Technology Requirements for the 21st Century – A NASA Perspective

Dr. Woodrow Whitlow, Jr.
October 23, 2002

Glenn Research Center
at Lewis Field
Outline

- NASA Vision and Mission
- Aeronautics Technology
- Space Technology
- Education Programs
- Conclusions
The NASA Mission

To understand and protect our home planet

To explore the universe and search for life

To inspire the next generation of explorers

... as only NASA can.
To Understand and Protect Our Home Planet

- Understanding the Earth’s system and its response to natural and human-induced changes
- Enabling a safe, secure, efficient, and environmentally friendly air transportation system
- Investing in technologies and collaborating with others to improve the quality of life and to create a more secure world

Glenn Research Center
at Lewis Field
The Airspace System

Today’s Challenges:

• Overcome reduced throughput in bad weather
• Eliminate en route congestion and the “domino effect” throughout the system
• Keep pace with demand for arrival and departures at benchmark airports*
• Increase situational awareness in the system

Technology Solutions:

• High-resolution weather
 • Precise forecasts
 • Precise wake vortex knowledge
• System-level traffic flows optimization
 • Separation assurance for complex traffic flows
• High-flow airports
 • No gaps in arrival and departure streams
 • Efficient surface movement and rapid reconfiguration
• Communication, navigation, and surveillance
 • High-bandwidth and reliable data transmission
 • Precision navigation
 • System wide coverage
Airspace System of the Future

Glenn Research Center
at Lewis Field
Revolutionary Vehicles

Today’s Challenges:
- Reduce noise
- Eliminate airport restrictions
- Lower emissions
- Reduce greenhouse gases
- Improve local air quality
- Improve safety
- Reduce the accident rate
- Enhance capabilities—advance technology
- Autonomous operation
- Supersonic overland flight
- Runway independence

Technology Solutions:
- Integrated airframe and propulsion systems
- Active flow and noise control
- Intelligent propulsion systems
- Fuel-efficient vehicles
- Reconfigurable control laws
- Integrated vehicle health monitoring
- Automated decision aids
- Advanced vehicle concepts
Information Technology

Intelligent Design Synthesis
In the Virtual Environment

Science Understanding

Human Exploration
of Space

Robotic Exploration of Space

Aircraft Operations

Glenn Research Center
at Lewis Field
Intelligent Systems

Automated Reasoning
Systems that reliably make and execute decisions which traditionally require human intervention

Human Centered Computing
Tools that amplify both human and machine performance

Intelligent Data Understanding
Autonomous techniques that transform data into information, information into knowledge, and knowledge into understanding

Revolutionary Computing
Advanced technologies that provide a platform for future Intelligent Systems

Glenn Research Center at Lewis Field
Nanoscale Technologies

Nanotubes
Nanoscale particles
Nanocrystalline materials
Molecular building blocks for self-assembling materials
Ordered nanocavities and nanopore arrays for growth templates

Glenn Research Center at Lewis Field
Nanotechnology Research for Propulsion & Power

- Materials 100x stronger than Steel
- Electronics processing 100x faster
- Fuel Cell with 10x greater power density
- In-vivo biosensors 1000X smaller
Biotechnology Applications

- Mimic biological systems

- Embed biological elements to create hybrid systems (e.g., hybrid nanomechanical devices - integration of biological motors with NEMS)

- Create fully biological and life-like systems.
 Examples:
 - Embryological electronics, with reproduction, adaptation and evolution
 - Highly intelligent structures that design themselves

Glenn Research Center
at Lewis Field
To Explore the Universe and Search for Life

- Exploring the Universe and the life within it... enabled by technology, first with robotic trailblazers, and eventually humans... as driven by these compelling scientific questions:
 - How did we get here?
 - Where are we going?
 - Are we alone?
Space Systems of the Future

Autonomous

Resilient

Ultra-Efficient

Evolvable

Highly Distributed

Self-Sufficient

Glenn Research Center
at Lewis Field
To Inspire the Next Generation of Explorers

- Motivating students to pursue careers in science, math, and engineering
- Providing educators with unique teaching tools and compelling teaching experiences
- Improving our Nation’s scientific literacy
- Engaging the public in shaping and sharing the experience of exploration and discovery
Educated Workforce—Approach to Education

Today’s Challenges:

- Raise the interest in science and engineering in elementary, middle, and high schools.
- Prepare future graduates for a world of rapid technological change, complex systems, and advancements around the world.
- Maintain the high-tech workforce on par with the continuously advancing state of technology.

Technology Solutions:

- Foster interest and excitement in aerospace—establish an exciting vision for aeronautics
- Stimulate curriculum change and virtual and collaborative learning environments that will enhance educational relevance and scope
- Create life-long learning system that links classrooms to laboratories and on-the-job experiences

Glenn Research Center
at Lewis Field
Conclusions

• Advanced technology is essential to the Nation’s future

• NASA has established very challenging technology goals for meeting future challenges

• Innovative research programs are in place to help obtain those goals

• NASA plays a significant role in ensuring a well-trained technology workforce and is increasing its emphasis in this area