Unstructured Adaptive Meshes: Bad for your Memory?
Rupak Biswas
Huiyu Feng
Rob Van der Wijngaart
NASA Ames Research Center

Motivation
- Do we care problems with irregular dynamical memory access?
 YES.
 Problems with localized error source benefit from adaptive nonuniform meshes
- Do we need this benchmark?
 YES.
 Certain machines perform poorly on such problems
 Parallel implementation may provide further performance improvement but is difficult:
 - load balancing / data (re)distribution
 - data dependence
 - false and true data sharing

Background
- NAS Parallel Benchmarks (NPB, 1991)
 http://www.nasa.gov/Software/NPB

<table>
<thead>
<tr>
<th>Benchmark</th>
<th>CG</th>
<th>SP</th>
<th>SI</th>
<th>MA</th>
<th>PT</th>
<th>LU</th>
<th>SP</th>
<th>SP</th>
<th>UA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Memory access</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>Dynamic scientific acc.</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>

- Lack in the area of irregular and dynamically changing memory access

Application Selection
- Representative of problem class relevant to scientific computing community
- Simple without sacrificing credibility and effectiveness
 - Stylized heat transfer problem
 - Can be load balanced for range of processor sets with little communication and remapping
 - Spectral Element Method (Patera)
 - Have irregular, dynamic memory accesses feature.
 - Adaptive Nonconforming Mesh

Heat Transfer Problem
- Mathematical model
 \[\frac{\partial T}{\partial t} + V \cdot \nabla T = \varepsilon \nabla^2 T + S(x,t) \]
- Time splitting
 \[\frac{T^{n+1} - T^n}{\Delta t} = -V \cdot \nabla T^n + S(x,t^n) \]
 4th order R-K
 \[\frac{T^{n+1} - T^n}{\Delta t} = \varepsilon \nabla^2 T^{n+1} \]

Heat Source Term
\[s(x,t) = \begin{cases}
\beta \left(\cos \left(\frac{\pi}{\alpha} \frac{x - x_0 - vt}{\alpha} \right) + 1 \right) & \text{if } \|x - x_0 - vt\| \leq \alpha \\
0 & \text{if } \|x - x_0 - vt\| > \alpha
\end{cases} \]
Spectral Element Method

- High-order weighted residual technique which combines
 - Geometrical flexibility of finite element method
 - High accuracy and rapid convergence of spectral method
- Variational form (GLL Quadrature)
 \[
 (T^m, v) = (\mathbf{G}_{m} \mathbf{G}_{m}^{T}, v)
 \]
- High order function expansion
 \[
 T_i(x, y, z) = \sum \sum \sum \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} h_i(r) h_j(s) h_k(t), -1 < x, y, z < 1
 \]

Base functions

\[
T_i(x, y, z) = \sum \sum h_i(r) h_j(s) h_k(t), -1 < x, y, z < 1
\]

Elemental Discrete Equations

\[
\sum b_{i}^{j} \sum b_{i}^{k} \sum f_{i}^{k} = \frac{\partial}{\partial \xi_{i}} h(x, y, z)
\]

Global Discrete Equations

\[
\sum \sum \sum p_{i}^{j} \sum p_{i}^{k} \sum f_{i}^{k} = \int_{-1}^{1} \int_{-1}^{1} \int_{-1}^{1} \mathbf{G}_{m} \mathbf{G}_{m}^{T} \mathbf{G}_{m} \mathbf{G}_{m}^{T}
\]

Nonconforming mesh

- Why nonconforming: local area refinement
- What is nonconforming
- Problem raised by nonconforming mesh: Continuity across element boundary

Mortar Element Method

Introduces a new mortar trace space:
- Preserve local structure
- Decouple the local/global computation
- Efficient for parallel computation
- Degrees of freedom are located in
 - Element interior
 - Mortar elements

\[
\text{Stiffness summation}
\]

\[
\sum \mathbf{A} \mathbf{T} = \sum \mathbf{B} \mathbf{T} \rightarrow AT = BT
\]
Mortar Elements

- Mortar Element Method
 - Solution on elements
 \[T_h(x, y, z) = \sum_{\alpha, \beta} \sum_{k, m} \phi_{k,m}^\alpha h_{k,m}(\alpha)(\beta), \quad x, y, z \rightarrow r, s, t \in [-1,1] \]
 - Solution on mortars
 \[\phi(x, y, z) = \sum_{\alpha, \beta} \phi_{k,m}^\alpha h_{k,m}(\alpha)(\beta), \quad x, y, z \rightarrow \tilde{p}, \tilde{q}, \tilde{r} \in [-1,1] \]

- Continuity across nonconforming element interfaces
 - \(C^0 \) continuity is replaced by two conditions:
 1. Vertex condition: the solution on an element vertex equals to the solution at the corresponding mortar point.
 2. \(L^2 \) condition: the solution difference between an element face and its related mortar elements is minimized in an integral sense.
 \[\int_{\Gamma} (T \left|_{\Gamma} \right. - \phi) v ds = 0 \]
 \[\forall I = 1, ..., N, \forall v \in P_{h,2}(\Gamma) \]

- Discrete Equations
 - Conforming
 \[A^{T_h}_{h+1} = B^{T_h}_{h+1} \]
 - Nonconforming
 \[\Theta^{T_h}_{h+1} = \Theta^{T_h}_{h+1} \]

Where \(\Theta \) refers to Global transformation matrix assembled using local transformation matrix Q.
- Symmetrical
- Positive definite
Solved by CG with a Diagonal Preconditioner
Mesh Adaptation Procedure
- Perform adaptation every \(m \) time steps
- Refine elements close to high error region: elements have overlap with the heat source
- Coarsen the grid elsewhere if possible

Mesh Adaptation Restrictions
- The maximal refinement levels/the minimal element size
- Neighboring elements can not differ by more than one level of adaptation.

Sample problem

Adaptation in 3-D (h-type)

Time stepping procedure

Initial & Boundary condition
- Initial grid \([0,1]^3\)
- Initial temperature \(T=0 \)
- Initial heat source location \((0.30,0.28,0.28)\)
- Heat source strength \(\beta = 10 \)
- Heat source movement / Velocity field \(\mathbf{v} = (1,1,1) \)
- Boundary condition: \(T=0 @ \) all faces
Problem parameters and Verification

\[\int_T d\Omega \] At the last time step

<table>
<thead>
<tr>
<th>Class</th>
<th>(R_{\text{max}})</th>
<th>(\Delta t)</th>
<th>(\alpha)</th>
<th>Adaptation interval</th>
<th>Steps</th>
<th># of elements</th>
<th>(\int_T d\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3</td>
<td>5.0E-2</td>
<td>0.04</td>
<td>40</td>
<td>59</td>
<td>120</td>
<td>2.76843203413064E-4</td>
</tr>
<tr>
<td>W</td>
<td>4</td>
<td>2.5E-2</td>
<td>0.04</td>
<td>40</td>
<td>150</td>
<td>148</td>
<td>3.550718753478270E-4</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>1.25E-3</td>
<td>0.06</td>
<td>35</td>
<td>150</td>
<td>154</td>
<td>6.609086260896184E-4</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>6.25E-4</td>
<td>0.076</td>
<td>35</td>
<td>150</td>
<td>2010</td>
<td>6.716731221321944E-4</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>3.125E-4</td>
<td>0.076</td>
<td>35</td>
<td>150</td>
<td>8079</td>
<td>3.362058339343428E-4</td>
</tr>
</tbody>
</table>

Current Status

- Benchmark Design: http://www.nas.nasa.gov/Software/NPB
- Sequential implementation:
 - under construction
- Parallel implementation:
 - Space filling curve to handle the load balance

Acknowledgments

- This work has been supported by NASA Grant NAG 2-1456, Cooperative Agreement NCC 2-1323.
- Partial support from GWU Center for the Study of Combustion and the Environment.