NASA Logo

NTRS

NTRS - NASA Technical Reports Server

Back to Results
Home Insulation With the Stroke of a BrushHy-Tech Thermal Solutions, LLC, of Melbourne, Florida, is producing a very complex blend of ceramic vacuum-filled refractory products designed to minimize the path of hot air transfer through ceilings, walls, and roofs. The insulating ceramic technology blocks the transfer of heat outward when applied to paint on interior walls and ceilings, and prevents the transfer of heat inward when used to paint exterior walls and roofs, effectively providing year-round comfort in the home. As a manufacturer and marketer of thermal solutions for residential, commercial, and industrial applications, Hy-Tech Thermal Solutions attributes its success to the high performance insulating ceramic microsphere originally developed from NASA thermal research at Ames Research Center. Shaped like a hollow ball so small that it looks as if it is a single grain of flour to the naked eye (slightly thicker than a human hair), the microsphere is noncombustible and fairly chemical-resistant, and has a wall thickness about 1/10 of the sphere diameter, a compressive strength of about 4,000 pounds per square inch, and a softening point of about 1,800 C. Hy-Tech Thermal Solutions improved upon these properties by removing all of the gas inside and creating a vacuum. In effect, a 'mini thermos bottle' is produced, acting as a barrier to heat by reflecting it away from the protected surface. When these microspheres are combined with other materials, they enhance the thermal resistance of those materials. In bulk, the tiny ceramic 'beads' have the appearance of a fine talcum powder. Their inert, nontoxic properties allow them to mix easily into any type of paint, coating, adhesive, masonry, or drywall finish. Additionally, their roundness causes them to behave like ball bearings, rolling upon each other, and letting the coatings flow smoothly. When applied like paint to a wall or roof, the microsphere coating shrinks down tight and creates a dense film of the vacuum cells. The resulting ceramic layer improves fire resistance, protects from ultraviolet rays, repels insects such as termites, and shields from the destructive forces of nature.
Document ID
20030099691
Acquisition Source
Headquarters
Document Type
Other
Date Acquired
August 21, 2013
Publication Date
January 1, 2003
Publication Information
Publication: Spinoff 2003: 100 Years of Powered Flight
Subject Category
Technology Utilization And Surface Transportation
Distribution Limits
Public
Copyright
Work of the US Gov. Public Use Permitted.
No Preview Available