the rectangular coordinates of the points

by p

then

oo\’
oy /

and

Xy

Formulas (91) to (95) of part V, on substituting -—u

for T, 1lead to the following relations:

1 o " —C 1+u o —C
— = C,e + C.e , : ~5— = C,e —C_e
v 4 | A
l1+ug
e ~C = ——
C,+Cy = — ’ Cl h=

/s %

where the arbitrary constants are given somewhat different

values from those in the formulas of V

.

If o+1i8 = t, o—i8=1t,, then

z + iy = £(t)

—t R '
x+iy=0C, S e " £1(t)at + C, J & e 1(t, )ds,

a,
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where
2 q
u = p° + q 6 = arctg—i

For the square of the linear element of the surface
there is found the expression

2 o ~O\2¢ . 2 | _ it ' R
ds® = (Cye = Cgze” )°(dz" + dv7) = tven (dz”+ a¥v~=y .

If the xy plane is horizontal the curves 2z = constant
will be the horizontals of the surface; WV = constant are
their orthogonal traJjectories,

From the foregoing equations minimal surfaces of various
shanes may be derived,

1. Setting

"~ nt
f(t) = e
yields
G n+l . D=l
n “n nC Y
x + iy = —2 (z+i0) 7 4 2B (z-i))
n+1 n--1

For n rational various shapes of algebraic surfaces
are thus obtained, An exception is the case n = 1, the
surface then being transcendental,

Setting f(t) = At . gives for real A the catenoid
and for A the helicoid,

2. A second group of minimal surfaces obtained from
the above formulas is of much greater interest, With the
aid of the latter the minimal surface described within a
certain given polygonal contour may be sought, The latter
should consist of horizontal and vertical straight segments
(the xy plane as before is taken to be some horizontal
plane), On setting for simplicity wu, = ® and hence
6, = = C; = 1/2 1in the above formulas the following is
noted: On each horizontal segment of the boundary contour
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there Will”evidentiy be z=constant and 8= constant;

-if, however; the segment under consideration is vertical

then on it V¥ = constant, ©p2® + g% = © and o = 0, Thus

“the regions 2z + iV and o + 16 will be bounded by

straight lines, @By finding the conformal transformation
of these regions on the upper half plane of the auxiliary
complex variable s, by the known method, the problen

to the effecting of quadratures is reduced, As a very
simple example, the surface described in a pentagonal
contour of the following shape is obtained: one of its
sides is the segment of the y axis bisected by the origin
of coordinates; from the end of this segment are drawn
two equal sides parallel to the z axisj; from the ends of
the latter two infinite lines parallel to the x axis are
drawn thus completing the contour, This surface is ex-—
pressed by the following ecquations: '

— W W iz
i, 2yo/1-xE Esm g oem g dn o
: a RN iz
1—%%sn® ¥ gp2iZ
a a
e . iz iz
5 2kisn — dn —— cn k4
. 2x ' 1=k a a
sinah ——————e = —
a . W =z iz
1 — k®gn?® - gn® 2=
a a

They are readily obtained with the aid of the pre-=
ceding general formulas if

N k «/IL—-s2 4/ 1-k%s®

 1-k2

o + 16 =

)

da
z + iV = ai d[ S

o (Al-—-sz)(l——kzse)

In conclusion, it may be noted that the given con—'
ditions for the surface may te somewhat varied, Thus,
among the conditions, the requirement that one of the
horizontals be a line of curvature of the surface may be
included, The plane of this horizental will then intersect
the required ‘surface at 'a constant angle and, therefore, 1t
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~will be found that, for a certain given value of z,

p? + q¢° = constant and hence o = constant, In exactly
the same way, if it is known that one of the curves,

¥ = constant, is a plane curve, then, as is easily shown,

along this curve the angle & will be constant,

Translation by S. Reiss,
Netional Advisory Committee
for Aeronautics,
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