Unstructured Adaptive Meshes: Bad for your Memory?

Rupak Biswas
Huilyu Feng
Rob Van der Wijngaart
NASA Ames Research Center

Motivation

- Do we care problems with irregular dynamical memory access? YES.
 - Problems with localized error source benefit from adaptive nonuniform meshes
- Do we need this benchmark? YES.
 - Certain machines perform poorly on such problems
 - Parallel implementation may provide further performance improvement but is difficult:
 - load balancing / data (re)distribution
 - data dependence
 - false and true data sharing

Heat Transfer Problem

- Mathematical model
 \[
 \frac{\partial T}{\partial t} + V \cdot \nabla T = \epsilon \nabla^2 T + S(x,t)
 \]
- Time splitting
 Convective: \(\frac{T^{n+1} - T^n}{\Delta t} = -V \cdot \nabla T^n + S(x,t^n) \) 4th order R-K
 Diffusive: \(\frac{T^{n+1} - T^n}{\Delta t} = \epsilon \nabla^2 T^{n+1} \) Euler implicit

Application Selection

- Representative of problem class relevant to scientific computing community
- Simple without sacrificing credibility and effectiveness
 - Stabilized heat transfer problem
 - Can be load balanced for range of processor sets with little communication and remapping
 - Spectral Element Method (Patera)
 - Have irregular, dynamic memory accesses feature.
 - Adaptive Nonconforming Mesh

Heat Source Term

\[
s(x,t) = \begin{cases}
 \beta \cos\left(\pi \frac{x - x_0 - vt}{\alpha} \right) + 1 & \text{if } \|x - x_0 - vt\| \leq \alpha \\
 0 & \text{if } \|x - x_0 - vt\| > \alpha
\end{cases}
\]
Spectral Element Method

- High-order weighted residual technique which combines
 - Geometrical flexibility of finite element method
 - High accuracy and rapid convergence of spectral method
- Variational form (GLL Quadrature)
 \[
 (\overline{T}^{\text{ext}} - \overline{F}, \varphi) = (\overline{B} \overline{T}^{\text{ext}}, \varphi)
 \]
- High order function expansion
 \[
 T_n(x, y, z) = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=0}^{N} T_i^j h_i(x) h_j(y) h_k(z), \quad x, y, z \rightarrow \xi, \eta, \zeta \in [-1, 1]
 \]

Base functions

- Element $T_n(x, y, z) = \sum_{i=0}^{N} \sum_{j=0}^{N} \sum_{k=0}^{N} T_i^j h_i(x) h_j(y) h_k(z), x, y, z \rightarrow \xi, \eta, \zeta \in [-1, 1]$

Elemental Discrete Equations

\[
\frac{\partial}{\partial \xi} \left(\sum \sum \sum \frac{\partial}{\partial \xi} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) + \frac{\partial}{\partial \eta} \left(\sum \sum \sum \frac{\partial}{\partial \eta} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) + \frac{\partial}{\partial \zeta} \left(\sum \sum \sum \frac{\partial}{\partial \zeta} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}} = \left(\sum \sum \sum \frac{\partial}{\partial \xi} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}}
\]

\[
\frac{\partial}{\partial \xi} \left(\sum \sum \sum \frac{\partial}{\partial \xi} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) + \frac{\partial}{\partial \eta} \left(\sum \sum \sum \frac{\partial}{\partial \eta} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) + \frac{\partial}{\partial \zeta} \left(\sum \sum \sum \frac{\partial}{\partial \zeta} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}} = \left(\sum \sum \sum \frac{\partial}{\partial \xi} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}}
\]

- Global Discrete Equations

\[
\sum \sum \sum \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}} = \left(\sum \sum \sum \frac{\partial}{\partial \xi} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}} - \frac{\partial}{\partial \xi} \left(\sum \sum \sum \frac{\partial}{\partial \xi} \right) \left(\begin{array}{c} \varphi_i \varphi_j \varphi_k \end{array} \right) \varphi_{\text{ext}}
\]

Nonconforming mesh

- Why nonconforming: local area refinement
- What is nonconforming
 - Problem raised by nonconforming mesh: Continuity across element boundary

Mortar Element Method

- Introduces a new mortar trace space:
 - Preserve local structure
 - Decouple the local/global computation
 - Efficient for parallel computation
 - Degrees of freedom are located in
 - Element interior
 - Mortar elements
Mortar Elements

- Mortar element shared by element 3 & 4

N=4

Mortar Element Method

- Solution on elements
 \[T_i(x, y, z) = \sum_{l=1}^{N} \sum_{j=1}^{N} T_l(x) h_j(y) A_{ij} h_i(z), \quad x, y, z \rightarrow r, s, t \in [-1,1] \]

- Solution on mortars
 \[\psi(x, y, z) = \sum_{l=1}^{N} \phi_{l} h_{l}(y) h_{l}(z), \quad x, y, z \rightarrow \hat{r}, \hat{s}, \hat{t} \in [-1,1] \]

Mapping for Nonconforming Faces

- Mapping direction from element to mortar.

Mortar collocation points on nonconforming edges

Continuity across nonconforming element interfaces

\(C^0 \) continuity is replaced by two conditions:

1. **Vertex condition**: the solution on an element vertex equals to the solution at the corresponding mortar point.
2. **L2 condition**: the solution difference between an element face and its related mortar elements is minimized in an integral sense.

\[\int_{r_{l+1}} (T_1 - \psi) \psi ds = 0 \]

\[\forall l = 1, \ldots, 4 \quad \forall \psi \in P_{l+1}(T^1) \]

Discrete Equations

- Conforming
 \[A T_{h}^{T+1} = B T_{h}^{T+1} \]

- Nonconforming
 \[\Theta^T \Theta T_{h}^{T+1} = \Theta^T B T_{h}^{T+1} \]

Where \(\Theta \) refers to Global transformation matrix assembled using local transformation matrix \(Q \)

- Symmetrical
- Positive definite

Solved by CG with a Diagonal Preconditioner.
Mesh Adaptation Procedure

- Perform adaptation every m time steps
- Refine elements close to high error region: elements have overlap with the heat source
- Coarsen the grid elsewhere if possible

Mesh Adaptation Restrictions

- The maximal refinement levels/the minimal element size
- Neighboring elements can not differ by more than one level of adaptation.

Sample problem

Adaptation in 3-D (h-type)

Time stepping procedure

- Move the source
- Convection (RK4)
- Diffusion (PCG)
- Step mod $m = 0$?
- Yes
- Mesh adaptation
- Solution interpolation
- No

Initial & Boundary condition

- Initial grid $[0,1]^3$
- Initial temperature $T=0$
- Initial heat source location $(0.30, 0.28, 0.28)$
- Heat source strength $\beta = 10$
- Heat source movement / Velocity field $\mathbf{v} = (1,1,1)$
- Boundary condition: $T=0$ @ all faces
Problem parameters and Verification

\[\int_{\Omega} d\Omega \quad \text{At the last time step} \]

<table>
<thead>
<tr>
<th>Class</th>
<th>(R_{\text{max}})</th>
<th>(\Delta t)</th>
<th>(\alpha)</th>
<th>Adaptation interval</th>
<th>Step size</th>
<th>(#) of elements</th>
<th>(\int_{\Omega} d\Omega)</th>
</tr>
</thead>
<tbody>
<tr>
<td>S</td>
<td>3</td>
<td>5.0E-2</td>
<td>0.04</td>
<td>40</td>
<td>50</td>
<td>120</td>
<td>2.7641239037406E-4</td>
</tr>
<tr>
<td>W</td>
<td>4</td>
<td>2.5E-2</td>
<td>0.04</td>
<td>40</td>
<td>150</td>
<td>148</td>
<td>3.9507185347896E-4</td>
</tr>
<tr>
<td>A</td>
<td>5</td>
<td>1.25E-3</td>
<td>0.06</td>
<td>35</td>
<td>150</td>
<td>154</td>
<td>6.609062066961E-4</td>
</tr>
<tr>
<td>B</td>
<td>6</td>
<td>6.25E-4</td>
<td>0.076</td>
<td>35</td>
<td>150</td>
<td>2010</td>
<td>6.7167313221491E-4</td>
</tr>
<tr>
<td>C</td>
<td>7</td>
<td>3.125E-4</td>
<td>0.076</td>
<td>35</td>
<td>150</td>
<td>8079</td>
<td>3.3620583394423E-4</td>
</tr>
</tbody>
</table>

Current Status

- Benchmark Design: http://www.nas.nasa.gov/Software/npb
- Sequential implementation:
 - under construction
- Parallel implementation:
 - Space filling curve to handle the load balance

Acknowledgments

- This work has been supported by NASA Grant NAG 2-1456, Cooperative Agreement NCC 2-1323.

- Partial support from GWU Center for the Study of Combustion and the Environment.