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Introduction ‘ 
0 The efficiency of the geometry updates and the 

ERODYNAMIC design is inherently a multi- A disciplinary problem that involves complex sur- 
face geometry, competing objectives, multiple operat- 
ing conditions, and strict design constraints. Con- 
sequently, important considerations for an effective 
optimization framework include: 1) optimization tech- 
niques and the degree of coupling with the underlying 
solvers, 2) geometry parameterization, 3) objective 
function and constraint specification, and 4) mesh- 
generation and mesh-perturbation methods. One ap- 
proach for constructing such frameworks is to view 
the parameterized geometry as the center of the op- 
timization procedure. In modern engineering design 
environments, the surface geometry is generally pro- 
duced from a parametric CAD solid representation. 
Ideally, it is this representation, accessible in its na- 
tive environment, that should serve as the basis of the 
optimization procedure. 

Recently, a promising approach has been developed 
using a standardized application programming inter- 
face that allows direct access to  the native CAD solid 
representation. This approach is vendor neutral, i.e. 
independent of a specific CAD system, and is based 
on the Computational Analysis and PRogramming 
Interface In addition to providing an ef- 
fective tool for surface discretization, CAPRI exposes 
the master-model feature tree of the CAD solid rep- 
resentation and allows direct modifications of the pa- 
rameters within the tree. Hence, the design variables 
and geometric constraints can be intrinsic to the CAD 
solid representation. Although this approach is con- 
ceptually very appealing, its implementation presents 
significant challenges and potential pitfalls, for exam- 
ple: 
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surface discretization depend on the efficiency of 
the proprietary CAD geometry kernel. 

0 The use of “legacy” geometry, or geometry with 
no parametric CAD representation, requires spe- 
cial consideration. 

0 Practical issues such as the number of available 
CAD licenses, and the requirement for a commu- 
nication protocol between CAD workstations and 
dedicated compute platforms may significantly re- 
duce the efficiency of a parallel optimization pro- 
cedure. 

Assuming that a CFD-ready surface discretization 
can be obtained, we turn our attention to mesh- 
generation and mesh-perturbation schemes. Since 
structured and unstructured mesh generation algo- 
rithms can be computationally expensive and usu- 
ally require some user supervision, mesh-perturbation 
schemes4& are used during the optimization process 
to modify a given baseline mesh. These schemes pre- 
serve the initial mesh topology, which permits the use 
of simpler and faster solution-transfer algorithms and 
helps maintain a smoother design landscape. For suf- 
ficiently large geometry changes, however, the mesh- 
perturbation schemes breakdown and a new mesh 
must be created. 

Cartesian  method^^-^ offer a promising alternative, 
since the mesh generation is fast, robust, and per- 
haps the closest to  being truly automatic. Due to 
the decoupling of the surface discretization from the 
volume mesh, Cartesian mesh generation is virtually 
insensitive to the complexity of the input geometry. A 
difficulty associated with this approach arises from the 
arbitrary intersection of the surface geometry with the 
mesh, resulting in a layer of cut-cells. As the surface 
geometry evolves during the optimization, the surface 
resolution as well as the number of cells within the 
mesh may change, becoming a potential source of noise 
in the design landscape. 

The selection of an optimization technique is a criti- 
cal factor in attaining an accurate, robust, and efficient 
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optimization procedure. Our primary requirements in- 
clude: 1) scalability of the optimization technique in a 
parallel computing environment, 2) degree of coupling 
among the modules and the high-fidelity solvers within 
the framework, and 3) insensitivity to the presence of 
noise. In addition to the potential mesh-related noise, 
the use of steady-state CFD simulations for complex 
three-dimensional configurations may introduce a level 
of uncertainty in the evaluation of aerodynamic per- 
formance. This is mostly due to factors such as  local 
flow unsteadiness and aspects associated with the nu- 
merical method, which may hinder deep convergence 
of the flow solution and influence the behavior of the 
optimization technique. 

Hence, it is desirable to construct a sufficiently flex- 
ible framework to serve as a test-bed for various opti- 
mization techniques. For the problems under consider- 
ation here, the most promising techniques range from 
autonomous approaches such as evolutionary1&12 and 
finite-difference gradient-based algorithms to methods 
requiring greater coupling such as the adjoint ap- 
proach13-16 for gradient computations. Furthermore, 
the use of these techniques in conjunction with approx- 
imation methods, for example local response surface 
and surrogate  model^,'^^^^ can help deal with noisy 
design landscapes and reduce the computational cost 
of the optimization. 

The objective for this paper is to present the devel- 
opment of an optimization capability for the Cartesian 
inviscid-flow analysis package of Aftosmis e t  aL81 l9 We 
evaluate and characterize the following modules within 
the new optimization framework: 

0 A component-based geometry parameterization 
approach using a CAD solid representation and 
the CAPRI interface. 

0 The use of Cartesian methods in the development 

Optimization techniques using a genetic &go- 

The discussion and investigations focus on several real- 
world problems of the optimization process. We ex- 
amine the architectural issues associated with the de- 
ployment of a CAD-based design approach in a hetero- 
geneous parallel computing environment that contains 
both CAD workstations and dedicated compute nodes. 
In addition, we study the influence of noise on the per- 
formance of optimization techniques, and the overall 
efficiency of the optimization process for aerodynamic 
design of complex three-dimensional configurations. 

of automated optimization tools. 

rithm and a gradient-based algorithm. 

Problem Formulation 
The aerodynamic optimization problem consists of 

determining values of design variables X, such that 
the objective function 9 is minimized 

subject to constraint equations C,: 

Cj(X ,Q)  5 0  j =  1, ..., Nc (2 )  

where the vector Q denotes the conservative flowfield 
variables and N, denotes the number of constraint 
equations. The flowfield variables are forced to satisfy 
the governing flowfield equations, 3, within a feasible 
region of the design space R: 

3 ( X ,  Q )  = 0 V X E 0 (3) 

which implicitly defines Q = f ( X ) .  The govern- 
ing flow equations are the three-dimensional Euler 
equations of a perfect gas, where the vector Q = 

For the examples under consideration here, the ob- 
[P, P% PV, pw, PEIT. 

jective function is given by 

(4) 
where C6 and C{ represent the target drag and lift 
coefficients, respectively. The weights WD and WL are 
user specified constants. This objective can be used for 
both lift-enhancement and lift-constrained drag mini- 
mization problems, and additional terms such as the 
moment coefficient can be readily included. 

Two separate approaches are used for geometry pa- 
rameterization and the definition of design variables. 
The first is an in-house CAD system based on the work 
of Charlton.20 Although not as general as a commer- 
cial CAD system, it provides a parametric geometry 
definition for configurations such as a business jet and 
incurs relatively small computational cost. We use 
this approach to evaluate and benchmark our geome- 
try communication architecture and test the individual 
modules of the optimization framework. The second 
approach is based on the master-model interface of 
CAPRI,3 which allows access to the CAD solid rep- 
resentation of most commercial CAD systems. Design 
variables are associated directly with values exposed in 
the feature tree. Geometry constraints are expressed 
parametrically within the CAD solid representation to 
avoid a-physical configurations, for example wings that 
detach from the fuselage. 

The central idea behind both approaches is to use 
a component-based geometry paradigm. Since CAD 
solid representations typically rely on the use of para- 
metric B-splines, the computation of component in- 
tersections is costly within the CAD system. In the 
present approach, the components are intersected after 
the surface discretization. This operation is performed 
efficiently as a part of the mesh generation process 
using the approach of Aftosmis et al.' We tag compo- 
nents that experience only translations and rotations 
in order to avoid unnecessary re-triangula" bions. 
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Numerical Met hod 
The details of the numerical method will be provided 

in the complete paper. Only a brief summary is given 
here. 

We cast the optimization problem as an uncon- 
strained problem by lifting the side constraints, Eq. 2, 
into the objective function J using a penalty method. 
The constraint imposed by the flowfield equations, 
Eq. 3, is satisfied at every point within the feasi- 
ble design space, and consequently these equations do 
not explicitly appear in the formulation of the opti- 
mization problem. This formulation allows a direct 
comparison between various optimization techniques 
and serves as a good starting point for the develop- 
ment of an hybrid approach. The primary optimiza- 
tion techniques are the genetic algorithm of Holst and 
Pulliam,12 and an unconstrained BFGS quasi-Newton 
algorithm coupled with a backtracking line search.16 
The flow equations are solved using the parallel steady- 
state Cartesian solver of Aftosmis et a1.l' 

We exploit coarse-grained parallelization in the im- 
plementation of each module within the optimization 
framework. For both the genetic algorithm and the 
gradient-based method, this involves constructing the 
geometry, surface discretization, and the computa- 
tional mesh in parallel and prior to any flow solutions. 
Note that the individual algorithms used for these 
tasks are serial algorithms. This is in contrast to  flow 
solutions, where we leverage the parallel efficiency of 
the flow solver. A subset of the available processors is 
used for each flow solution, such that the degradation 
in performance due to scalar 1/0 is minimized. For 
example, for the cases presented in the next section, 
we typically use a total of 64 processors and select a 
subset of 16 processors for each flow solution, which 
allows us to run four flow solutions in parallel. 

The objective function gradient is evaluated using 
central-differences. Following a base-state flow solu- 
tion, which is computed using all available processors, 
we "warm-start" the finite-difference gradient compu- 
tations. The solution-transfer algorithm is described 
by Murman et aL21 and an example is provided in the 
following section. 

Results and Discussion 
For this abstract, a relatively simple design example 

is considered that demonstrates the capability of the 
present optimization framework and introduces factors 
which will be fully discussed in the final paper. 

The design example considered is the optimiza- 
tion of a business jet wing-body configuration. The 
freestream Mach number, &Im, is set to  0.84 and the 
initial angle of attack, CY, is 4'. The design variables 
are the sweep angle of the wing and the angle of at- 
tack. The sweep angle for the initial configuration is 
16.0'. The following two computational meshes for the 

Fig. 1 
body configuration, Sweep = 16", a = 4" 

symmetric half-body configuration are used to  demon- 
strate the results: 

Mesh A Coarse mesh consisting of 237,912 cells with 

Surface pressure coefficient for initial wing- 

11,073 cut-cells on the body. 

Mesh B Medium mesh consisting of 519,062 cells 
with 41,298 cut-cells on the body. 

Note that mesh B has a roughly four times better ge- 
ometry resolution when compared with mesh A. 

The surface pressure coefficient for the initial con- 
figuration is shown in Fig. 1 using mesh B. The initial 
values of CL and CD are 0.3 and 0.0340, respectively. 
The objective function is given by Eq. 4, where we set 
Cz = 0.2 and C i  = 0.006. The weights WL and W D  are 
set to  1.0. The total wetted-surface area of the con- 
figuration is constrained to  equal the initial area using 
an additional quadratic term in Eq. 4. 

We use mesh A to examine the convergence of warm- 
started flow solutions for central-difference gradient 
computations. Figure 2 shows an example convergence 
history for a warm-started flow solution. First, 250 
multigrid cycles are performed for the baseline solution 
using a 3-level full multigrid. To prevent limiter fluctu- 
ations from contaminating the convergence of the flow 
solver, the flow solver is run in first-order mode. Next, 
we perturb the sweep design variable using a relative 
stepsize of 2 x This stepsize is chosen on the 
basis of numerical experiments that will be summa- 
rized in the final paper. The perturbed mesh has 124 
additional cells. The baseline solution is transfered to 
the new mesh and 100 additional multigrid cycles are 
performed. As shown in Fig. 2, the warm-started flow 
solution convergences to  the same level as the base- 
line solution in roughly 65 additional multigrid cycles. 
Perturbations of the angle of attack design variable 
usually converge within just 50 multigrid cycles, re- 
sulting in a saving of 2/3 in computational effort. 

We perform the optimization of the configuration 
using mesh B. The surface resolution of mesh A is 
not sufficient to ensure a smooth design landscape. 
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Multigrid Cycles 

Fig. 2 
started flow solutions (sweep design variable) 

Convergence history for baseline and warm- 

Table 1 Wallc!ock tirr-e for individual 
optimization modules (4CO MHz SGI 
Origin 3000, 32 processors) 

Module Time (s) 
Geometry Generationa 32.0 

Mesh Generationb 47.0 
Flow Solution 435.0 

Mesh Solution Transfer 7.0 
Warm-Start Flow Solution 216.6 

a includes surface creation and triangu- 
lation 
Includes component intersection, 
mesh generation, domain decomposi- 
tion, and coarse-mesh generation 

The cost of the main modules within the optimiza- 
tion framework is summarized in Table 1. The timings 
are obtained using 32 processors on a 400 MHz SGI 
Origin 3000 system and are averaged over ten design 
iterations. 

Figure 3 reveals the design landscape and compares 
the convergence of the genetic and quasi-Newton algo- 
rithms. The contour map is based on a coarse sampling 
of the design space, which causes the apparent non- 
smoothness. The number of chromosomes (population 
size at each generation) is set to 16 for the genetic 
algorithm. We assign each chromosome in the first 
generation the same initial condition, which is a sweep 
of 16” and an angle of attack of 4”, in order to make 
a more meaningful comparison of the optimization al- 
gorithms. 

Each square symbol in Fig. 3 denotes the best in- 
dividual within a generation. Approximately ten gen- 
erations (160 flow solutions) are required to reach the 
optimal solution. The delta symbols denote the best 
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Fig. 3 
netic algorithm and quasi-Newton method 

design of the quasi-Newton algorithm after each suc- 
cessful line search. The gradient method stalled after 
48 flow solutions and 96 warm-started flow solutions, 
which are used for gradient computations. Attempts 
to restart the quasi-Newton algorithm by reseting the 
approximate Hessian matrix did not improve the de- 
sign. Although the quasi-Newton algorithm descended 
into the “valley” of the design landscape within 2 itera- 
tions, its progress in this relatively shallow and curving 
valley is slow. This is not only due to the poor scaling 
of the objective function, but also due to the presence 
of noise in the evaluation of the objective function. We 
will examine this issue in the final paper. 

Comparison of the initial and final designs is shown 
in Fig. 4. The genetic algorithm converged to a design 
with CL = 0.16 and CD = 0.00636. For the quasi- 
Newton algorithm, the aerodynamic coefficients of the 
final design are CL = 0.154 and CD = 0.00634. Hence, 
in terms of performance the two designs are quite sim- 
ilar. 

Design landscape and convergence of ge- 
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