Unstructured Adaptive Meshes: Bad for your Memory?

Rupak Biswas
Huizyu Feng
Rob Van der Wijngaart
NASA Ames Research Center

Motivation

• Do we care problems with irregular dynamical memory access? YES.
 Problems with localized error source benefit from adaptive nonuniform meshes
• Do we need this benchmark? YES.
 Certain machines perform poorly on such problems
 Parallel implementation may provide further performance improvement but is difficult:
 load balancing / data (re)distribution
 data dependence
 false and true data sharing

Application Selection

• Representative of problem class relevant to scientific computing community
• Simple without sacrificing credibility and effectiveness
 Spectral Element Method (Patera)
 Have irregular, dynamic memory accesses feature.
 Adaptive Nonconforming Mesh

Heat Transfer Problem

• Mathematical model
 \[\frac{\partial T}{\partial t} + V \cdot \nabla T = \varepsilon \nabla^2 T + S(x,t) \]
• Time splitting
 Convectio\n \[\frac{T^{n+1} - T^n}{\Delta t} = -V \cdot \nabla T^n + S(x,t^n) \quad 4th \text{ order R-K} \]
 Diffusion
 \[\frac{T^{n+1} - T^n}{\Delta t} = \varepsilon \nabla^2 T^{n+1} \quad \text{Euler implicit} \]

Heat Source Term

\[s(x,t) = \begin{cases} \cos \left(\frac{\pi}{\alpha} \left| x - x_0 - vt \right| \right) + 1 & \text{if } \left| x - x_0 - vt \right| \leq \alpha \\ 0 & \text{if } \left| x - x_0 - vt \right| > \alpha \end{cases} \]
Spectral Element Method
- High-order weighted residual technique which combines
 - Geometrical flexibility of finite element method
 - High accuracy and rapid convergence of spectral method
- Variational form (GLL Quadrature)
 \[
 (T^n - \frac{\mathbf{F}}{\Delta t}, \phi) = \left(\mathbf{B} T^n, \phi \right)
 \]
- High order function expansion

\[
T_n(x, y, z) = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=0}^{N} T_i(x) h_j(y) h_k(z), \quad x, y, z \rightarrow \xi, \eta, \zeta [-1,1]
\]

Base functions
- \(h_i(\xi) = \begin{cases}
1 & \text{if } \xi = \xi_i \\
\frac{1}{N(N+1)I_i} (1-\xi)^2 I_i(\xi) & \text{if } \xi = \xi_i \\
0 & \text{otherwise} \end{cases} \) for \(\xi \in [-1,1] \)
- \(I_i \) is the \(i \)th GLL collocation point

Elemental Discrete Equations
- \(e_j = \frac{\partial}{\partial \xi} (\xi)(\xi) \quad \forall i = \{1, \ldots, K\} \quad \forall i, j, k = \{0, \ldots, N\} \)

Global Discrete Equations
- stifness summation

Nonconforming mesh
- Why nonconforming: local area refinement
- What is nonconforming
- Problem raised by nonconforming mesh:
 Continuity across element boundary

Mortar Element Method
- Introduces a new mortar trace space:
 - Preserve local structure
 - Decouple the local/global computation
 - Efficient for parallel computation
 - Degrees of freedom are located in
 - Element interior
 - Mortar elements
Mortar Elements

- Mortar element shared by element 3 & 4

N=4

mortar elements

Mortar Element Method

- Solution on elements
 \[T_\theta(x, y, z) = \sum_{i=0}^{N} \sum_{j=0}^{N} a_{ij}(r) \phi_j(x) \phi_i(y), \quad x, y, z \rightarrow r, \beta, \delta \in [-1, 1] \]

- Solution on mortars
 \[\phi(x, y, z) = \sum_{\text{mortar } \delta} \phi_{\alpha} \phi_\beta \psi_\delta, \quad x, y, z \rightarrow \bar{x}, \bar{y} \in [-1, 1] \]

Mortar collocation points on nonconforming edges

Continuity across nonconforming element interfaces

C^0 continuity is replaced by two conditions:
1. **Vertex condition**: the solution on an element vertex equals to the solution at the corresponding mortar point.
2. **L^2 condition**: the solution difference between an element face and its related mortar elements is minimized in an integral sense.

\[\int_{\Gamma} (T_{\theta} - \phi) \psi ds = 0 \]
\[\forall I = 1, \ldots, 4 \quad \forall \psi \in P_{\delta}\{T_{\theta}\} \]

Discrete Equations

- Conforming
 \[A T^{\delta+1}_h = B T^{\delta+1}_h \]

- Nonconforming
 \[\Theta^T \Theta T^{\delta+1}_h = T^{\delta+1}_h \]

Where \(\Theta \) refers to Global transformation matrix assembled using local transformation matrix Q.

- Symmetrical
- Positive definite

Solved by CG with a Diagonal Preconditioner

Mapping for Nonconforming Faces

- Mapping direction
- Intermediate mortar elements
- Q^T for reverse mapping from element to mortar

QT: For reverse mapping from element to mortar
Mesh Adaptation Procedure
- Perform adaptation every \(m \) time steps
- Refine elements close to high error region: elements have overlap with the heat source
- Coarsen the grid elsewhere if possible

Mesh Adaptation Restrictions
- The maximal refinement levels/the minimal element size
- Neighboring elements can not differ by more than one level of adaptation.

Sample problem

Adaptation in 3-D (h-type)

Time stepping procedure

Initial & Boundary condition
- Initial grid \([0,1]^3\)
- Initial temperature \(T=0 \)
- Initial heat source location \((0.30,0.28,0.28)\)
- Heat source strength \(\beta = 10 \)
- Heat source movement / Velocity field \(v = (1,1,1) \)
- Boundary condition: \(T=0 \) @ all faces
Problem parameters and Verification

\[\int T d\Omega \] at the last time step

<table>
<thead>
<tr>
<th>Class</th>
<th>Class</th>
<th>(R_{\text{max}})</th>
<th>(\Delta t)</th>
<th>(\alpha)</th>
<th>Adaptation interval</th>
<th>Steps</th>
<th># of elements</th>
<th>(\int T d\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>2</td>
<td>5.0E-2</td>
<td>0.04</td>
<td>50</td>
<td>120</td>
<td>2,769425933740064644</td>
<td></td>
<td></td>
</tr>
<tr>
<td>W</td>
<td>4</td>
<td>2.5E-2</td>
<td>0.04</td>
<td>40</td>
<td>150</td>
<td>148</td>
<td>5,950718534782709644</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>1.25E-3</td>
<td>0.08</td>
<td>35</td>
<td>150</td>
<td>154</td>
<td>6,69094626038961314E-4</td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>3.25E-4</td>
<td>0.075</td>
<td>35</td>
<td>150</td>
<td>2010</td>
<td>6,71673132349429194E-4</td>
<td></td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>3.125E-4</td>
<td>0.075</td>
<td>35</td>
<td>150</td>
<td>8070</td>
<td>3,36250835344268614E-4</td>
<td></td>
</tr>
</tbody>
</table>

Current Status

- Benchmark Design: http://www.nas.nasa.gov/Software/NPB
- Sequential implementation:
 - under construction
- Parallel implementation:
 - Space filling curve to handle the load balance

Acknowledgments

- This work has been supported by NASA Grant NAG 2-1456, Cooperative Agreement NCC 2-1323.
- Partial support from GWU Center for the Study of Combustion and the Environment.