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ABSTRACT 

This paper extends the analysis of acoustic radiation 
from the source model representing spatially-growing 
instability waves in a round jet at high speeds. 
Compared to the previous work in Refs. (1-2], a 
modified approach to the sound source modeling is 
examined that employs a set of solutions to linearized 
Euler equations. The sound radiation is then calculated 
using an integral surface method. 

INTRODUCTION 

The current work provides the first preliminary test of a 
modified approach to modeling the compressible jet 
sound source and its acoustic radiation. The approach is 
considered an extension to the method originally 
developed in Ref. [1] and based on the integral energy 
approach. The method was later applied to jet noise 
predictions in Ref. [2]. 

The integral energy approach uses the assumption that 
the unsteady fluctuations in the noise-producing jet 
mixing layer are dominated by coherent, large-scale 
structures. The coherent structure is modeled by 
splitting the flow into three components, a time-average 
mean component, a large-scale wave-like coherent 
component, and a fine-scale random turbulence 
component. The nonlinear effects are accounted by 
considering interaction among various scales of motion. 
In particular, the kinetic energy equations (obtained 
from time and phase averaging of the full compressible 
Nervier-Stokes equations) are integrated across the jet 
to produce a set of ordinary differential equations 
describing interactions among the three flow 
components. Such equations are then solved to yield the 
development of each flow component, further used as a 
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source for acoustic radiation predictions. In the 
previous work by Dahl & Mankbadi [1] , the coherent 
structure profiles were modeled using the locally 
parallel linear stability theory. The predicted shapes of 
the coherent structures were then used to compute the 
energy integrals governing the mean kinetic energy 
transformations and its transfer to the coherent 
structw·es. Once the energy integrals are computed, the 
nonlinear development of the instability wave 
amplitude can be determined from the solution of 
nonlinear differential equations. 

In the present work, the linearized Euler equations are 
used instead of the instability wave equations to model 
the radial profiles. This has the advantages that: (i) it 
accounts for the fully non-parallel flow defects, (ii) by 
using a time-marching code, disturbances of multi
frequency components can be directly calculated 
numerically rather than considering only a single
frequency disturbance, and (iii) since the normal mode 
decomposition is not used in deriving the LEE 
equations, disturbances may be of general nature, and 
not necessarily the Kelvin-Helmholtz modes. 

The following discussion outlines the strategy for the 
modified sound source modeling which is then used in 
the preliminary test to obtain the jet near field, followed 
by application of an integral surface method to predict 
the source acoustic radiation pattern. 

SOURCE MODEL FORMULA TION 

A high-Reynolds number turbulent jet issuing from a 
nozzle of diameter D in a still air is considered. The jet 
is assumed shock-free, and is excited by a single
frequency instability wave of Strouhal number 
St=/DIU. The density and the velocities are normalized 
by the jet exit density and velocity at the centerline. 

American Institute of Aeronautics and Astronautics 

This is a preprint or reprint of a paper intended for presentation at a 
conference. Because changes may be made before formal 
publication, this is made available with the understanding that it will 
not be cited or reproduced without the permission of the author. 



In Ref. [1], the development of large-scale, coherent, 
wave-like structure profiles in the compressible round 
jet was obtained using the integral energy method with 
the locally-parallel linear stability theory. The results 
were presented as single-frequency, single-azimuthal 
number modes which, for the pressure perturbation, 
take the form, 

p '(x, r,rp,t ) = p(r)A(x) exp( i I adx - i{J)t)cos(nrp) + cc, (1) 

where A denotes the transversal shape function of the 
transversal coordinate r at a given location along the jet 
(also, the eigenfunctions corresponding to a given nand 
CD), n is the azimuthal wave number indicating the 
rotation around the jet centerline, ex is the axial wave 
number, (J) is the excitation frequency, and cc denotes 

the complex conjugate. A(x) is the complex amplitude 
function of x which can be determined from a nonlinear 
analysis once the linear evolution is obtained. 

Figure 1 illustrates results obtained in Ref. [1] for the 
predicted development of the jet instability wave 
amplitude function using the linear (using locally
parallel stability theory) and nonlinear analyses, for 
St=O.2, n=±l, and the jet Mach numbers M=O.9, 1.2, 
1.5, and 1.8. The Figure shows the development of the 
pressure wave magnjtude along the nozzle lipline 
(r=D/2). It is observed that the nonlinear effects limit 
the amplitude growth and shift the peak amplitude 
towards the jet nozzle exit. These effects become more 
pronounced as the Mach number increases. 
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Figure 1. Axjal variation of the pressure magnitude for 
the jet instability wave with linear (dashed line) and 
nonlinear (solid line) amplitude development: r=D/2, 
St=O.2, n=1 , (a) M=O.9, (b) M=1.2, (c) M=1.5, (d) 
M=1.8 . 
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In what follows, an alternative approach to calculating 
the linear profile of the jet instability wave is discussed. 

LEE APPROACH 

In the linearized Euler equations (LEE) approach (e.g. , 
Ref. [3]), the total flowfield is split into a time-averaged 
mean flow and a time-dependent disturbance field, with 
the latter considered a small-amplitude perturbation of 
the mean flow. Starting with the full Navier-Stokes 
equations in the conservative form, neglecting 
viscosity, and linearizing about the mean flow Cartesian 
components (U, V, W, p, E), the linearized Euler 
equations can be obtained in the form 

(2) 

where the perturbation solution vector 

QA r::>. A A A A]T 
= IJ.I, u, v, W, e 

is related to the primitive disturbance field variables by 

(a , 0, w,e,p,p) = [(pur (pv)', (p w)', (pe)', p, p']' 
the flux vectors are 

A 

U 

A 

F= av+vu-pUV 

A 

G= 

aw+wu-pUW 
(p + e''p + (a - pU)E 

A 

V 

av +vU - pUV 
P + 2vV - pV2 

vw +wV -pVW 
(p +e)V + (v- pV)E 
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A 

W 

uW+wU-pUW 
A 

H = vW + wV - p VW 

p+2WW _pW 2 
(p+e)W +(w- pW)E 

the non-homogeneous term is 

o 
o 

S =! p+2wW - pW 2 
r 

vW+wV-pVW 

o 
the disturbance and mean flow pressures are determi ned 
from 

p = (r-1le -(au + vV + ww)+~ p(U 2 + v2 + W2)] 

and 

P = (r - l)p [ E - ~ (U 2 + V 2 + W 2 )] , 

respectively. 

With no particular assumptions made regarding the 
form of the disturbance, LEE can be used for predicting 
both the flow and the acoustic di sturbances. 
Importantly, no boundary layer type approx imation is 
imposed on the LEE, and therefore, it can be used for 
predicting the unsteady flowfield of nonparallel mean 
flows. However, nonlinear effects are completely 
absent in LEE, and the mean flow is assumed to be 
given by some other means. In application to the jet 
instability wave linear analysis, the jet mean flow data 
is obtained from a Parabolic Navier-Stokes (PNS) 
solver by Dahl [4]. 

The current version of the LEE code [5] uses a 
MacCormack-type solver that is formally 4th order 
accurate both in time and space. Its derivation 
employed Tam and Webb' s DRP methodology [6] . 
Boundary condition treatment is the crucial step in the 
LEE solver implementation, developed to avoid any 
non-phys ical osci ll ations in the domain. The employed 
grid layout is depicted in Figure 2. At the inflow (left) 
boundary, two conditions are implemented. The first, 
applied to hydrodynamic flow disturbances at rlD<2, is 
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the Thompson boundary condition [7]; the second, 
applied for rlD>2, is the conventional acoustic radiation 
boundary condition, also implemented at the upper 
boundary of the domain. At the outflow (right) 
boundary, Tam and Webb 's [6] condition is applied. 
The LEE code is written in a quasi-curvilinear form, 
allowing stretching both in radial and axial directions. 
All axial stations have the same radial point distribution 
and vice versa (i n Figure 2). Thus, the nozzle exit 
plane at the inflow boundary effectively determines the 
global grid layout. More details on the numerical 
implementation can be found in Ref. [5]. 

The test calculation was performed fo r a cold jet with 
exit Mach number M=1.8, excited with a helical mode 
n=±l at a single frequency corresponding to Strouhal 
number St=O.2 . The PNS solver results were 
interpolated (and extrapolated) to the stretched LEE 
grid with dimensions (Nx*Nr)=(25 1*171) over the 
domai n (Lx *Lr)=(60*35) (all lengths here and 
everywhere are normalized by D!2). In particular, the 
mean flow was uniformly extrapolated in the radial 
direction beyond the PNS solver computational domain 
to the upper LEE solver boundary. The LEE code was 
run with global time stepping corresponding to 
CFL=lA, until convergence criteria were sati sfied. 

Figure 3 presents a shaded contour plot for the imported 
mean flow variable pU over the LEE computational 
domain. Figure 4 provides illustration for the 
instantaneous unsteady pressure contours obtai ned from 
the LEE solver in the test run. The latter result 
representing obtained from LEE acoustic radiation 
pattern wi ll be re-examined below in comparison with 
another sound prediction technique. In the jet near field, 
an FFf of the unsteady flowfield solution produced a 
linear profi le of the instability mode as shown in Figure 
5 for the real part of the unsteady pressure wave along 
the nozzle lipline. 
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Figure 2. Grid over LEE computational domain. 
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Figure 3. Mean flow CpU variable shown) imported in 
the LEE computations from the PNS so lver [4] . 

Figure 4. LEE solution for the instantaneous unsteady 
pressure contours for the test case. 
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Figure 5. LEE solution for the jet instability wave 
acoustic ource (Re[p] is shown at r=DI2). 
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NONLINEAR SOURCE CORRECTION 

Once the linear profile of the instability mode is 
obtained from the LEE solver, a nonlinear analysis of 
the complex amplitude function in Eq . (1) can be 
conducted through construction of the energy integrals 
and solutions to a nonlinear set of ordinary differential 
equations as indicated in Ref. [1] . A detailed analysis of 
this step is the subject of the future work. Here, just to 
illustrate the concept for our test case above, an 
assumption will be employed that the nonlinear 
correction function in this case would approximately 
correspond to the ratio of the linear and nonlinear 
amplitudes of the sound source obtained in Ref. [1] and 
presented in Figure led), with the same drop in 
maximum (saturation) amplitude. This leads to the 
variation of the pressure magnjtude for the source as 
illustrated in Figure 6. 
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Figure 6. Pressure magnitude for LEE acoustic source 
(solid line) and its (assumed for the test) nonlinear 
correction (dashed line) along the Kirchhoff surface. 

FORMULA TION FOR SOUND PREDICTION 

By substituting the nonlinear amplitude function 
obtained above into Eq. (1), the formulation for the 
sound source of a jet excited with a single-frequency, 
single-azimuthal number helical mode is completed . 
The far field acoustic radiation from this source is 
obtained using a Surface-Integral Formulation (SIF) 
[8]. This method is based on evaluating the near-field 
unsteady flow data on a control surface surrounding the 
nonlinear flow region, and propagating the unsteady 
flow information to the far field through the linear flow 
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region. The method belongs to a family of Kirchhoff
surface methods [9] but is modified from the classical 
formulation in order to eliminate the need to estimate 
pressure derivatives on the control surface. In 
application to the present study, a control surface is 
considered as a cylinder of radius a and length L 
enclosing all the jet acoustic sources, as illustrated in 
Figure 7. It will be further assumed that the mean flow 
outside the cylinder is stagnant, and thus the acoustic 
disturbances are described by the simple wave equation 
in the cylindrical coordinates: 

(3) 

Since the jet pressure modes (1) are excited with a 
specified freq uency w, it is convenient to transform the 
formu lation to the frequency domain by applying the 
Fourier transform to (3) . The integral solution is then 
obtained in the fo rm, 

~ ap aG] p(X,m)=- G - -p- dS an an (4) 

where p (X, (() ) is the acoustic pressure at the 

observation point X = (X, R, </J), G is the Green 

function, n is the normal to the surface S , and p(x, OJ) 
is the pressure distribution on the control surface at a 
point x = (x, r, ¢) . 

----j'-----------------------

--- +---- l----IL~ 
Figure 7. Cyl inder used for validation of numerical 
codes. 

The approach of the SIF formulation is to seek a 
solution such that G = 0 on the control surface r = a, 
using the method of images. Morse and Ingard [10] 
give the Green fu nction for emjssion fro m a cylinder of 
radius a at a point R, for R > a, as 

where 
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and 

for kx < k 

where £", is Neumann constant, c". = 1 for m = 0, and c". 
= 2 for m > O. Jm is the mth order Bessel function, Hm is 
the mth order Hankel function of the first kind, and kx is 
the wavenumber in the x-direction of the acoustic 
di sturbance at the surface. For the image of the point R 
at a2/R, the Green function is 

(6) 

Adding the two solutions (5) and (6), one obtains, after 
algebraic manipulations, the required Green function 
which satisfies the control surface condition G(r = a) = 
0, 

H'(u)J(U)- J'(u)H(u) =~, 
7rU 

one also obtains, 

aG 1 III=~ 
-=-2 I clllcos[ m(¢-<l»Jx or 47r a 111=0 j ik.(xo-x) H ili (qR) dk 

_ e H ili (qa) x 

(8) 

With G = 0 at the control surface, the integral solution 
reduces to 

f dG 
p(X,R,<l» = Paradxd¢ (9) 
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Substituting, the acoustic field is obtained as 

1 m=_ 

p ( X, R, <f> ) = - 2 If P (x, a, ¢) L: em cos [ m (¢ - <f> ) ] 
41l m=O 

- . H ( R) 
X f e 'kx( X-x) m q dk dxd¢ 
_ Hm(qa) x 

(10) 

The formula (10) describes the relation between the 
acoustic far-field and the pressure distribution on a 
cylindrical control surface surrounding the jet noise 
sources. To perform the volume integration, the surface 
pressure on the cylindrical surface is taken as 

n=oo 

p(x,a,¢,w) = LPn (x,a,m)cosn¢, (11) 
n=O 

and the integration over the azimuthal direction is then 
performed to obtain the final formula, 

p(X,R,'P,w) = 

1 m=oo L 

- L cosm'P f Pm (x,a,w) X , (12) 
27r ",=0 0 k J eik.(X -X) H", (qR) dkxdx 

-kL Hm (qa) 

where k L is selected as the Nyquist limit, kL=7fiiJx, and 
iJx is the spacing between the x-points on the cylinder. 
The order of integration in (12) can be reversed. In Ref. 
[2], the SIP formulation was numerically validated 
against the point source test and used for jet noise 
predictions. For the numerical implementation, the 
frequency-domain analysis is carried out by first 
factoring out time t in (1). The contribution from the 
cylinder bases is not taken into account Uustified if the 
source decays enough before it reaches the base 
boundary) , and the ratio Va should be large enough for 
accurate predictions. In all the computations, the 
number of points per wavelength in each direction is at 
lea t 12, thus providing an error of less then 0.5 % 
according to estimates in [9]. The code is very fast and 
requires only seconds of CPU time per observer point 
on the PC computer. 

TEST CASE RESULTS 

The SIP formulation is applied here to predict the 
acoustic radiation pattern produced by the coherent cold 
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jet structure described by (1). As in the LEE test 
predictions above, a helical mode with n=±l is excited 
with Strouhal number St=O.2, and the acoustic response 
is calculated for the jet Mach number M=1.8. 

In the SIP computations, the right boundary of the 
control surface should be taken far enough so that the 
sound source has practically decayed and no 
contribution from the base is expected. Since the 
original source data for the linear amplitude 
development is produced from LEE calculations, the 
right base boundary is coincident with the right outflow 
boundary in tbe LEE computations. In the SIP code, the 
source data is read at uniformly discretized axial 
locations, and produced by interpolating from a non
uniform mesh used for the linear source predictions in 
the LEE code. A sensitivity study fo r the placement of 

the control surface revealed that the proper control 
surface radius was stable in all test calculations and 
stayed in the range of r/(DI2)=1.5 .. . 2.0. Below this 
limit, the source is not adequately enclosed by the 
control surface; and for larger values of rs, the source 
has sufficiently decayed so the data input is not 
adequate for accurate acoustic predictions. In that case, 
as rs further increases, the results usually show 
decreasing values of the acoustic pressure amplitude at 
a fixed far-field observer location. 

Figure 8. SPL contours for linear source amplitude. 

Figures 8 and 9 illustrate the sound pressure level (SPL) 
contours calculated for the linear and nonlinear acoustic 
source wave amplitude development, respectively. As 
expected, numerical results showed that the acoustic 
response was much higher in the linear case. 

The linear source acoustic predictions should also be 
comparable with direct far-field LEE calculations. 
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Figure 9. SPL contours for nonlinear source amplitude. 

Figure 10. SPL contours from LEE predictions. 

However, although sound directivities are close in both, 
the SPL contours from the LEE predictions illustrated 
in Figure 10 (and corresponding to results in Figure 4) 
indicated different magnitudes of sound intensity 
compared to SIF predictions, with difference increasing 
at larger distances from the jet centerline (hence, LEE 
predictions show faster decay). This may indicate that, 
although accurate enough for sound source near-field , 
the LEE solution has not yet been completely 
established (converged) throughout the domain. The 
differences will be further investigated in the future 
work. 

SUMMARY 

A first test of a modified approach to modeling the 
compressible jet sound source and its acoustic radiation 
was presented. The approach is viewed as an extension 
of the method originally developed in Ref. [1] and 
based on the integral energy approach. In contrast, the 
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linearized Euler equations were used instead of the 
instability wave equations to model the radial profiles. 
In general, this approach has the advantages that: (i) it 
accounts for the fully non-parallel flow defects, (ii) by 
using a time-marching code, disturbances of multi
frequency components can be directly calculated 
numerically rather than considering only a single
freq uency disturbance, and (iii) since the normal mode 
decomposition is not used in deriving the LEE 
equations, disturbances considered can be of general 
nature, and not necessarily the Kelvin-Helmholtz 
modes. Steps in the source modeling procedure were 
discussed and illustrated for a test case by applying an 
integral surface method to predict the source acoustic 
radiation pattern. 

ACKNOWLEDGEMENTS 

Dr. Golubev wou ld like to acknowledge the support 
from the ERAU Research and Professional 
Development Funds in this work. 

REFERENCES 

I . Dahl , M.D. and Mankbadi, R.R., "Analysis of Three
Dimensional, Nonlinear Development of Wave-Like 
Structure in a Compressible Jet," AIAA 2002-2451, 2002. 
2. Golubev, V.V., Mankbadi , R.R. , and Dahl, M.D. , 
"Prediction of the Acoustic Field Associated with Instability 
Wave Source Model for a Compressible Jet," AIAA 2002-
2455, 2002. 
3. Mankbadi , R.R. , Hixon, D.R., Shih, S.-H., and Povinelli , 
L.A., "Use of Linearized Euler Equations for Supersonic Jet 
Noise Prediction," AJAA J., Vol. 36, pp. 140-147, 1998. 
4. Dahl , M.D., "The Aeroacoustics of Supersonic Coaxial 
Jets," NASA TM 106782, 1994. 
5. Hixon, R. , Shih, S.-H., and Mankbadi, R.R., "Effect of 
Coannular Flow on Linearized Eu ler Equation Predictions of 
Jet Noise,", NASA CR 202339, 1997. 
6. Tam, c.K.W., and Webb, J.C., "Dispersion-Relation
Preserving Finite Di fference Schemes for Computational 
Acoustics," J. Compo Physics, Vol. 107, pp. 262-281, 1993. 
7. Thompson, K.W., "Time-Dependent Boundary 
Conditions for Hyperbolic Systems 1I," J. Compo Physics, 
Vo1.89, pp.439-461 , 1990. 
8. Mankbadi, R.R ., Shih, S.-H., Hixon, D.R., Stuart, J.T. 
and Povinelli, L.A., "A Surface-Integral Formulation for Jet 
Noise Prediction Based on the Pressure Signal Alone," J. 
Compo Acoustics, Vol. 6, pp. 307-320, 1998. 
9. Lyrintzis, A.S., "The Use of Kirchhoffs Method in 
Computational Aeroacoustics," ASME J. Fluids Eng, 
Vol. I 16, pp.665-676, 1994. 
10. Morse, P.M. and lngard, K.U., ''Theoretical Acoustics," 
Princeton Univ. Press, 1986. 

American Institute of Aeronautics and Astronautics 


