Multidisciplinary Analysis of a Hypersonic Engine

ISTAR Flowpath

Ambady Suresh
Mark Stewart

Outline

• Overview & Motivation
• Description of Component Simulations
• Consistent Multidisciplinary Solutions
• Code Coupling Issues
• Benefits & Costs of MD Analysis
ISTAR Multidisciplinary Simulation: Objectives

• Develop high fidelity tools that can influence ISTAR design

• In particular, tools for coupling Fluid-Thermal-Structural simulations

• RBCC/TBCC designers carefully balance aerodynamic, thermal, weight, & structural considerations; consistent multidisciplinary solutions reveal details (at modest cost)

• At Scram mode design point, simulations give details of inlet & combustor performance, thermal loads, structural deflections
Approach Flow: Mach Contours

Approach Solution

- Full Navier-Stokes solution using *Overflow*.
- Simulation includes forebody, canard, & engine inlet—only forebody geometry that influences engine inflow
- Chimera five block structured grid with 9×10^5 cells.
- $k-\omega$ turbulence model with low-Reynolds number form—no compressibility correction
- Equilibrium chemistry
- Sets Combustor inflow
- Yields heat & pressure loads for thermal & structural analysis
Combustor Solution:
Fuel mass fraction iso-surface colored by temperature

- Full Navier-Stokes plus finite-rate chemistry solution using *Vulcan*.
- Composite five block grid with 1.9×10^5 cells.
- 6-species 3-step finite-rate gaseous Ethylene model
- Inflow profile from Approach solution.
- $k-\omega$ turbulence model with wall functions; Compressibility correction
- Each injector modeled as a single triangular slot with equivalent area, massflow, and momentum. (normal injection).
- Flame holding cavity included.
- Yields heat & pressure loads for thermal & structural analysis
Combustor Solution:
1-D Averaged Quantities

- ANSYS—commercial finite element solver.
- 3-D unstructured grid with 1.3×10^5 nodes and 8.6×10^4 tetrahedra
- Temperature dependent material properties for Inconel 625, Titanium β21S
- Coolant passages modeled as a bi-layer material

- Neglects details of heat conduction around coolant passages, plus structural effects
- Some modeling of coolant circuit.
- Thermal model yields temperatures from heat loads, coolant system, and material properties
- Structural model yields deflections & stresses from pressure & temperature loads
Structural Solution

Deflections Exaggerated

Multidisciplinary Coupling Procedures

Aerodynamic Analysis

Fluid-Fluid Coupling

Combustion Analysis

Fluid-Thermal Coupling

Fluid-Structural Coupling

Thermal Solid Analysis

Structural Analysis

2002 CISO Review
Consistent Multidisciplinary Solutions

• **Fluid-Fluid Coupling**: Flow quantities are the same where the Fluid codes meet

• **Fluid-Thermal Coupling**: Heat fluxes & Temperatures are the same where Fluid & Thermal codes meet

• **Fluid-Structural Coupling**: Deflected walls are the same as the Fluid boundaries

ISTAR Multidisciplinary Simulation:
Interpolation & Consistency

• Interpolation transfers inflow profiles, thermal & pressure loads, displacements from code-to-code.

• One-pass:

 (Fluid ⇒ Thermal ⇒ Structural)

 Boundary conditions often inconsistent.

• Consistency achieved with multiple passes:

 (Fluid ⇔ Thermal ⇔ Structural)
Fluid-Thermal Iteration

In engine case, L2 Norm of:
\[\Delta T = 500 \, ^\circ\text{R}. \]

Challenging Issues in Coupling: Toolkit Specific

- Robust interpolation between codes on wetted surface
 - Accept all types of grids and formats.
 - Some tolerance for out of plane target points.
 - Subsetting of source grids.
 - Extrapolation at boundaries.

- Update fluid grids to include surface deflections
 - Difficult when deformations, particularly shear deformations, exceed the grid spacing.
Challenging Issues in Coupling:
Code Specific

- Noisy heat fluxes from fluid codes
- Code compatibility w.r.t coupling (turbulence models, wall functions?)

![Graph showing heat fluxes vs. axial distance with legend]

Calculation of Accurate Heat Fluxes
Benefits & Costs
(Single Discipline vs. Multidisciplinary)

- Cooling system design potentially aided by thermal/fluid calc.
- Computational cost: MD adds 100% of single discipline
- Cost of Setting up MD problem: a toolkit would help (Interpolation++)
- Disparate turn around times: thermal & structural time is <1% of fluid & combustion

Summary

- Single discipline simulations coupled into Multidisciplinary simulation.
- Application is Scram design point of ISTAR concept vehicle
- Reveal some code coupling issues and obstacles, costs and benefits