Since its founding, NASA has been dedicated to the advancement of aeronautics and space science. The NASA Scientific and Technical Information (STI) Program Office plays a key part in helping NASA maintain this important role.

The NASA STI Program Office is operated by Langley Research Center, the lead center for NASA’s scientific and technical information. The NASA STI Program Office provides access to the NASA STI Database, the largest collection of aeronautical and space science STI in the world. The Program Office is also NASA’s institutional mechanism for disseminating the results of its research and development activities. These results are published by NASA in the NASA STI Report Series, which includes the following report types:

- **TECHNICAL PUBLICATION.** Reports of completed research or a major significant phase of research that present the results of NASA programs and include extensive data or theoretical analysis. Includes compilations of significant scientific and technical data and information deemed to be of continuing reference value. NASA’s counterpart of peer-reviewed formal professional papers but has less stringent limitations on manuscript length and extent of graphic presentations.

- **TECHNICAL MEMORANDUM.** Scientific and technical findings that are preliminary or of specialized interest, e.g., quick release reports, working papers, and bibliographies that contain minimal annotation. Does not contain extensive analysis.

- **CONTRACTOR REPORT.** Scientific and technical findings by NASA-sponsored contractors and grantees.

- **CONFERENCE PUBLICATION.** Collected papers from scientific and technical conferences, symposia, seminars, or other meetings sponsored or cosponsored by NASA.

- **SPECIAL PUBLICATION.** Scientific, technical, or historical information from NASA programs, projects, and mission, often concerned with subjects having substantial public interest.

- **TECHNICAL TRANSLATION.** English-language translations of foreign scientific and technical material pertinent to NASA’s mission.

Specialized services that complement the STI Program Office’s diverse offerings include creating custom thesauri, building customized databases, organizing and publishing research results... even providing videos.

For more information about the NASA STI Program Office, see the following:

- E-mail your question via the Internet to help@sti.nasa.gov
- Fax your question to the NASA Access Help Desk at (301) 621-0134
- Write to: NASA Access Help Desk NASA Center for Aerospace Information 7121 Standard Drive Hanover, MD 21076-1320
SeaWiFS Postlaunch Technical Report Series

Stanford B. Hooker, Editor
NASA Goddard Space Flight Center, Greenbelt, Maryland

Elaine R. Firestone, Senior Scientific Technical Editor
Science Applications International Corporation, Beltsville, Maryland

Volume 24, SeaWiFS Postlaunch Technical Report Series
Cumulative Index: Volumes 1–23

Elaine R. Firestone
Science Applications International Corporation, Beltsville, Maryland

Stanford B. Hooker
NASA Goddard Space Flight Center, Greenbelt, Maryland

August 2003
ABSTRACT
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, onboard the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume of the so-called Postlaunch Series serves as a reference, or guidebook, to the previous 23 volumes and consists of 4 sections including an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.

1. INTRODUCTION
This is the fourth in a series of indexes, published as a separate volume in the SeaWiFS Postlaunch Technical Report Series, and includes information found in the previous 23 volumes of the series. The SeaWiFS Postlaunch Technical Report Series has been written under National Aeronautics and Space Administration (NASA) Technical Memorandum (TM) numbers 1998-206892, 1999-206892, and so on, up to the present numbering of 2003-206892, with the year part of the TM number changing with each calendar year of its existence. The volume numbers, authors, and titles of the volumes covered in this index are the following:

This volume serves as a reference, or guidebook, to the preceding volumes of the so-called Postlaunch Series. It consists of three main sections: a cumulative index to keywords and phrases, a glossary of acronyms, and a bibliography of all references cited in the series. An errata section has been added to address issues and needed corrections which have come to the editors’ attention since the volumes were first published.

The nomenclature of the index section is a familiar one, in the sense that it is a sequence of alphabetical entries, but it uses a unique format because multiple volumes are involved. Unless indicated otherwise, the index entries refer to some aspect of the SeaWiFS Project or instrument. An index entry is composed of a keyword or phrase followed by an entry field that directs the reader to the possible locations where a discussion of the keyword can be found. The entry field is normally made up of a volume identifier shown in bold face, followed by a page identifier, which is always enclosed in parentheses:

- **Keyword, Volume (pages).**
- **Keyword, Vol. (#).**
- **Keyword, Volume (ch. #).**
- **Keyword, Volume (Fig. # p. #),** or **Keyword, Volume (Table # p. #).**

Figures or tables that provide particularly important summary information are also indicated as separate entries in the page field—even if they fall within an already specified page range. In this case, the figure or table number is given with the page number on which it appears:

- **Keyword, Volume #.**
- **Keyword, Vol. #.**
- **Keyword, Volume (Fig. # p. #),** or **Keyword, Volume (Table # p. #).**

Furthermore, because of the recursive nature of various topics, an index subentry may be repeated at the bottom of a main heading with the “see also” nomenclature. This directs the reader to a main entry elsewhere in the index for a more in-depth treatment of the topic.

2. ERRATA

Since the issuance of previous volumes, a number of the references cited have changed their publication status, e.g., they have gone from “submitted” to “accepted,” or “in press” to printed matter. In other instances, some part (or parts) of the citation, e.g., the title, authors, or year, has changed. Listed below are the references in question as they were cited in one or more of the first 23 volumes in the series, along with how they now appear in the references section of this volume. In addition, the definition of an acronym also appears differently in this volume than how it was originally published.

Original Citation

Revised Citation

Original Citation

E.R. Firestone and S.B. Hooker

Revised Citation

Original Citation

Revised Citation

Original Citation

Revised Citation

Original Acronym

SIRCUS: Spectral Irradiance and Radiance Responsivity

Revised Acronym

SIRCUS: Spectral Irradiance and Radiance Calibrations Using Uniform Standards.
CUMULATIVE INDEX

Unless otherwise indicated, the index entries that follow refer to some aspect of the SeaWiFS instrument or Project.

A

AAOT, 13(1–2, Fig. 2 p.5, 7, Figs. 9–10 p.9, Table 3 p.14); 19(2–6, Fig. 2 p.5); 23(5, Fig. 1 p.5, 12–14, Figs. 8–9 p.13).

above-water methods, see methods, above-water.

above-water radiometry, Vol. 23.
data processing methods, 23(ch. 4).
horizontal deployment system (HDS), 23(ch. 2).
methods, in situ, 23(ch. 3).
preliminary results, 23(ch. 5).
sampling equipment, in situ, 23(ch. 1).
see also equipment, in situ sampling.
see also data processing methods.
see also HDS.

AMT-5, cont.
cruise strategy, 2(2–4, Table 1 p.3).
cruise track, 2(4–8, Fig. 1 p.5).
CTD station, 2(Table C1 p.57).
DOC buffer log, 2(Table O1 pp.95–107).
FRRF, 2(27, Table H1 pp.78–85).
Guadinmitum buffer log, 2(Table O2 p.107).
instrumentation, 2(19–25, 27).
in-water optics, 2(19–24, Fig. 14 p.23).
LoCNESS station log, 2(Table E3 p.72).
microzooplankton, 2(41–43, Fig. 22 p.42, Table N1 p.95).
nitrate uptake, 2(36–37, Table K1 p.92).
nutrients, 2(35–36, Table J1 p.92).
OPC sample log, 2(Table L1 pp.92–93).
physical oceanography, 2(8–13, Figs. 2–9 pp.9–12).
phytoplankton pigment distributions, 2(31–32, Fig. 18 p.33).
primary productivity, 2(32, 35).
research reports, 2(8–43).
ROSSA, 2(14, 16–19, Fig. 12 p.16, Fig. 13 p.18).
SeaFALLS station log, 2(Table E2 pp.69–71).
SeaOPS station log, 2(Table E1 pp.67–69).
seawater filtration, 2(27, 31, Table 12 pp.85–91).
SeaWiFS, calibration and validation of, 2(43–46, Fig. 23 pp.45–46).
station filtration log, 2(Table I2 pp.85–91).
sun photometer, 2(25–27, Figs. 16–17 pp.28–30, Table F1 pp.73–77).
surface optics, 2(24–25, Fig. 15 p.25).
TOPEX, 2(13–14, Figs. 10–11 pp.15).
UOR optics, 2(27).
XBT casts, 2(Table D1 pp.65–67).
XOBT cast log, 2(Table G1 p.77).
zooplankton, 2(39–41, Table M1 p.94).
archived products, 9(Table 2 pp.8–9).
Atlantic Meridional Transect, see AMT-5.

atmospheric correction, 22(ch. 5).

aerosol look-up tables, 9(58–60, Table 13 p.58, Fig. 35 p.59, Table 14 p.60, Fig. 36 p.61).
Ångström exponent, 9(62–63, Fig. 37 p.62).
coastal waters, 22(ch. 9).
conclusions, 22(59).
Rayleigh tables, 9(62).
transmittance tables, 9(60).
water absorption, 22(52, Table 9 p.52).
whitecap contributions, 9(60, 62).

atmospheric correction algorithm, 9(57–58); 22(ch. 5, 52–56, Figs. 33–35 pp.55–56).

aerosol modeling ambiguity, 22(33).
clear conditions, 22(30–31).
Fresnel transmittance, 22(Fig. 25 p.32, 33).
out-of-band correction, 22(31–33, Fig. 24 p.32).
relative noise reduction, 22(29–30, Fig. 23 p.31).
updates, 9(ch. 8).

atmospheric optical characteristics, 20(4–6).
atmospheric transmittance, 5(9, Figs. 4–5 pp.10–11).
atmospheric transmittance, cont.

diffuser, 5(9–11, Tables 1–4 pp. 11–12).

attitude control system:
sensor processing, 16(Table 1 p. 5, 5–10, Fig. 1 p. 6, Fig. 2 p.8, Fig. 3 p. 9).
orbit processing, 16(2–5).

B

band 7:
band 8 accuracy, 9(39, Table 10 p. 39).
calibration method, 9(40–41, Fig. 26 p. 40, Figs. 27–28 p. 41).

vicarious calibration, 9(ch. 5).
bilinear gain knee calibration, 9(ch. 2, Fig. 4 p. 15, Tables 3–4 pp. 16).

biogeochemical analysis, 23(11).

C

calibration, Vol. 7; Vol. 9; Vol. 10; Vol. 11.

A/D, 7(Table 3 p. 7, 47, 49, Fig. 31 p. 50).
band 7, 9(ch. 5).
bilinear gain knee, 9(ch. 2).
comparison, Optronic vs. NET, 17(61).

chronology and methods, 9(Fig. 1 p. 10).
coefficients, 7(66).
field, 7(25–26, Fig. 16 p. 26, 32–34, Fig. 22 p. 33, Table 24 pp. 35).

lamp, 7(49–50, Fig. 31 p. 51).
lunar, 9(ch. 3).
near infrared, 9(44).

NIST, 7(50–63, Table 35 p. 52, Tables 36–49 pp. 54–57, Tables 50–53 p. 58, Table 54 p. 59, Fig. 32–35 pp. 60–62, Table 55 p. 63).
on-orbit, 22(ch. 2).
overview, 9(ch. 1).
solar, 9(ch. 4).
time series, 9(24, Figs. 10–13 pp. 25–26, 29).
vicarious, 9(ch. 5, ch. 6); 22(6–7, ch. 3).
visible band, 9(44–50, Figs. 29–31 pp. 46–49, Table 11 p. 49).
see also AMT-5, SeaWiFS.

see also vicarious calibration.

Calibration and Validation Team, see CVT.

CE-318, see sun photometer.

chlorophyll a algorithm, 11(ch. 1, ch. 2).

initial, updated [OC2v2], 11(ch. 1).
in situ data set, 11(10–15, Table 2 pp. 11–12, Tables 3–4 pp. 12–14, Fig. 5 p. 14, Figs. 6–7 p. 16, Fig. 8 p. 17, Tables 5–7 p. 20).

OC2 and OC4, 11(15, Figs. 8–9 pp. 17–18, 19, Figs. 10–14 pp. 21–23).

revised [OC4v4], 11(ch. 2).

SeaBAM data set, 11(3–7, Figs. 1–3 pp. 4–5, Table 1 p. 6, 7–8, Fig. 4 p. 7).

chlorophyll a match-up analysis, 10(ch. 7).
methods, 10(46–52, Fig. 27 p. 47, Fig. 28 pp. 49–50, Tables 12–14 pp. 50–51).

CHORS immersion factor method, 21(ch. 2).

CIMEL (CE-318), see sun photometer.

clear-water:
analyses, 10(ch. 4).

radiance, 10(29, Table 9 p. 29, Fig. 12 p. 30).
time-series, 10(Figs. 12–18 pp. 30–33, 33).
cloud-top radiance, 9(ch. 2, Fig. 3 p. 14).

CoASTS, Vol. 19; Vol. 20.

AAOT, 19(2–6, Fig. 2 p. 5).

conclusions, 19(23); 20(20).
data analysis, 20(2–17).
data and methods, 20(2).
data measurements, 19(13).
discussion, 20(17–20, Figs. 10–11 p. 18, Fig. 12 p. 19, Fig. 13 p. 20).
environmental characteristics, 19(2–4, Table 1 p. 3, Fig. 1 p. 4, Fig. 2 p. 5).
environmental effects, 19(10–11).

instruments and methods, 19(5–19).
measurement plan, 19(3, Fig. 3 p. 1).
measurement perturbations, 19(9–10).

measurements, 19(4–5, 11–19, Table 5 p. 11, Fig. 4 p. 13, Fig. 5 p. 15, Table 6 p. 15, Table 7 p. 16, Fig. 6 p. 17, Table 8 p. 18, Tables 8–9 p. 19).

objectives, 19(3).
optical properties, marine apparent, 20(16–17, Fig. 9 p. 17).
optical properties, marine inherent, 20(12–16, Fig. 7 pp. 13–14, Table 3 p. 14).
pigment measurements, 19(16–18, Fig. 6 p. 17, Table 8 p. 17).

sample data, 19(19–23, Figs. 7–9 pp. 20–22).
site characteristics, 19(3–4, Table 1 p. 4).

subsurface values, 19(7–9, Fig. 3 p. 8).

Coastal Atmosphere and Sea-Time Series, see COASTS.

coccolithophore:

algorithm, updated, 9(ch. 7).

tests, 9(51–56, Table 12 p. 52, Figs. 32–34 pp. 53–55).
cumulative index, Vol. 6; Vol. 12; Vol. 18.

CVT, 9(ch. 1).

activities, 9(Table 1 pp. 6–8).

D

DalBOSS, 3(11–13, Figs. 10–11 p. 12, Fig. 13 p. 15, Table G1 pp. 34–35); 8(3, Table 1 p. 3, Fig. 1 p. 5, 12–13, Figs. 11–12 p. 12, 15, Fig. 13 p. 15).
deployment log, 8(Table B1 pp. 25–27).

DalSAS, 3(10–11, Fig. 9 p. 11, Table F1 pp. 33–34).

DARR-94, 15(1, 4).

DARR-00, Vol. 15.

calibrated optical measurements, 15(9, Figs. 5–7 pp. 10–12, Figs. 8–10 pp. 13–15).

conclusions, 15(45).

database, 15(Table B1 p. 67).
discussion, 15(40–45, Fig. 14 pp. 41–42, Fig. 15 pp. 43–44).

GSFC data processing system, 15(ch. 2).
instrumentation, 15(5–8).

JRC data processing system, 15(ch. 3, Fig. 17 p. 54).
metho, 15(9, 16).

ProSoft optical data processor, 15(ch. 4).
DARR-00, cont.
results, nonstandard, 15(29-40, Table 18 p. 30, Table 19 p. 32, Fig. 13 pp. 34-35, Table 20 p. 36, Tables 21-22 pp. 38-39).
results, standard (V1), 15(16-29, Table 3 p. 17, Tables 4-5 p. 18, Tables 6-7 p. 20, Fig. 11 p. 21, Tables 8-9 p. 22, Fig. 12 p. 23, Tables 10-11 p. 24, Tables 12-15 pp. 26-27, Tables 16-17 pp. 28-29).
science team, 15(66).
see also instrumentation.
see also LoCNESS.
see also miniNESS.
see also SeaOPS.
see also WiSPER.
collection, 21(11, Table 4 p. 11, 15, Table 7 p. 15, 20, Table 10 p. 20).
presentation, 21(24).
processing, 21(11, 15, 20).
set, 21(29-30, Table 12 p. 30).
see also SIRREX-8.
data analysis:
MOBY, 9(ch. 6).
SIRREX-8, 21(30-32, Tables 13-14 p. 31, Tables 15-16 p. 33).
see also SIRREX-8.
data analysis round-robin, see DARR-94 and DARR-00.
data analysis system:
GSFC, 15(ch. 2).
JRC, 15(ch. 3).
data policy:
SeaWiFS Project, in situ, 12(4-5).
data processing methods:
advances in, 23(ch. 4).
exact \[LW]_w formulation, 23(21-23).
irradiance ratio, 23(20-21, Fig. 11 p. 21).
data screening procedures, 22(20-21).
detector-based radiometry, see SXR.
diffuse attenuation coefficient, 11(ch. 3).
data and methods, 11(25).
results, 11(25, Figs. 15-16 p. 26).

-E-
effects:
environmental, 23(27-28, Fig. 17 p. 28).
far-field, 23(24-27, Fig. 12 p. 25, Figs. 13-14 p. 26).
near-field, 23(27, Figs. 15-16 p. 27).
environmental:
characteristics, 19(2-4, Table 1 p. 3, Fig. 1 p. 4, Fig. 2 p. 5).
effects, 19(10-11); 23(27-28, Fig. 17 p. 28).
equipment:
in situ sampling, 23(ch. 1).

-F-
far-field effects, 23(24-27, Fig. 12 p. 25, Figs. 13-14 p. 26).
flags, 22(6, ch. 6).
effect analysis, 22(34-36, Table 7 p. 36).

flags, cont.
level-2 changes, 22(36-39, Fig. 26 p. 38).
level-3 changes, 22(39).
summary, 22(39-40, Fig. 27 p. 40).

-G-
global clear-water analyses, 10(ch. 4).
glossary:
cumulative, 6(5-7); 12(10-13); 18(10-14).
ground measurements, 5(11-12).

-H-
HDS, 23(Fig. 2 p. 6, ch. 2).
description, 23(12-14, Figs. 8-9 p. 13, Fig. 10 p. 14, Table 3 p. 14).
horizontal deployment system, see HDS.
Horn Point Laboratory, see HPL.
HPL:
quantitative equation, 14(38).
column characteristics, 14(Table 3 p. 7).
data set, 14(5-7).
extractions, 14(Table 2 p. 7).
methods, 14(7-8).
results, 14(8-18).
solvent systems, 14(Table 4 p. 7).
UPD values, 14(Fig. 1 p. 9, Fig. 5 p. 10, Fig. 3 p. 11, Table 6 p. 11, Fig. 4 p. 12, Table 7 p. 12, Fig. 5 p. 13, Figs. 6-7 pp. 14-15, Figs. 8- 9 p. 16, Fig. 10 p. 17, Table 8 p. 17, Table 11 p. 19).
see also SeaHARRE.
HPLC manufacturers, 14(37-38).
HPLC technique, 3(15-16, Table E1 p. 32; 23(4).
HYDROSCAT-6, 23(10).

-I-
immersion factor:
CHORS immersion factor method, 21(ch. 2).
computing, 21(ch. 5).
JRC method, 21(ch. 3).
Satlantic method, 21(ch. 4).
in-air studies, 7(13-25, Figs. 4-5 p. 14, Fig. 6 p. 17, Tables 7-10 p. 18, Figs. 7-12 pp. 19-21, Tables 11-16 pp. 22-26, Figs. 13-15 pp. 23-24).
analysis, 7(17-18).
measurement principles, 7(15-16).
results, 7(18-22, Tables 7-10 p. 18, Figs. 7-12 pp. 19-21, Tables 11-16 pp. 22-26, Figs. 13-15 pp. 23-24).
index entries, 6(3-4); 12(6-9); 18(4-9).
index volumes, Vol. 6; Vol. 12; Vol. 18.
in situ methods, 23(ch. 2).
in situ sampling equipment, 23(ch. 1).
instrumentation:
AMT cruise, 2(19-25, 27).
ancillary, 23(11).
E.R. Firestone and S.B. Hooker

instrumentation, cont.
AOP, 23(5–9, Figs. 3–4 p. 7, Figs. 5–6 p. 8, Fig. 7 p. 9, Table 1 p. 9, Table 2 p. 10).
atmospheric, 23(11).
DARR-00, 15(5–8).
IOP, 23(10–11).
SeaBOARR-98, 3(2–17, Table 1 p. 3, Fig. 1 p. 4, Table 2 p. 4, Fig. 2 p. 5, Fig. 3 p. 6, Figs. 4–5 p. 7, Figs. 6–7 pp. 8–9, Figs. 8–9 pp. 10–11, Figs. 10–12 pp. 12–13, Fig. 13 p. 15, Figs. 14–15 p. 17).
SeaBOARR-99, 8(3–14, Table 1 p. 3, Tables 2–3 p. 4, Fig. 1 p. 5, Figs. 2–3 p. 6, Fig. 4 p. 7, Figs. 5–6 p. 8, Figs. 7–8 p. 9, Fig. 9 p. 10, Fig. 10 p. 11, Figs. 11–12 p. 12, Fig. 13 p. 15).
SeaPRISM, 13(2–10, Table 1 p. 3, Table 2 p. 10, Fig. 1 p. 4, Figs. 2–3 p. 5, Fig. 4 p. 6, Figs. 5–6 p. 7, Figs. 7–8 p. 9, Figs. 9–10 p. 9, Table 4 p. 16, Table 5 pp. 15–17, Figs. 13–14 p. 18, Fig. 15 p. 19).
SIRREX-7, 17(ch. 2).
tower-perturbation measurements, 23(ch. 1).
see also SeaPRISM.
see also SIRREX-7.
integrating sphere sources, Vol. 1; Vol. 4.
see also SXR.
tercalibration, Vol. 7.
interference filter, see SXR.
in-water methods:
see methods, in-water.
see SeaPRISM.
in-water studies, 7(8–13, Fig. 1 p. 9, Table 5 p. 10, Fig. 2 p. 11, Fig. 3 p. 13, Table 6 p. 13).
results, 7(12–13).
irradiance, 7(59, Table 54 p. 59).
irradiance calibrations, uncertainties, 17(ch. 6).
ambient measurements, 17(44–46, 63).
experimental setup, 17(Fig. 21 p. 43, Fig. 23 p. 45).
repeatability, 17(42–44).
irradiance field source, 7(25–34).
field calibrator, 7(25–26, Fig. 16 p. 26, Table 23 p. 33).
irradiance values, 7(Table 17 p. 27).
results, 7(27–34, Tables 18–19 p. 28, Fig. 17 p. 29, Table 20 p. 29, Fig. 18 p. 30, Table 21 p. 30, Figs. 19–21 p. 32, Table 22 p. 32, Fig. 22 p. 33, Table 23 p. 33).
see also calibration, field.

− J −
JRC immersion factor method, 21(ch. 3).

− K −
K(490), see diffuse attenuation coefficient.

− L −
LAC products:
comparison of, 22(ch. 10).
conclusions, 22(67).
methods, 22(60–62).
study area, NEC, 22(60, Table 10 p. 61, Fig. 42 p. 61).
lamp standards, 17(ch. 3).
lamp standards, cont.
experimental setup, 17(Fig. 4 p. 24).
uncertainties, 17(23, 59–61).
LoCNESS, 8(3–6, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 7–8, Fig. 4 p. 7, 16, Fig. 14 p. 19); 15(5, 6, Fig. 2 p. 6, 7, 8, Table B1 p. 67); 23(5, 7).
data file, 15(Fig. 16 p. 48).
deployment log, 8(Table C1 pp. 27–29).
station log, 2(Table E3 p. 72).
lunar calibration, see calibration, lunar.
lunar data analysis, 9(ch. 3).
normalizing factors, 9(18–20, Figs. 6–8 pp. 21–22, Fig. 9 p. 23); 22(14, 17–18, Figs. 11–12 p. 18).
time corrections, 9(24, Figs. 10–13 pp. 25–26).

− M −
Marine Environmental Radiometer, see MER.
masks, 22(6, 7, ch. 6).
changes, 22(Table 6 p. 35).
see also flags.
measurement:
cosine response, 21(ch. 6).
plan, 19(3, Fig. 3 p. 1).
perturbations, 19(9–10).
protocol, 21(10–11, Table 3 p. 11, 14–15, Table 6 p. 15, 19–20, Table 9 p. 20).
system, 21(17–19, Fig. 4 p. 18, Table 8 p. 19).
MER, 11(ch. 4).
ICESS facility and methods, 11(28–33, Fig. 17 p. 30, Table 8 p. 31, Fig. 18 p. 32, Table 9 p. 33).
immersion effects, 11(43, Table 15 p. 44, Fig. 26 p. 44).
long-term averages, 11(41–43, Tables 12–13 p. 42, Table 14 p. 43).
plaque aging, 11(Fig. 24 p. 40, 43, 45).
quality control measures, 11(45, Fig. 27 p. 45).
results, 11(33–41, Fig. 19 p. 34, Fig. 20 p. 36, Table 10 p. 37, Figs. 21–24 pp. 38–40, Fig. 25 p. 41, Table 11 p. 41).
methods:
above-water, 23(16).
ancillary, 23(19).
AOP, 23(15–17).
atmospheric, 23(18–19).
biogeochemical, 23(18).
CDOM, 23(18).
data processing, see data processing methods.
in situ, 23(ch. 3).
in-water, 23(16).
IOP, 23(17–18).
MFR-6, 3(17, Fig. 15 p. 17 table E1 p. 32); 19(4, 7, 11).
microNESS, 23(4, 7–8, Table 1 p. 9, Table 2 p. 10).
microSAS, 23(4, 8–9, Fig. 6 p. 8, Table 1 p. 9, Table 2 p. 10, Tables B1–B2 p. 30).
miniNESS, 13(2, 3, Table 1 p. 3, 4–6, Table 2 p. 4, Fig. 2 p. 5, Fig. 3 p. 5, Fig. 4 p. 6); 15(5, 7, Fig. 3 p. 7, 8, Table 2 p. 8, 9, Table B1 p. 67); 23(4, 7, Fig. 3 p. 7, Table 1 p. 9, Table 2 p. 10).
mirror-side correction, 22(19, Fig. 13 p. 19).
data analysis, 9(ch. 6).

stray light correction, 22(6, 20-22, Fig. 14 p. 22).

vicarious gains, 22(21-22, Fig. 15 p. 22).

see also calibration.

--- N ---

navigation, Vol. 16.

algorithms, 16(1-2).

near-field effects, 23(27, Figs. 15-16 p. 27).

near-infrared, see NIR.

NIR correction, 22(7, 21, ch. 4, ch. 9).

absorption coefficients, 22(27-28, Fig. 22 p. 27, Table 5 p. 28).

backscatter model, 22(26-27).

concept, 22(53).

scaling factor, 22(28).

application, 22(54, 56).

bio-optical models, 22(53-54, Figs. 33-35 pp. 55-56).

results, 22(56-59, Figs. 36-41 pp. 57-59).

NIR noise reduction, 22(7).

normalized water-leaving radiance, 10(ch. 7).

--- O ---

operational SeaWiFS processing, 10(ch. 3).

fourth reprocessing, Vol. 22.

second reprocessing, 10(12-18, Table 3 p. 13, Fig. 5 p. 16, Fig. 6 p. 17, Table 7 p. 24).

third reprocessing, 10(18-28, Table 4 p. 19, Table 5 p. 23, Table 6 p. 23, Table 7 p. 27, Figs. 7-9 pp. 25-26, Figs. 10-11 p. 27).

optical characteristics, atmospheric, 20(4-6).

optical properties:

marine apparent, 20(16-17, Fig. 9 p. 17).

marine inherent, 20(12-16, Fig. 7 pp. 13-14, Table 3 p. 14).

see also CoASTS.

optics:

in-water, 2(19-24, Fig. 14 p. 23); 7(8-13, Fig. 1 p. 9, Table 5 p. 10, Fig. 2 p. 11, Fig. 3 p. 13, Table 6 p. 13).

surface, 2(24-25, Fig. 15 p. 25).

orbit processing, 16(2-5).

ozone, see TOMS ozone.

--- P ---

PAR product, 22(ch. 8).

algorithm description, 22(46-48).

in situ match-up comparison, 22(Figs. 30-32 p. 48, Table 8 p. 49, 49-50).

phytoplankton pigment:

concentration, 20(6-9, Table 2 p. 7, Fig. 4 pp. 8-9).

distributions, 2(31-32, Fig. 18 p. 33).

photosynthetically available radiation, see PAR product.

pigment measurements, 19(16-18, Fig. 6 p. 17, Table 8 p. 17).

plaque lab, 7(34-46).

plaque standards:

experimental setup, 17(Fig. 9 p. 29).

radiance, 7(59).

cloud-top, 9(ch. 2, Fig. 3 p. 14).

normalized water-leaving, 10(ch. 7).

radiance calibrations, uncertainties:

ambient measurements, 17(37-41).

ambient measurements, experimental setup, 17(37-41, Fig. 17 p. 38, Fig. 18 p. 39).

experimental setup, 17(Fig. 15 p. 36).

repeatability, 17(35-37).

radiomter, Vol. 7.

see also SXR.

radiometric calibration, Vol. 4; Vol. 5; Vol. 7.

1993 calibration, 4(2-6, Tables 1-3 p. 3, Table 4 p. 4); 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).

1997 calibration, 5(13, Table 5 p. 13, Figs. 6-7 p. 15, Table 15 p. 18).

measurement procedures, 4(9-14, Table 8 p. 13).

SXR, 4(6-7, Table 6 p. 7, 10, 12-17, Figs. 1-2 pp. 15-16, Table 10 p. 17, Fig. 3 p. 18, 18-19).

test equipment, 4(6-9, Table 6 p. 7, Table 7 p. 8).

references:

cumulative, 6(9-13); 12(6-9); 18(15-26).

reflectance equations:

band-averaged center wavelength, 5(5-6).

band-averaged spectral radiance, 5(5).
reflectance equations, cont.
BRDF, 5(3-4, Fig. 1 p.4).
SBRC basic equation, 5(6, Fig. 2 p.7).
solar radiation-based calibration, 5(3-6).
spectral response, 5(4-5).
transfer-to-orbit experiment, 5(22, Tables 19-20 p.23).
reprocessing, fourth, Vol. 22.

Satlantic immersion factor method, 21(cb. 5).
SeaBOARR, Vol. 3; Vol. 10; Vol. 11.

SeaBOARR, cont.
SeaFALLS, 2(Table E2 pp. 69-71); 8(3-7, Table 1 p. 3, Table 3 p.4, Fig. 1 p.5, Fig. 3 p.6, Fig. 5 p.8, Fig. 13 p.15, 16, Fig. 14 p.19, Table B1 pp.25-27).
SeaSAS, 3(7-8, Figs. 4-6 pp. 7-8, Table C1 pp. 30-31); 8(3-6, Table 1 p.3, Table 2 p.4, Fig. 1 p.5, 8-9, Fig. 6 p.8, Fig. 7 p.9, 16-17, Table D1 pp.30-36).
SeaSHAKE, 8(3-6, Table 1 p.3, 9, 11, Fig. 10 p.11).

SeaBOSS, 8(3-7, Table 1 p.3, Table 3 p.4).
dererepreseing, third, Vol. 11.

analysis, 14(22, Table 12 p.22, 27-28, Table 15 p.28, 31, 34).

SeaSHADE, 8(3-6, Table 1 p.3, 8, 9, 11, Fig. 8 p.9).
sun photometer, 14(37).

also PAR product.
also vicarious calibration.
also PAR product.
also processing changes.
also NIR.
also SIRREX.
also WiSPER.
also WiSPER.
also THOR.
also miniNESS.
also sun photometer.
also miniNESS.
also HPLC Analysis Round Robin.
also sun photometer.
also miniNESS.
also HPL method.
also JRC method.
also PCM method.
also MCM method.
also RCM method.
also PCCS method.
also science team.
also validation.
also WiSPER.
also PAR product.
also vicarious calibration.
also HPLC Analysis Round Robin.
also above-water methods.
also field commissioning.
also field team.
also in-water methods.
also preliminary results.
also protocols.
also miniNESS.
also sun photometer.
also WiSPER.

SeaPRISM, cont.
see also SunSAS.
SeasAS, 3(7–8, Figs. 4–6 pp. 7–8, Table C1 pp. 30–31); 8(3–6, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 8–9, Fig. 6 p. 8, Fig. 7 p. 9, 16–17, Table D1 pp. 30–36).
SeaSHADE, 8(3–6, Table 1 p. 3, 8, 9, 11, Fig. 10 p. 11).
SeaWiFS Bio-Optical Algorithm Round-Robin, see SeaBOARR.
SeaWiFS Quality Monitor, see SQM.
SeaWiFS Transfer Radiometer, see SXR.
SIMBAD, 13(2–5, Table 1 pp. 3, Table 2 p. 4, Fig. 2 p. 5).
protocols, 13(12–13).
SIRREX, Vol. 7; Vol. 17.
SIRREX-1, 7(1–3).
SIRREX-2, 7(1–3).
SIRREX-3, 7(1–3).
SIRREX-4, 7(1–3).
SIRREX-5, Vol. 7.
agenda, 7(4–5, Table 1 p. 5).
conclusions, 7(67).
in-air studies, 7(13–25, Figs. 4–5 pp. 14, Fig. 6 p. 17, Tables 7–10 p. 18, Figs. 7–12 pp. 19–21, Tables 11–16 pp. 22–26, Figs. 13–15 pp. 23–24).
in-water studies, 7(8–13, Fig. 1 p. 9, Table 5 p. 10, Fig. 2 p. 11, Fig. 3 p. 13, Table 6 p. 13).
irradiance field source, 7(25–34).
NIST calibrations, see calibrations, NIST.
participants, 7(67–71).
plaque lab, 7(34–46).
see also plaque lab.
SIRREX-7, Vol. 17.
absolute calibration, SQM and SQM-II, 17(ch. 8).
agenda, 17(7–8, Table 2 p. 9).
ancillary equipment, 17(22, Table 9 p. 22).
bidirectional effects, 17(33–34, 62–63).
commercial radiometers, 17(18).
discussion, 17(ch. 9).
experimental setup, 17(Fig. 4 p. 24).
facility, 17(8, Fig. 1 p. 8, 10, Fig. 2 p. 10).
instrumentation, 17(ch. 2).
irradiance calibrations, uncertainties, 17(ch. 6).
lamps, 17(16–17, Table 5 p. 17, Fig. 12 p. 32, Fig. 13 p. 33).
lamp standards, uncertainties, 17(ch. 3, 23, 59–61, Fig. 33 p. 60).
objectives, 17(7).
overview, 17(ch. 1).
plaque lab, 17(17–18, Table 6 p. 18).
plaque standards, uncertainties, 17(ch. 4, Fig. 35 p. 62).
procedures, 17(10–15, Table 3 p. 11, Table 4 p. 12).
irradiance calibrations, uncertainties, 17(ch. 5, Fig. 35 p. 62).
rotation and polarization, uncertainties, 17(ch. 7).
science team, 17(65).
SQM-II, 17(21, Table 8 p. 21, ch. 8).
summary, 17(ch. 9, Table 13 p. 60, Fig. 33 p. 60, 64, Table 14 p. 64).
SXR, 17(18–19, Table 7 p. 19).
SIRREX-7, cont.
uncertainties, 17(23).
XZ-Mapper, 17(21–22).
see also absolute calibration, SQM and SQM-II.
see also irradiance calibrations.
see also lamp standards, uncertainties.
see also plaque standards.
see also radiation calibrations.
see also rotation and polarization, uncertainties.
see also SQM.
see also SQM-II.
SIRREX-8, Vol. 21.
CHORS immersion factor method, 21(ch. 2).
conclusions, 21(32–34, Figs. 10–11 p. 33, Table 17 p. 33).
cosine response measurements, 21(ch. 5).
data collection, 21(11, Table 4 p. 11, 15, Table 7 p. 15, 20, Table 10 p. 20).
data presentation, 21(24).
data processing, 21(11, 15, 20).
data set, 21(29–30, Table 12 p. 30).
immersion factor computing, 21(ch. 5).
instrumentation, 21(7, Table 1 p. 7, Fig. 1 p. 7).
JRC immersion factor method, 21(ch. 3).
laboratory setup, 21(8–10, Fig. 2 p. 9, Table 2 p. 10, 12–13, Fig. 3 p. 13, Table 5 p. 13).
measurement protocol, 21(10–11, Table 3 p. 11, 14–15, Table 6 p. 15, 19–20, Table 9 p. 20).
measurement system, 21(17–19, Fig. 4 p. 18, Table 8 p. 19).
objectives, 21(6).
overview, 21(ch. 1).
preliminary inquiries, 21(25–26, Fig. 7 p. 26).
processing requirements, 21(21–22, Fig. 5 p. 22).
results, 21(ch. 7).
Satlantic immersion factor method, 21(ch. 4).
schedule, 21(6–7).
science team, 21(35).
summaries, 21(11, 15–16, 20, 24, 28).
solar data analysis, 9(ch. 4).
solar calibration, 9(28–37, Figs. 15–24 pp. 30–34, Fig. 25 p. 36).
solar irradiances, 5(7–9, Tables 10–16 pp. 17–19).
6S, 5(16, Table 12 p. 17, Table 13 p. 18, Table 16 p. 19).
band-averaged, 5(16, Table 10 p. 17, Table 12 p. 17, Table 14 p. 18).
Fraunhofer lines, 5(19–21, Fig. 9 p. 20, Table 18 p. 21).
MODTRAN, 5(16, Tables 10–11 p. 17, Table 16 p. 19).
SeaWiFS, 5(Table 16 p. 19).
Thuiller, 5(13–16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
Wehrli, 5(13–16, Table 7 p. 14, Table 9 p. 14, Table 16 p. 19).
solar radiation-based calibration, 5(1–21).
reflectance equations, 5(3–6).
risks and disadvantages, 5(2).
spectral band-pass:
analyses, 10(ch. 2).
corrections, 10(Fig. 4 pp. 9–10, 10–11, Table 2 p. 11).
distribution, 10(Fig. 3 p. 8).
effects, 10(8–10).
response function, 10(Fig. 2 pp. 7–8).
spectral radiance, 4(19–21, Fig. 3 p. 18, Figs. 4–5 p. 20, Tables 11–13 p. 21).
see also SXR.
spectral response, 5(7, Fig. 3 p. 8, 19–21, Fig. 8 p. 19).
sun glint contamination, 9(ch. 9).
Sun photometer, 2(25–27, Figs. 16–17 pp. 28–30, Table F1 p. 73–77); 3(Table E1 p. 32); 13(2, 3, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 9–10, Fig. 12 p. 10); 19(4, Table 2 p. 6); 23(11).
SUnSAS, 8(3–6, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 5, 9–11, Fig. 8 p. 9, Fig. 9 p. 10, 16–17, Table E1 pp. 37–43); 13(2–3, Table 1 p. 3, Table 2 p. 4, Fig. 1 p. 4, Fig. 2 p. 5, 7–8, Figs. 7–8, p. 8).
deployment log, 8(Table E1 pp. 37–43).
protocols, 13(11–12).
see also above-water methods.
SXR, Vol. 1; Vol. 2.
description of, 1(1–2, Table 1 p. 2).
electrical subsystems, 1(11–14, Table 3 p. 12, Fig. 9 p. 12, Tables 4–5 p. 13, Table 6 p. 14).
instrument design, 1(2–16, Table 2 p. 3, Fig. 1 p. 3, Figs. 3–8 pp. 7–9, Fig. 9 p. 12, Table 3 p. 12, Tables 4–5 p. 13, Table 6 p. 14).
measurement channels, 1(4–6, Fig. 2 p. 5).
measurements, 1(50–52, Tables 17–18 pp. 52); 4(12–17, Figs. 1–2 pp. 15–16, Table 10 p. 17, Fig. 3 p. 18, 18–19).
measurement wavelengths, 7(Table 27 p. 37).
parts used, 1(Table A1 p. 55).
performance analysis, 1(16–50).
relative flux response, 1(38–43, Table 13 p. 39, Fig. 22 pp. 40–42).
signal voltage, 1(Table 16 p. 46, Fig. 24 pp. 47–49).
spectral radiance, 1(Table 14 p. 44, Table 15 p. 45, Fig. 23 p. 45); 4(Table 6 p. 7, Table 10 p. 17, Fig. 3 p. 18, Fig. 4 p. 20).
Studies, 7(59, 63, Table 55 p. 63, Figs. 36–38 pp. 64–65).

temperature correction, 22(12–14, Figs. 1–2 p. 13, Table 2 p. 13, Figs. 3–10 pp. 15–17).

THOR, 3(6, Fig. 4 p. 7); 8(3, 7, Fig. 5 p. 8); 15(6).
TOMS ozone, 9(ch. 10).
chrorphyll comparison, 9(72, Figs. 44–45 pp. 72–73).
new ozone scheme, 9(69–70, Figs. 41–42 p. 70).
ozone comparison, 9(71–72, Fig. 43 p. 71).
tower-perturbation:
above-water radiometry, Vol. 23.
data processing methods, 23(ch. 4).
emphasis on, 23(4–5).
horizontal deployment system, 23(Fig. 2 p. 6, ch. 2).
in situ methods, 23(ch. 3).
in situ sampling equipment, 23(ch. 1).
instruments used, 23(4–5, 5–11, Fig. 2 p. 6, Figs. 3–4 p. 7, Figs. 5–6 p. 8, Fig. 7 p. 9, Table 1 p. 9, Table 2 p. 10).
measurements, Vol. 23.
preliminary results, 23(ch. 5).
science team, 23(29).
see also data processing methods.
see also HDS.
see also methods.
tower-shading:
correction factors, 19(7–9, Fig. 3 p. 8, Tables 3–4 p. 9).
transfer radiometer, Vol. 1; Vol. 4.
see also SXR.
transfer-to-orbit experiment, Vol. 5.
concept, 5(21).
in-flight measurements, 5(22–25, Fig. 10 p. 24, Table 21 p. 25, Fig. 11 p. 25).
reflectance equations, 5(22, Tables 19–20 p. 23).

uncertainties, see SIRREX-7.

validation, Vol. 9; Vol. 10; Vol. 11.
overview, 9(ch. 1).
product, 9(10–11).
vicarious calibration, 22(ch. 3).
data-screening procedures, 22(20–21).
gains, 22(Figs. 15–21 pp. 22–24, Table 3 p. 25, 25).
stray light correction, 22(20–21, Fig. 14 p. 22).

WisPER, 3(9–10, Figs. 7–8, pp. 9–10, 18, Fig. 16 p. 19, Table D1 p. 32); 13(2–5, Table 1 p. 3, Table 2 p. 4, Fig. 2 p. 5, 6–7, Figs. 5–6 p. 7); 15(5, 7, Fig. 3 p. 7, 7, 8, Table 2 p. 8, 9, Table B1 p. 67); 19(4, 5–7, Table 2 p. 6); 23(4, Table 1 p. 9, Table 2 p. 10).

Yamoto Bank Optical Mooring, see YBOM.
YBOM, 19(1–2).
GLOSSARY

6s Not an acronym, but an atmospheric photochemical and radiative transfer model.

- A -
A/D Analog-to-Digital
AAOT Acqua Alta Oceanographic Tower
AC Alternating Current
ACS Average Calibration Slope or Attitude Control System (depending on usage).
ADCP Acoustic Doppler Current Profiler
ADEOS Advanced Earth Observing Satellite
AERONET Aerosol Robotic Network
AI Absorbing Aerosol Index
A1991 Atlantic–Indian Ocean Cruise, 1999
ALOA A Long-term Oligotrophic Habitat Assessment
AMJ April–May–June
AMT Atlantic Meridional Transect
AMT-1 The First AMT Cruise
AMT-2 The Second AMT Cruise
AMT-3 The Third AMT Cruise
AMT-5 The Fifth AMT Cruise
AMT-8 The Eighth AMT Cruise
AOP Apparent Optical Property
AOPs Apparent Optical Properties
AOT Aerosol Optical Thickness
APD Absolute Percent Difference
ARGOS Not an acronym, but the name given to the data collection and location system on the NOAA operational satellites.
ASAP Artificial Satellite Analysis Program
ASCII American Standard Code for Information Interchange
ASD Analytical Spectral Devices
ASTER Advanced Spaceborne Thermal Emission and Reflection Radiometer
ASTM American Society for Testing and Materials
ATA Ambient Temperature Plate Assembly
ATSR Along-Track Scanning Radiometer
AU Astronomical Unit
AVHRR Advanced Very High Resolution Radiometer

- B -
BAS British Antarctic Survey
BATS Bermuda Atlantic Time-series Study
BBOp Bermuda BioOptics Project
BCD Binary Coded Decimal
Ber95 Bering Sea Cruise, 1995
Ber96 Bering Sea Cruise, 1996
BNC Bayonet Nut Connector
BNL Brookhaven National Laboratory
BOPSII Bio-Optical Profiling System II (second generation)
BOUSSOLE Bouée pour l’acquisition de Séries Optiques à Long Terme (buoy for the acquisition of a long-term optical series).
BPA Back Plate Assembly
BRDF Bidirectional Reflectance Distribution Function
BSI Biospherical Instruments, Inc.
BSST Bulk Sea Surface Temperature
BTBM Bermuda Test Bed Mooring
C/CSC NOAA Coastal Services Center, Charleston, South Carolina
CalCOFI California Cooperative Fisheries Institute
CANIGO Canary Islands, Azores, Gibraltar Observations
CARIACO Carbon Retention in a Colored Ocean
CB-MAB Chesapeake Bay–Middle Atlantic Bight
CC Cloud Cover
CCAR Colorado Center for Astrodynamics Research
CCD Charge-Coupled Device
CCMS Centre for Coastal and Marine Studies
CCN Cloud Condensation Nuclei
CCPO Center for Coastal Physical Oceanography
CDOM Colored Dissolved Organic Matter
CEC Commission of the European Communities
CERT Calibration Evaluation and Radiometric Testing
C-FALLS Combined (software package for logging) SeaFALLS data
CHN Carbon-Hydrogen-Nitrogen
CHORS Center for Hydro-Optics and Remote Sensing
C-mount Not an acronym, but a mounting system for camera lenses.
CNRC Consiglio Nazionale delle Ricerche (the Italian National Research Council)
CNRS Centre National de la Recherche Scientifique (the French National Institute of Scientific Research)
COARE Coupled Ocean Atmosphere Response Experiment
CoASTS Coastal Atmosphere and Sea Time Series
CoBOP Coastal Benthic Optical Properties (Bahamas)
COLORS Coastal Region Long-Term Measurements for Colour Remote Sensing Development and Validation
C-OPS Combined (software package for logging) SeaOPS data.
COSMIC Computer Software Management and Information Center
COTS Commercial Off-The-Shelf
CSC Coastal Service Center
CSH UNIX “C-shell” (script programming utility)
CT Cylindrical Tube or Conductivity and Temperature (depending on usage).
CTD Conductivity, Temperature, and Depth
CV Coefficient of Variation
CVE Calibration and Validation Element
CVT Calibration and Validation Team
CZCS Coastal Zone Color Scanner

- D -
DAAC Distributed Active Archive Center
DAD Diode Array Detector
DalBOSS Dalhousie Buoyant Optical Surface Sensor
DalSAS Dalhousie SeaWiFS Aircraft Simulator
DARR Data Analysis Round-Robin
DARR-94 The first DARR (1994)
DARR-00 The Second DARR (March 2000)
DAS Data Acquisition Sequence
DATA Not an acronym, but a designator for the Satlantic, Inc., series of power and telemetry units.
DATA-100 (Satlantic) Data (acquisition) Series 100 (unit)
dc Direct Current
E.R. Firestone and S.B. Hooker

DC Direct Current
DCC Dark Current Correction
DCM Deep Chlorophyll Maximum or Depth of the Chlorophyll Maximum (depending on usage).
DCP Data Collection Platform
DHI DHI Water and Environment Institute (Denmark)
DIN Deutsche Industrie-Normen (German industry standards)
DIO Digital Input-Output
DIR Not an acronym, but a designator for the Satlantic, Inc., series of directional units.
DMA Dimethylamine
DMM Digital Multimeter
DMS Dimethylsulfide
DMSP Dimethylsulphoniopropionate
DMSPd Dissolved DMSP
DMSPp DMSP within phytoplankton cells
DNA Deoxyribonucleic Acid
DOC Dissolved Organic Carbon
DPA Detector Plate Assembly
DSS Digital Sun Sensor
DU Dobson Unit (of total ozone)
DUT Device Under Test
DVM Digital Voltmeter
DYF DYFAMED

DYFAMED Dynamique des Flux en Méditerranée (Dynamics of fluxes in the Mediterranean)

-E-
E East
ECEF Earth-Centered Earth-Fixed
ECI Earth-Centered Inertial
EcoHAB Ecology of Harmful Algal Blooms
ECR Earth-Centered Rotating
EDTA Ethylenediaminetetraacetic Acid
EEZ Exclusive Economic Zone
e-mail Electronic Mail
EOF End-of-File
EOS Earth Observing System
EP Entrance Pupil
EqPac Equatorial Pacific
ERS-2 The Second Earth Resources Satellite
ET Eutrophic
ETOPO2 Earth Topography 2 min grid
ETOPOS Earth Topography 5 min grid
EU European Union
EUC Equatorial Under Current

-F-
FAFOV Full-Angle Field of View
FARCAL Facility for Advanced Radiometric Calibrations
FASCAL Facility for Automated Spectroradiometric Calibrations
FEL Not an acronym, but a lamp designator.
FET Field-Effect Transistor
FF Free-Fall
FFT Fast Fourier Transform
FIGD-IC Flow Injection Gas-Diffusion Coupled to Ion Chromatography
FL-Cuba Florida-Cuba (cruise)

F-mount Not an acronym, but a mounting system for camera lenses.
FORTRAN Formula Translation (computer language)
FOV Field of View
FRRF Fast Repetition Rate Fluorometer
FS Field Stop
FWHM Full-Width at Half-Maximum

-G-
GAC Global Area Coverage
GF Glass Fiber (Filter)
GF/F Not an acronym, but a specific type of glass fiber filter manufactured by Whatman.
GLOBEC Global Ocean System Eco-Dynamics
GMT Greenwich Mean Time
GoA97 Gulf of Alaska 1997 (cruise)
GoCal Gulf of California
GOES-8 The Eighth Geostationary Operational Environmental Satellite
GOM Gulf of Maine
GPIB General Purpose Interface Bus
GPS Global Positioning System
GS GSFC and Satlantic (comparison)
GSE Ground Support Equipment
GSFC Goddard Space Flight Center
GUI Graphical User Interface

-H-
HACR High-Accuracy Cryogenic Radiometer
HDF Hierarchical Data Format
HDS Horizontal Deployment System
HEPA High Efficiency Particle Arrestor
HMS Her Majesty's Ship
HOB Hydro-Optics, Biology, and Instrumentation (Laboratories)
HOT Hawaii Optical Time-series
HP Hewlett-Packard
HPL Horn Point Laboratory
HPLC High Performance Liquid Chromatography
HRPT High Resolution Picture Transmission
HS Horizon Scanner
HTCO High Temperature Catalytic Oxidation

-I-
IAD Ion-Assisted Beam Deposition
IC Integrated Circuit
ICESS Institute for Computational Earth System Science
ID Identification or Inside Diameter (depending on usage).
IDL International Date Line or Interactive Data Language (depending on usage).
IEEE Institute of Electrical and Electronic Engineers
IES Institute for Environment Sustainability
IF Interference Filter
ILX Not an acronym, but part of the name of ILX Lightwave Corporation of Bozeman, Montana.
IMSL International Mathematical and Statistical Libraries
INSU Institut National des Sciences de l'Univers (the French National Institute of the Science of the Universe)
<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>IOCCG</td>
<td>International Ocean Colour Coordinating Group</td>
</tr>
<tr>
<td>IOP</td>
<td>Inherent Optical Property</td>
</tr>
<tr>
<td>IOPs</td>
<td>Inherent Optical Properties</td>
</tr>
<tr>
<td>IOS</td>
<td>Institute of Oceanographic Sciences</td>
</tr>
<tr>
<td>IQR</td>
<td>Interquartile Range</td>
</tr>
<tr>
<td>IS</td>
<td>Internal Standard</td>
</tr>
<tr>
<td>ISDGM</td>
<td>Istituto per lo Studio della Dinamica delle Grandi Masse (Institute for the Study of Dynamics of Large Masses)</td>
</tr>
<tr>
<td>ISIC</td>
<td>Integrating Sphere Irradiance Collector</td>
</tr>
<tr>
<td>JAS</td>
<td>July-August-September</td>
</tr>
<tr>
<td>JCR</td>
<td>James Clark Ross</td>
</tr>
<tr>
<td>JES9906</td>
<td>Japan East Sea Cruise, 1999-06</td>
</tr>
<tr>
<td>JFM</td>
<td>January-February-March</td>
</tr>
<tr>
<td>JG</td>
<td>JRC and GSFC (comparison)</td>
</tr>
<tr>
<td>JGOFS</td>
<td>Joint Global Ocean Flux Study</td>
</tr>
<tr>
<td>JRC</td>
<td>Joint Research Centre</td>
</tr>
<tr>
<td>JS</td>
<td>JRC and Satlantic (comparison)</td>
</tr>
<tr>
<td>KMR</td>
<td>K from Multiresolution (wavelet analysis)</td>
</tr>
<tr>
<td>L1</td>
<td>Level-1 SeaWiFS data product</td>
</tr>
<tr>
<td>L1A</td>
<td>Level-1a SeaWiFS data product with navigation information</td>
</tr>
<tr>
<td>L2</td>
<td>Level-2 SeaWiFS data product</td>
</tr>
<tr>
<td>L3</td>
<td>Level-3 SeaWiFS data product</td>
</tr>
<tr>
<td>Lab96</td>
<td>Labrador Sea Cruise, 1996</td>
</tr>
<tr>
<td>Lab97</td>
<td>Labrador Sea Cruise, 1997</td>
</tr>
<tr>
<td>Lab98</td>
<td>Labrador Sea Cruise, 1998</td>
</tr>
<tr>
<td>LAC</td>
<td>Local Area Coverage</td>
</tr>
<tr>
<td>LANDSAT</td>
<td>Land Satellite</td>
</tr>
<tr>
<td>LLR</td>
<td>Low Level Radiance</td>
</tr>
<tr>
<td>LN</td>
<td>LoCNESS</td>
</tr>
<tr>
<td>LoCNESS</td>
<td>Low-Cost NASA Environmental Sampling System</td>
</tr>
<tr>
<td>LOV</td>
<td>Laboratoire d'Océanographie de Villefranche (Oceanographic Laboratory of Villefranche)</td>
</tr>
<tr>
<td>LPCM</td>
<td>Laboratoire de Physique et Chimie Marines (Laboratory of Marine Physics and Chemistry)</td>
</tr>
<tr>
<td>LS</td>
<td>Light Stability</td>
</tr>
<tr>
<td>LSB</td>
<td>Least Significant Bit</td>
</tr>
<tr>
<td>LTER</td>
<td>Long Term Ecological Research</td>
</tr>
<tr>
<td>LUT</td>
<td>Look-Up Table</td>
</tr>
<tr>
<td>LXR</td>
<td>LANDSAT Transfer Radiometer</td>
</tr>
<tr>
<td>MA</td>
<td>Methylamine</td>
</tr>
<tr>
<td>MBARI</td>
<td>Monterey Bay Aquarium Research Institute</td>
</tr>
<tr>
<td>MBR</td>
<td>Maximum Band Ratio</td>
</tr>
<tr>
<td>MCM</td>
<td>Marine and Coastal Management (South Africa)</td>
</tr>
<tr>
<td>MCP</td>
<td>Modified Cubic Polynomial</td>
</tr>
<tr>
<td>MER</td>
<td>Marine Environmental Radiometer</td>
</tr>
<tr>
<td>MERS</td>
<td>Medium Resolution Imaging Spectrometer</td>
</tr>
<tr>
<td>METEOSAT</td>
<td>Meteorological Satellite</td>
</tr>
<tr>
<td>MF0796</td>
<td>R/V Miller Freeman Cruise, 1996-07</td>
</tr>
<tr>
<td>MFR-6</td>
<td>Multi-Filter Rotating Shadow-Band Radiometer</td>
</tr>
<tr>
<td>microNESS</td>
<td>micro NASA Environmental Sampling System</td>
</tr>
<tr>
<td>microSAS</td>
<td>micro Surface Acquisition System</td>
</tr>
<tr>
<td>miniNESS</td>
<td>miniature NASA Environmental Sampling System</td>
</tr>
<tr>
<td>MIO</td>
<td>Mer Ionienne (Ionian Sea)</td>
</tr>
<tr>
<td>MISR</td>
<td>Multispectral Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MLD</td>
<td>Mixed Layer Depth</td>
</tr>
<tr>
<td>MLML</td>
<td>Moss Landing Marine Laboratory</td>
</tr>
<tr>
<td>MMA</td>
<td>Mirror Mount Assembly or Monomethylamine (depending on usage)</td>
</tr>
<tr>
<td>MN</td>
<td>miniNESS</td>
</tr>
<tr>
<td>MOBY</td>
<td>Marine Optical Buoy</td>
</tr>
<tr>
<td>MOCE</td>
<td>Marine Optical Characterization Experiment</td>
</tr>
<tr>
<td>MODIS</td>
<td>Moderate Resolution Imaging Spectroradiometer</td>
</tr>
<tr>
<td>MODTRAN</td>
<td>Not an acronym, but an atmospheric photochemical and radiative transfer model.</td>
</tr>
<tr>
<td>MOS</td>
<td>Modular Optoelectronic Scanner (spaceborne sensor) or Marine Optical Spectroradiometer (depending on usage).</td>
</tr>
<tr>
<td>MREN</td>
<td>Maison de la Recherche en Environnement Naturel</td>
</tr>
<tr>
<td>MSB</td>
<td>Most Significant Bit</td>
</tr>
<tr>
<td>MT</td>
<td>Mesotrophic</td>
</tr>
<tr>
<td>MVDS</td>
<td>Multichannel Visible Detector System</td>
</tr>
<tr>
<td>N</td>
<td>North</td>
</tr>
<tr>
<td>NABE</td>
<td>North Atlantic Bloom Experiment</td>
</tr>
<tr>
<td>NAd</td>
<td>North Adriatic (Current)</td>
</tr>
<tr>
<td>NASA</td>
<td>National Aeronautics and Space Administration</td>
</tr>
<tr>
<td>NASDA</td>
<td>National Space Development Agency (Japan)</td>
</tr>
<tr>
<td>NCEP</td>
<td>National Center for Environmental Prediction</td>
</tr>
<tr>
<td>NCSPA</td>
<td>National Center for Supercomputing Applications</td>
</tr>
<tr>
<td>NDVI</td>
<td>Normalized Difference Vegetation Index</td>
</tr>
<tr>
<td>NEC</td>
<td>Northeast US Coastal Ecosystem or the present name (not an acronym) for the Nippon Electric Company (Japan), depending on usage.</td>
</tr>
<tr>
<td>NECC</td>
<td>North Equatorial Counter Current</td>
</tr>
<tr>
<td>NEGIS</td>
<td>Northeast Gulf of Mexico</td>
</tr>
<tr>
<td>NEUC</td>
<td>North Equatorial Undercurrent</td>
</tr>
<tr>
<td>NIR</td>
<td>Near-Infrared</td>
</tr>
<tr>
<td>NIST</td>
<td>National Institute of Standards and Technology</td>
</tr>
<tr>
<td>NOAA</td>
<td>National Oceanic and Atmospheric Administration</td>
</tr>
<tr>
<td>NR</td>
<td>Not Resolved</td>
</tr>
<tr>
<td>NRL</td>
<td>Naval Research Laboratory</td>
</tr>
<tr>
<td>NRSR</td>
<td>Normalized Remote Sensing Reflectance</td>
</tr>
<tr>
<td>NSD</td>
<td>Normalized Standard Deviation</td>
</tr>
<tr>
<td>OC</td>
<td>Ocean Color</td>
</tr>
<tr>
<td>OC2</td>
<td>Ocean Chlorophyll 2 (algorithm)</td>
</tr>
<tr>
<td>OC2v1</td>
<td>OC2 version 1</td>
</tr>
<tr>
<td>OC2v2</td>
<td>OC2 version 2</td>
</tr>
<tr>
<td>OC2v4</td>
<td>Ocean Chlorophyll 2 (algorithm) version 4</td>
</tr>
<tr>
<td>OC4</td>
<td>Ocean Chlorophyll 4 (algorithm)</td>
</tr>
</tbody>
</table>
E.R. Firestone and S.B. Hooker

OC4v2 OC4 version 2
OC4v3 OC4 version 3
OC4v4 OC4 version 4
OCI Ocean Color Irradiance (sensor)
OCI-200 Ocean Color Irradiance series 200 (sensor)
OCPI Ocean Color Profiler
OCR Ocean Color Radiance (sensor)
OCR-200 Ocean Color Radiance series 200 (sensor)
OCR-250 Ocean Color Radiance Series 250 (sensor)
OCR-504 OCR series-504 (four-channel, digital sensor)
OCR-507 OCR series-507 (seven-channel, digital sensor)
OCR-1000 Ocean Color Radiance Series 1000 (sensor)
OCR-2000 Ocean Color Radiance Series 2000 (sensor)
OCTS Ocean Color Temperature Scanner
OD Outside Diameter
OL Optronic Laboratories, Inc.
OLL One-Percent Light Level
OND October–November–December
OPC Optical Plankton Counter
OrbView-2 Not an acronym, but the current name for the SeaStar satellite.
ORINOCO Orinoco River Plume
OSC Orbital Sciences Corporation
OT Oligotrophic
OV2 OrbView-2

PAR Photosynthetically Available Radiation
PC Personal Computer or Percent Contribution Ratio (depending on usage).
PCR Polymerase Chain Reaction
PD Percent Difference
PI Principal Investigator
P-I Photosynthesis-Irradiance
PID Proportional, Integral, Differential
PlyMBODy Plymouth Marine Bio-Optical Data Buoy
PM Particulate Matter
PML Plymouth Marine Laboratory
POC Particulate Organic Carbon
POLDER Polarization Detecting Environmental Radiometer
PRIME Plankton Reactivity in the Marine Environment
PRO-DCU Not an acronym, but a designator for the Satlantic, Inc., series of 48–76 V deck boxes.
PROSOPE Productivité des Systèmes Océaniques Pelagiques (Productivity of Pelagic Oceanic Systems)
PRR Profiling Reflectance Radiometer
PRT Platinum Resistance Temperature (sensor)
PS Power Supply
PSD Particle Size Distribution
PST Pacific Standard Time
PSU Practical Salinity Units
PTFE Polytetrafluoroethylene
PVC Polyvinylchloride

QC Quality Control

RAM Random Access Memory
RE Ramsden Eyepiece
RED9503 Red Tide Cruise, 1995-03
Res94 Resolute Cruise, 1994
Res95-2 Resolute Cruise, 1995
Res96 Resolute Cruise, 1996
Res98 Resolute Cruise, 1998
RF Response Factor
RH Relative Humidity
RL Relay Lens
RMA Reduced Major Axis
RMS Root Mean Squared
RMSD Root Mean Square Difference
RMSrd Root Mean Square of relative difference
ROAVERRS Research on Ocean–Atmosphere Variability and Ecosystem Response in the Ross Sea
ROLO Robotic Lunar Observatory
ROSSA Radiometric Observations of the Sea Surface and Atmosphere
RPD Relative Percent Difference
RRS Royal Research Ship
RSG (PML) Remote Sensing Group
RSMAS Rosenstiel School for Marine and Atmospheric Science
RSR Relative Spectral Response
RSS Root-Sum Square
RTV Room Temperature Vulcanizing
RVS (BAS) Research Vessel Services

S South
S/N Serial Number
S/CSC Stennis (Space Center) Coastal Services Center
S/NRL Stennis Space Center, Naval Research Laboratory
SACZ Sub-Antarctic Convergence Zone
SAI Space Applications Institute
SAS Surface Acquisition System
SAS-II Satlantic Airborne Sensor
SAT Short Along-Track (station)
SatView The Satlantic data acquisition and visualization software package.
SBE Sea-Bird Electronics
SBRC Santa Barbara Research Center (Raytheon)
SBRS Santa Barbara Remote Sensing (Hughes)
SBUV Solar Backscatter Ultraviolet Radiometer
SC Shallow Coastal
SCOR Scientific Committee on Oceanographic Research
SDSU San Diego State University
SDY Sequential Day of the Year
SeaACE SeaWiFS Atlantic Characterization Experiment
SeaARCS SeaWiFS Advanced Radiometer Control System
SeaBAM SeaWiFS Bio-optical Algorithm Mini-workshop
SeaBASS SeaWiFS Bio-Optical Archive and Storage System
SeaBOARR SeaWiFS Bio-Optical Algorithm Round-Robin
SeaBOARR-98 The First SeaBOARR (1998)
SeaBOARR-99 The Second SeaBOARR (1999)
SeaBOARR-00 The Third SeaBOARR (April–May 2000)
SeaWiFS Postlaunch Technical Report Series Cumulative Index: Volumes 1-23

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>SeaBOARR-01</td>
<td>The Fourth SeaBOARR (June 2001)</td>
</tr>
<tr>
<td>SeaBOARR-02</td>
<td>The Fifth SeaBOARR (June 2002)</td>
</tr>
<tr>
<td>SeaBOSS</td>
<td>SeaWiFS Buoyant Optical Surface Sensor</td>
</tr>
<tr>
<td>SeaDAS</td>
<td>SeaWiFS Data Analysis System</td>
</tr>
<tr>
<td>SeaFALLS</td>
<td>SeaWiFS Free-Falling Advanced Light Level Sensors</td>
</tr>
<tr>
<td>SeaHARRE</td>
<td>SeaWiFS HPLC Analysis Round-Robin Experiment</td>
</tr>
<tr>
<td>SeaHARRE-1</td>
<td>The First SeaWiFS HPLC Analysis Round-Robin Experiment</td>
</tr>
<tr>
<td>SeaLaMP</td>
<td>SeaWiFS Lamp Monitoring and Performance</td>
</tr>
<tr>
<td>SeaOPS</td>
<td>SeaWiFS Optical Profiling System</td>
</tr>
<tr>
<td>SeaPRISM</td>
<td>SeaWiFS Photometer Revision for Incident Surface Measurement</td>
</tr>
<tr>
<td>SeaSAS</td>
<td>SeaWiFS Surface Acquisition System</td>
</tr>
<tr>
<td>SeaSHADE</td>
<td>SeaWiFS Shadow Band (radiometer)</td>
</tr>
<tr>
<td>SeaStar</td>
<td>Not an acronym, but the former name of the satellite on which SeaWiFS was launched, now known as OrbView-2.</td>
</tr>
<tr>
<td>SeaSURF</td>
<td>SeaWiFS Square Underwater Reference Frame</td>
</tr>
<tr>
<td>SeaWiFS</td>
<td>Sea-viewing Wide Field-of-View Sensor</td>
</tr>
<tr>
<td>SEC</td>
<td>South Equatorial Current</td>
</tr>
<tr>
<td>SEC</td>
<td>Scanning Electronic Microscopy</td>
</tr>
<tr>
<td>SEUC</td>
<td>South Equatorial Undercurrent</td>
</tr>
<tr>
<td>SIAP</td>
<td>Società Italiana Apparecchi di Precisione</td>
</tr>
<tr>
<td>SIFS</td>
<td>Satlantic Instrument Files Standard</td>
</tr>
<tr>
<td>SIMBAD</td>
<td>Satellite Validation for Marine Biology and Aerosol Determination</td>
</tr>
<tr>
<td>SIMBIOS</td>
<td>Sensor Intercomparison and Merger for Biological and Interdisciplinary Oceanic Studies</td>
</tr>
<tr>
<td>SIO</td>
<td>Scripps Institution of Oceanography</td>
</tr>
<tr>
<td>SIRCUS</td>
<td>Spectral Irradiance and Radiance Calibrations with Uniform Standards</td>
</tr>
<tr>
<td>SIRREX</td>
<td>SeaWiFS Intercalibration Round-Robin Experiment</td>
</tr>
<tr>
<td>SIRREX-1</td>
<td>The First SIRREX (July 1992)</td>
</tr>
<tr>
<td>SIRREX-2</td>
<td>The Second SIRREX (June 1993)</td>
</tr>
<tr>
<td>SIRREX-3</td>
<td>The Third SIRREX (September 1994)</td>
</tr>
<tr>
<td>SIRREX-4</td>
<td>The Fourth SIRREX (May 1995)</td>
</tr>
<tr>
<td>SIRREX-5</td>
<td>The Fifth SIRREX (July 1996)</td>
</tr>
<tr>
<td>SIRREX-6</td>
<td>The Sixth SIRREX (August–December 1997)</td>
</tr>
<tr>
<td>SIRREX-7</td>
<td>The Seventh SIRREX (March 1999)</td>
</tr>
<tr>
<td>SIRREX-8</td>
<td>The Eighth SIRREX (September–December 2001)</td>
</tr>
<tr>
<td>SIS</td>
<td>Spherical Integrating Source</td>
</tr>
<tr>
<td>SMAB</td>
<td>Southern Mid-Atlantic Bight</td>
</tr>
<tr>
<td>SMSR</td>
<td>SeaWiFS Multichannel Surface Reference</td>
</tr>
<tr>
<td>SNR</td>
<td>Signal-to-Noise Ratio</td>
</tr>
<tr>
<td>SO</td>
<td>SeaOPS</td>
</tr>
<tr>
<td>SOC</td>
<td>Southampton Oceanography Centre</td>
</tr>
<tr>
<td>SOMARE</td>
<td>Sampling, Observations and Modelling of Atlantic Regional Ecosystems</td>
</tr>
<tr>
<td>SOOP</td>
<td>SeaWiFS Ocean Optics Protocols</td>
</tr>
<tr>
<td>SOSTEP</td>
<td>Ship of Opportunity Sea Surface Temperature Radiometer</td>
</tr>
<tr>
<td>SPMR</td>
<td>SeaWiFS Profiling Multichannel Radiometer</td>
</tr>
<tr>
<td>SPO</td>
<td>SeaWiFS Project Office</td>
</tr>
<tr>
<td>SQM</td>
<td>SeaWiFS Quality Monitor</td>
</tr>
<tr>
<td>SQM-1I</td>
<td>The Second Generation SQM</td>
</tr>
<tr>
<td>SRF</td>
<td>Spectral Response Function</td>
</tr>
<tr>
<td>SS</td>
<td>Sea State</td>
</tr>
<tr>
<td>SSE</td>
<td>Size-of-Source Effect</td>
</tr>
<tr>
<td>SSH</td>
<td>Sea Surface Height</td>
</tr>
<tr>
<td>SSM/I</td>
<td>Special Sensor for Microwave/Imaging</td>
</tr>
<tr>
<td>SSST</td>
<td>Sea Surface Skin Temperature</td>
</tr>
<tr>
<td>SUnSAS</td>
<td>SeaWiFS Underway Surface Acquisition System</td>
</tr>
<tr>
<td>SXR</td>
<td>SeaWiFS Transfer Radiometer</td>
</tr>
<tr>
<td>- T -</td>
<td>T Transmission method for spectrophotometric analysis.</td>
</tr>
<tr>
<td>T/N</td>
<td>Temporary (identification) Number</td>
</tr>
<tr>
<td>TAO</td>
<td>Tropical Atmosphere-Ocean</td>
</tr>
<tr>
<td>TBAA</td>
<td>Tetrabutyl Ammonium Acetate</td>
</tr>
<tr>
<td>TEC</td>
<td>Thermoelectric Cooler</td>
</tr>
<tr>
<td>THOR</td>
<td>Three-Headed Optical Recorder</td>
</tr>
<tr>
<td>TIROS</td>
<td>Television Infrared Observation Satellite</td>
</tr>
<tr>
<td>TMA</td>
<td>Trimethylamine</td>
</tr>
<tr>
<td>TOA</td>
<td>Top of the Atmosphere</td>
</tr>
<tr>
<td>TOC</td>
<td>Total Organic Carbon</td>
</tr>
<tr>
<td>TOGA</td>
<td>Tropical Ocean Global Atmosphere</td>
</tr>
<tr>
<td>TOMS</td>
<td>Total Ozone Mapping Spectrometer</td>
</tr>
<tr>
<td>T-R</td>
<td>Transmission-Reflection (method for spectrophotometric analysis)</td>
</tr>
<tr>
<td>TSM</td>
<td>Total Suspended Matter</td>
</tr>
<tr>
<td>TOPEX</td>
<td>Topography Experiment</td>
</tr>
<tr>
<td>TOTO</td>
<td>Tongue of the Ocean (Bahamas)</td>
</tr>
<tr>
<td>TOVS</td>
<td>TIROS Operational Vertical Sounder</td>
</tr>
<tr>
<td>TSG</td>
<td>Thermacontrolograph</td>
</tr>
<tr>
<td>TSM</td>
<td>Total Suspended Matter</td>
</tr>
<tr>
<td>TSP</td>
<td>Thermo Separation Products</td>
</tr>
<tr>
<td>TTL</td>
<td>Transistor–Transistor Logic</td>
</tr>
<tr>
<td>- U -</td>
<td>UA University of Arizona</td>
</tr>
<tr>
<td>UCSB</td>
<td>University of California, Santa Barbara</td>
</tr>
<tr>
<td>UIC</td>
<td>Underway Instrumentation and Control</td>
</tr>
<tr>
<td>UK</td>
<td>United Kingdom</td>
</tr>
<tr>
<td>ULCO</td>
<td>Université du Littoral Côte d’Opale</td>
</tr>
<tr>
<td>UM</td>
<td>University of Miami</td>
</tr>
<tr>
<td>UMCES</td>
<td>University of Maryland Center for Environmental Science</td>
</tr>
<tr>
<td>UNC</td>
<td>Unified Course</td>
</tr>
<tr>
<td>UNESCO</td>
<td>United Nations Educational, Scientific, and Cultural Organization</td>
</tr>
<tr>
<td>UOR</td>
<td>Undulating Oceanographic Recorder</td>
</tr>
<tr>
<td>UPD</td>
<td>Unbiased Percent Difference</td>
</tr>
<tr>
<td>UPS</td>
<td>Uninterruptable Power Supply</td>
</tr>
<tr>
<td>UPW</td>
<td>Upwelling</td>
</tr>
<tr>
<td>URL</td>
<td>Universal Resource Locator</td>
</tr>
<tr>
<td>USF</td>
<td>University of South Florida</td>
</tr>
<tr>
<td>USGS</td>
<td>United States Geological Survey</td>
</tr>
<tr>
<td>USN</td>
<td>United States Navy</td>
</tr>
<tr>
<td>UTC</td>
<td>Coordinated Universal Time (definition reflects actual usage instead of following the letters of the acronym).</td>
</tr>
<tr>
<td>UV</td>
<td>Ultraviolet</td>
</tr>
<tr>
<td>UVA</td>
<td>Ultraviolet-A</td>
</tr>
<tr>
<td>- V -</td>
<td>V1 Version 1</td>
</tr>
<tr>
<td>V2</td>
<td>Version 2</td>
</tr>
<tr>
<td>V3</td>
<td>Version 3</td>
</tr>
<tr>
<td>V4</td>
<td>Version 4</td>
</tr>
<tr>
<td>V5</td>
<td>Version 5</td>
</tr>
<tr>
<td>VAFB</td>
<td>Vandenberg Air Force Base</td>
</tr>
<tr>
<td>Acronym</td>
<td>Description</td>
</tr>
<tr>
<td>---------</td>
<td>-------------</td>
</tr>
<tr>
<td>VisSCF</td>
<td>Visible Spectral Comparator Facility (NIST)</td>
</tr>
<tr>
<td>VKI</td>
<td>VKI Institute for Water Environment (Denmark)</td>
</tr>
<tr>
<td>VXR</td>
<td>Visible Transfer Radiometer</td>
</tr>
</tbody>
</table>

- **W** -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>W</td>
<td>West</td>
</tr>
<tr>
<td>WC</td>
<td>Winch and Crane</td>
</tr>
<tr>
<td>WETLabs</td>
<td>Western Environmental Technology Laboratories (Inc.)</td>
</tr>
<tr>
<td>WG</td>
<td>Working Group</td>
</tr>
<tr>
<td>WiSPER</td>
<td>Wire-Stabilized Profiling Environmental Radiometer</td>
</tr>
<tr>
<td>WM</td>
<td>Spherical Mirror Wedge Section</td>
</tr>
<tr>
<td>WMO</td>
<td>World Meteorological Organization</td>
</tr>
</tbody>
</table>

- **X** -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>WOCE</td>
<td>World Ocean Circulation Experiment</td>
</tr>
<tr>
<td>WP</td>
<td>WiSPER</td>
</tr>
<tr>
<td>WS</td>
<td>Wind Speed</td>
</tr>
<tr>
<td>WSSC</td>
<td>Washington Suburban Sanitary Commission</td>
</tr>
</tbody>
</table>

- **Y, Z** -

<table>
<thead>
<tr>
<th>Acronym</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>YB71</td>
<td>Not an acronym, but a type of paint for solar diffusers.</td>
</tr>
<tr>
<td>YBOM</td>
<td>Yamato Bank Optical Mooring (Japan)</td>
</tr>
<tr>
<td>YES</td>
<td>Yankee Environmental Systems (Inc.)</td>
</tr>
</tbody>
</table>

REFERENCES

-A-

..., and S.B. Hooker, 1997: The Atlantic Meridional Transect: Spatially extensive calibration and validation of optical properties and remotely-sensed measurements of ocean color. Backscatter, 8, 8–11.

..., and, C. Halikas, 1976: The index of refraction of seawater. SIO Ref. 76–1, Vis. Lab., Scripps Institution of Oceanography, La Jolla, California, 64 pp.

B-

—, and ——, 2002: Monte Carlo modeling of optical transmission within 3-D shadowed field: Application to large deployment structures, 41, 4,283–4,306.

28

1988: Optical modeling of the upper ocean in relation to its biogenous matter content (Case I waters). *J. Geophys. Res.*, 93, 10,749-10,768.

E.R. Firestone and S.B. Hooker

Stumpf, R.P., and M.A. Tyler, 1998: Multiresolution analysis of diffuse attenuation coefficient with an emphasis on surface and deep layers, Ocean Optics XIV.

—, 2001: ETOPO2 Database on CD-ROM, NOAA, National Geophysical Data Center, Boulder, Colorado, USA.

E.R. Firestone and S.B. Hooker

—, and J-F. Berthon, 2001: In situ relationships between Q-factor and seawater optical properties in a coastal region, Limnol. Oceanogr., 46, 1,130–1,140.

THE SEAWIFS POSTLAUNCH TECHNICAL REPORT SERIES

Vol. 1

Vol. 2

Vol. 3

Vol. 4

Vol. 5

Vol. 6

Vol. 7

Vol. 8

Vol. 9

Vol. 10

Vol. 11

Vol. 12

Vol. 13

Vol. 14

Vol. 15

Vol. 16

SeaWiFS Postlaunch Technical Report Series

Volume 24: The SeaWiFS Postlaunch Technical Report Series Cumulative Index: Volumes 1–23

AUTHOR(S):
Elaine R. Firestone and Stanford B. Hooker

Series Editors: Stanford B. Hooker and Elaine R. Firestone

PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES):
Laboratory for Hydrospheric Processes
Goddard Space Flight Center
Greenbelt, Maryland 20771

SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES):
National Aeronautics and Space Administration
Washington, D.C. 20546-0001

SUMMARY OF FINDINGS:
The Sea-viewing Wide Field-of-view Sensor (SeaWiFS) is the follow-on ocean color instrument to the Coastal Zone Color Scanner (CZCS), which ceased operations in 1986, after an eight-year mission. SeaWiFS was launched on 1 August 1997, onboard the OrbView-2 satellite, built by Orbital Sciences Corporation (OSC). The SeaWiFS Project at the National Aeronautics and Space Administration (NASA) Goddard Space Flight Center (GSFC), undertook the responsibility of documenting all aspects of this mission, which is critical to the ocean color and marine science communities. The start of this documentation was titled the SeaWiFS Technical Report Series, which ended after 43 volumes were published. A follow-on series was started, titled the SeaWiFS Postlaunch Technical Report Series. This particular volume of the so-called Postlaunch Series serves as a reference, or guidebook, to the previous 23 volumes and consists of 4 sections including an errata, an index to key words and phrases, a list of acronyms used, and a list of all references cited. The editors will publish a cumulative index of this type after every five volumes.

DISTRIBUTION/AVAILABILITY STATEMENT:
Unclassified—Unlimited

DISTRIBUTION CODE:

<table>
<thead>
<tr>
<th>DISTRIBUTION CODE</th>
<th>DISTRIBUTION STATEMENT</th>
</tr>
</thead>
<tbody>
<tr>
<td>000</td>
<td>Classified—Confidential</td>
</tr>
<tr>
<td>010</td>
<td>Classified—Secret</td>
</tr>
<tr>
<td>020</td>
<td>Classified—Top Secret</td>
</tr>
<tr>
<td>100</td>
<td>Unclassified—Public</td>
</tr>
<tr>
<td>110</td>
<td>Unclassified—Limited</td>
</tr>
<tr>
<td>120</td>
<td>Unclassified—Unclassified</td>
</tr>
</tbody>
</table>

NUMBER OF PAGES:
35

PRICE CODE:
Standard

SECURITY CLASSIFICATION OF REPORT:
Unclassified

SECURITY CLASSIFICATION OF THIS PAGE:
Unclassified

SECURITY CLASSIFICATION OF ABSTRACT:
Unclassified

LIMITATION OF ABSTRACT:
Unlimited