The Computing & Interdisciplinary Systems Office

Annual Review and Planning Meeting
October 9-10, 2002

Dr. John K. Lytle

Outline

• Vision and Objective
• General Description
• Schedule
• Customer Survey Results
• FY02 Accomplishments
• FY03 Milestones
• Future Direction
• Agenda
The Vision

Develop an advanced engineering analysis system that enables high-fidelity, multi-disciplinary, full propulsion system simulations to be performed early in the design process....

...a virtual test cell that integrates propulsion and information technologies...

To enable rapid, high-confidence, cost-effective design of revolutionary systems. (AST Goal 3: Pioneering Revolutionary Technology)

Major Elements of Virtual Testing

- Engineering Applications
 - Coupled aero-thermal-structural analysis
 - Hierarchical methods

- Component Integration
 - MD coupling
 - Zooming

- Computing Testbeds
 - Code Parallelization
 - 3-D Subsystems/System
 - 0-D engine/1-D compressor
 - 0-D core/3-D LP subsystem
 - High-speed networks
 - PC cluster
 - Distributed computing

Seamless integration of people, data, analysis tools, and computing resources

Cost-Effective

High-fidelity, large-scale simulations

Rapid

High-Confidence
NPSS Development Plan to Support Advanced Aerospace Transportation Systems

2002 CISO Review

Software Development Strategy

2002 CISO Review

Developers Kit: Tools for Integrating Legacy Code into the NPSS Engineering Environment

• CICT Information Environments
• CICT Computing, Networking, and Testbeds

3-D Prototype Simulations & Infrastructure

• CICT Grand Challenges
• Aerospace Propulsion and Power Base
• Space Transfer and Launch Technology

Software Products
NPSS V1 V 1.5

2000 2001 2002 2003 2004 2005 2006

NASA/TM—2003-211896 17
Virtual Testing
Opportunities to Impact Major National Programs

Revolutionary Turbine Accelerator (RTA)
Versatile Advanced Affordable Turbine Engine (VAATE)
Ultra-Efficient Engine Technology (UEET)
NASA Intelligent Engine

Virtual Test Capability

Programmatic Support

Fiscal Year

Revolutionary Turbine Accelerator (RTA)
Ground Demonstrators (3) Build 1 Build 2
Versatile Advanced Affordable Turbine Engine (VAATE)
Ground Demonstrator Core Engine
Ultra-Efficient Engine Technology (UEET)
High-Fidelity, Multi-Component Turbomachinery Simulation
NASA Intelligent Engine

Ground Demonstrators

Full 3-D Aero Engine MD Engine TBCC Intell. Engine

Programmatic Support

Funding ($M)

Fiscal Year

00 01 02 03 04 05 06

HPCCP - High Performance Computing and Communications (Revolutionize Civil Aviation)
APP - Aerospace Propulsion and Power (Revolutionize Civil Aviation)
ASTP - Advanced Space Transportation Program (Advanced Space Transportation)
CICT - Computing, Information, and Communications Technology (Pioneering Revolutionary Technology)
Consistent Themes from Customer Survey

- Concern over strong emphasis placed on these (rocket) capabilities at the expense of air breathing simulations

- We would be more interested in using Engineering Application and High Performance Computing tools if they were more readily deployed into our system...

- The development of this environment to support high fidelity components has not been as effective as desired.

- The current approach of trying to coalesce an approach from a variety of different, company proprietary approaches does not appear to be leading to an effective plan that benefits all NPSS members.

- Release policy prohibits widespread acceptance.
Selected FY02 Highlights

- Received two major awards
 - NorTech
 - R&D 100
- Completed prototype of first integrated 3-D aero simulation of the primary flow path of a large turbofan engine.
- Released NPSS V1.5 with visual assembly of complete propulsion system, zooming to 1-dimensional analysis, CORBA security, and rocket engine component modules.
- Demonstrated coupling objects for an object-based multi-disciplinary simulation using ADPAC and ANSYS.
- Demonstrated a 400:1 speed-up using the Lattice Boltzmann method with 500 processors to simulate a transonic compressor cascade.
- Completed a 3-D simulation (VULCAN) using distributed computing resources via CORBA over the Information Power Grid.
- NPSS Release Policy signed by NASA Headquarters.

FY03 Major Milestones

- Automate execution of the 3-dimensional engine simulation through integration with the 0-dimensional simulation
- Complete 0-dimensional models of the advanced combined cycles for the space transportation
 - Rocket-based combined cycle
 - Turbine-based combined cycle
- Complete multi-disciplinary, unsteady simulation of a turbopump for rocket engine applications.
- Complete multi-disciplinary simulation of the integrated forebody, inlet and combustor of a high-speed vehicle and propulsion system.
- Demonstrate coupling high fidelity aerospace application codes using CORBA on the Information Power Grid.
- Develop data translation and system solver objects supporting multi-component simulations
- Implement commercialization space act agreements for NPSS V1.X
Future Directions

- Despite substantial funding reductions in FY 02, NASA will continue to invest in an advanced engineering environment for propulsion.
- Increased emphasis on completing Developers Kit to bring in high-fidelity, multi-disciplinary analysis tools.
- Identify and cultivate commercialization opportunities for NPSS V1.x
- Work through the Propulsion System Technical Committee to address issues associated with reduction in support for Aeronautics applications. Need Executive Committee Help.
- Establish stronger partnerships with related Programs
 - DOE Accelerated Strategic Computing Initiative
 - DOD Versatile Affordable Advanced Turbine Engine Program
 - NASA Ultra-Efficient Engine Technology Program
 - NASA Advanced Space Transportation Program

Propulsion System Technical Committee

<table>
<thead>
<tr>
<th>Name</th>
<th>Position/Division</th>
<th>Organization</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dr. M. J. Benzakein</td>
<td>General Manager, Advanced Engineering Programs</td>
<td>GE Aircraft Engines</td>
</tr>
<tr>
<td>Dr. Arun K. Sehra</td>
<td>Director of Aeronautics</td>
<td>NASA Glenn Research Center</td>
</tr>
<tr>
<td>Mr. Gerald (Scott) Cruzen</td>
<td>Director, Advanced Technology</td>
<td>Williams International</td>
</tr>
<tr>
<td>Mr. Ted Exley</td>
<td>Director of Advanced Programs</td>
<td>Teledyne Continental Motors</td>
</tr>
<tr>
<td>Mr. Jeff Jenson</td>
<td>Division Director of Business Development</td>
<td>The Boeing Co./Rocketdyne Propulsion & Power</td>
</tr>
<tr>
<td>Professor Awatef Hamed</td>
<td>Dept. of Aerospace Engineering</td>
<td>University of Cincinnati</td>
</tr>
<tr>
<td>Professor Wesley L. Harris</td>
<td></td>
<td>Massachusetts Institute of Technology</td>
</tr>
<tr>
<td>Ms. Sandra Hoff</td>
<td>Chief Power Systems Division</td>
<td>Aviation Applied Technology Directorate</td>
</tr>
<tr>
<td>Mr. Robert J. May Jr.</td>
<td>Executive Director</td>
<td>Air Force Research Lab</td>
</tr>
<tr>
<td>Mr. John Meier</td>
<td>Director, Advanced Programs</td>
<td>Honeywell</td>
</tr>
<tr>
<td>Mr. J. Walter Smith</td>
<td>Engineering Director, Compression Systems Module Center</td>
<td>Pratt & Whitney</td>
</tr>
<tr>
<td>Mr. Jan Syberg</td>
<td>Propulsion Technology Leader, Phantom Works</td>
<td>The Boeing Co.</td>
</tr>
<tr>
<td>Dr. Ronald York</td>
<td>Chief Operating Officer</td>
<td>Allison Advanced Development Co.</td>
</tr>
<tr>
<td>Mr. John R. Arvin</td>
<td>Vice President Programs</td>
<td>Allison Advanced Development Co.</td>
</tr>
</tbody>
</table>
Agenda

- Simulation Environment
- Engineering Applications
- Cost-effective Computing Testbeds