Testing Update on 20 and 25-Ah Lithium Ion cells

Gregg C. Bruce, Pamella Mardikian and Sherri Edwards
Eagle-Picher Energy Products Corporation

Kumar Bugga, Keith Chin, Marshall Smart and Subbarao Surampudi
JPL

NASA Aerospace Battery Workshop
19-21 November 2002
Testing Update on Large Lithium Ion cells

Topics

- Introduction
- 20-Ah Cell, Design I
 - Design
 - Test Results, Cell cycling at various temperatures and storage
- 25-Ah Cell, Design II
 - Design
 - Test Results, various temperatures, cell cycling and LEO cycling
- Conclusions
Testing Update on
Large Lithium Ion cells

Introduction

- Eagle-Picher Energy Products has worked on lithium ion batteries for approximately 8 years
- During that period EPEPC developed and delivered several cell sizes on a program funded by the USAF and Canadian DND
- Designs are wound cylindrical cells from 7 to 40-Ah
- Most cells delivered were approximately 25-Ah due to requirements of Mars missions
- Several iterations of cells were manufactured and delivered for evaluation
- The first design was 20-Ah, Design I, and the second was a 25-Ah, Design II
Testing Update on Large Lithium Ion cells

Introduction

- Deliveries related to the program were:

- 10, 20-Ah cells to JPL 05/97
- 12, 7-Ah cells to JPL 05/98
- 12, 25-Ah cells to JPL 05/98
- 10, 37.5-Ah cells to Phillips 05/98
- 10, 25-Ah cells to LMA 08/98
- 30, 25-Ah cells to JPL 09/98
Testing Update on Large Lithium Ion cells

Introduction

- Cells have been under test at JPL for over 5 years
- All results presented were supplied by JPL
- No events of significance to report
- The “25-Ah” cell designs evolved over time
- Increased rate capability; tabbing issues
- Increased low temperature performance; electrolyte
Design Features - Design I

- Drawn Can - SS304
 - 3.50” diameter x 2.50” x 0.19”
- Standard Penetrations
 - TA-23, 0.125” Mo
 - Fill Tube, Rupture disc 235 psi
- Positive electrode, 1300 x 4.40 x 0.017 cm (LiCoO₂)
- Negative electrode, 1330 x 4.70 x 0.011 cm (Graphite)
- Delivered May 1997
20 - Ah Cylindrical Cell

Cell Design - Design I
Cycling at 23°C - C/5, 100% DOD

- BS09
- BS15

Constant current charge = 4.6 A (C/5)
Constant voltage (4.1V) taper to 0.46 A
Discharge current = 4.6 A (C/5)
Discharge cut-off voltage = 3.0V

Capacity fade rate: 0.019% per cycle.
Cell Cycling and Storage - Cycling at 100% DOD, C/5 at 23°C

- Cells cycled for 1000 cycles at 100% DOD, at RT before storage.
- Cells stored at RT, probably at 100% SOC for about 1.5 years (18 months).
- Total storage (including the cycling time) since manufacture: > 30 months.
- Cells then placed back on 100% DOD, C/5 cycling for 1500 more cycles, approximately 2 years.
EPEPC cell cycled and stored at RT

Eagle-Picher Lithium-Ion Cell
Cell BS 15

28 Month Testing Period
20.6 % Capacity Loss
(0.74 % per month)

Cell completed >1000 cycles
(100% DOD, 23 °C)

18.927 Ahr
23.839 Ahr
(79.4 % Reversible Capacity)

4.0 Amp Discharge Current (C/5 Rate)

Initial Capacity (Aug 1997)
Capacity After Prolonged Storage (Dec 1999)
20 - Ah Cylindrical Cell

Capacity Changes upon RT Cycling (100% DOD) and storage

- 17-20% loss during cycling (1000 cycles over 500 days) and 3-4% loss during storage (1.5 years).

Cell #
Cycle Life and Storage Performance (Gen I 20 Ahr), 4.5 years Testing

Eagle-Picher 20 Ahr Prototype Lithium Ion Cells

Cell BS09

5.0 Amp Charge Current (C/10) to 4.1 V
0.500 Amp taper current cut-off (C/50)
5.0 Amp Discharge Current to 3.0 V
Temperature = 23°C
Cell Cycling and Storage - Cycling at 50% DOD at 0ºC

- Cells cycled for 1000 cycles at 50% DOD and 0ºC before storage
- Cells stored at 0ºC, probably at 100% SOC for about 1.5 years (18 months) after cycling.
- Total storage (including the cycling time) since manufacture: > 30 months.
- Post storage tests in Jan-Feb. 00
 - Capacity check at RT
- Further storage at 0ºC in progress
• End of discharge voltage depression: 7-8 mV/100 cycles.
Eagle-Picher Lithium-Ion Cell
Cell BS 06

28 Month Testing Period
8.1 % Capacity Loss
(0.29% per month)

4.0 Amp Discharge Current (C/5 Rate)
(91.9 % Reversible Capacity)

Initial Capacity (Aug 1997)
Capacity After Prolonged Storage (Dec 1999)

Discharge Capacity (Ahr)
Cell Voltage (V)
Conclusions - Design I

- The cycling results from the Design I cell were quite impressive with slightly greater than 50% of initial capacity after 2500 cycles at 23°C and 100% DOD, total test time approximately 4.5 years
- Storage advantage of 0°C over RT is quite evident with only a 8% loss in capacity after 1000 cycles at 0°C and 18 months storage at 100% SOC versus 20% loss with 100% DOD and storage both at 23°C
25 - Ah Cylindrical Cell

Design Features

- Drawn Can - SS304
 2.625” diameter x 4.50” x 0.19”
- Standard Penetrations
 TA-23, 0.187” Ta - 4-40 thread
 Fill Tube, Rupture disc 150 psi
- Positive electrode, 639 x 8.80 x 0.017 cm (LiCoO$_2$)
- Negative electrode, 656 x 9.10 x 0.011 cm
- Cells delivered September 1998
25 - Ah Cylindrical Cell

Cell Design - Design II

<table>
<thead>
<tr>
<th>ITEM</th>
<th>QTY</th>
<th>DESCRIPTION / DWG. NUMBER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>CAN</td>
</tr>
<tr>
<td>2</td>
<td>1</td>
<td>CAP ASSEMBLY</td>
</tr>
<tr>
<td>3</td>
<td>1</td>
<td>CATHODE</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>ANODE</td>
</tr>
<tr>
<td>5</td>
<td>1</td>
<td>THERMAL IRRADIATION</td>
</tr>
<tr>
<td>6</td>
<td>1</td>
<td>JELLY ROLL INSULATOR</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>SEPARATOR</td>
</tr>
<tr>
<td>8</td>
<td></td>
<td>ELECTROLYTE, 100% EC/EC</td>
</tr>
<tr>
<td>9</td>
<td></td>
<td>AERIAL SEPARATOR, 200.cc.</td>
</tr>
</tbody>
</table>

- ELECTROLYTE WEIGHT 200 ± 10g.

NOTE:
1) Dimensions given are nominal and must not exceed ± 0.100.
2) All drawings are planned with a primary purpose of providing essential information for manufacturing.

EAGLE-PICHER ENERGY PRODUCTS CORP

CONFIDENTIAL INFORMATION

This technical information is owned by EAGLE-PICHER Energy Products and is confidentially licensed and distributed to you in confidence. You agree not to copy, publish or otherwise reproduce this information without the express written permission of EAGLE-PICHER Energy Products and to inform our clients about this agreement. You agree to return all confidential information to us. All copyrights and patent rights reserved.

NASA Aerospace Battery Workshop - 19 - 21
November 2002
Eagle-Picher 25 Ah Lithium - Ion Cells for Lander Applications
Room Temperature Rate Capability

Cell voltage (V)

Discharge Capacity (Ah)

2.5 A Charge Current (C/10)
4.1 V (Taper to C/50)

Cell BS C016

- 2.5 Ah Discharge (C/10)
- 5.0 Ah Discharge (C/5)
- 7.5 Ah Discharge (C/3.3)
Cycle Life Characteristics at Different Temperatures (Gen II)

Discharge Capacity (Ah) vs Cycle Number

- 5.0 A Charge Current (C/5)
- 4.1 V (Taper to C/50)
- 5.0 A Discharge Current (C/5)
- 3.0 V Cut-off voltage

Temperature = 40 °C
Temperature = 23 °C
Temperature = -20 °C
Room Temperature Cycle Life Performance (100% DOD at 23°C)

Eagle-Picher 25 Ahr Lithium-Ion Cell (Generation II)
Cell BC 75

Temp = 23°C

- 5.0 A Charge Current (C/5)
- 4.1 V (Taper to C/50)
- 5.0 A Discharge Current (C/5)
- 3.0 V Cut-off voltage

Discharge Capacity (Ah)

Cycle Number
Room Temperature Cycle Life Performance (100% DOD at 23°C)

Eagle-Picher 25 Ahr Lithium-Ion Cell
Cell BS C022
Test Started July 1998

- 5.0 A Charge Current (C/5)
- 4.1 V (Taper to C/50)
- 5.0 A Discharge Current (C/5)
- 3.0 V Cut-off voltage
- 23°C
Eagle-Picher 25-Ah Cell - JPL LEO Test Results

- **Test Started 12/98**
 (>17 months to date)

- **(a) 15 A Discharge current (0.6C)**
 30 min Discharge (7.5 Ahr)

- **(b) 10 A Charge current (0.4 C)**
 4.1 V Con. potential charge
 60 min Charge period

BS C074

Temperature = 23°C
Eagle-Picher 25-Ah Cell - JPL LEO Test Results

Test Started 12/98
(a) 15 A Discharge current (0.6 C)
 30 min Discharge (7.5 Ahr)
(b) 10 A Charge current (0.4 C)
 4.1 V Con. potential charge
 60 min Charge period

Temperature = 23°C

BS C074

~ 9000 Cycles
~ 14000 Cycles
~ 17000 Cycles
Conclusions - Design II

- Design changes from Design I to II resulted in improved low temperature performance and rate capability.
- Effect of temperature on capacity fade as expected.
- Very good cycle life at 60% initial capacity at 2000, 100% DOD, C/5 cycles.
- Simulated LEO test protocol, 30% DOD, shows 9000 cycles at 23°C. Better results would be expected at lower temperatures.
- One cell vented after 2000 cycles with only a loss in capacity.
Conclusions - General

- One of the first large lithium ion cells delivered for evaluation
- Showed the potential for the technology to replace existing technologies and to be mission enabling
Acknowledgements

- EPEPC gratefully acknowledges the cooperation and test results provided by JPL.