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Abstract 

This paper is a study of optimal experiment design applied to the measure of 
thermal properties in functionally graded materials. As a first step, a material 

with linearly-varying thermal properties is analyzed, and several different tran- 

sient experimental designs are discussed. An optimality criterion, based on sen- 

sitivity coefficients, is used to  identify the best experimental design. Simulated 

experimental results are analyzed to verify that the identified best experiment 

design has the smallest errors in the estimated parameters. This procedure is 

general and can be applied to design of experiments for a variety of materials. 
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kth parameter 

specific heat per unit volume, [J(m3K)-']  
optimality condition, Eq. (12) 
slope of spatial variation, unitless 

thermal conductivity [ W ( T ~ K ) - ~ ]  
sample thickness, [m] 

number of time steps 

number of parameters 

applied heat flux, [W m-2] 

number of sensors 

time, [ S I  
temperature, [K]  
spatial coordinate [m] 
sensitivity coefficient, Eq. (9) 
sensitivity matrix [sn x p ]  

Greek 
a thermal dsusivi ty  [m2s-'] 
E 

p density [kg m-3] 
8 dimensionless time 

small value for finite difference 

h heater 

a index for time step 

j index for sensors 

IC index for parameters 

Superscripts 
- 
( ) spatial average quantity 

( )+ dimensionless quantity 
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Introduction 

Functionally graded materials are being studied as possible components of aero- 

space thermal protection systems. Functionally graded (FG) materials include 

composites with epoxy and metal matrices, metal foams, or any structure with 

properties designed to  vary with position. In the future when FG materials 

are specified as part of a vehicle program, part of the procurement process will 

involve certification that  the material meets the specifications. 

To date there has been little research on accurate thermal characterization of 

FG materials. The  present research is intended to close this gap in the procure- 

ment cycle by developing accurate methods to measure the thermal properties 

of FG materials. 

A review of the pertinent literature is given next. The  focus here is on 

FG materials described by macroscopic or effective properties, rather than on 

microscopic structures. Several researchers have found exact analytical so- 
lutions for thermal response by representing a FG material as composed of 

multiple layers each with different, spatially uniform, thermal properties1i2, 

or with exponential-function variation of thermal properties along one spatial 

direction3i4. Still others have used Galerkin's method to find temperature in 

materials with arbitrary property distributions5. The primary motivation for 

these studies of temperature has been to  determine the thermal stresses. There 

has also been some work to  find the distribution of thermal properties tha t  

optimizes the thermal stress distribution6i7. 

There is only one research group that has reported experiments t o  measure 

thermal properties in a FG material. Maltino and Noda have used transient the- 

ory applied to  a FG material with exponential variation of thermal proper tie^'?^. 
They have measured the single parameter that  describes the thermal property 

variation in the material with a transient heating experiment. Their data anal- 

ysis combines a single temperature datum with their transient theory to  provide 

a single value for the parameter. Although simple in concept, this approach is 

sensitive to  measurement noise. 

The  approach used in the present work is parameter estimation, a statistics- 

based method of property measurement, that  has been applied to  transient 

experiments for many yeardo. In  this method the desired parameters are found 

by non-linear regression between the experimental data  (temperatures in this 

case) and a computational model of the experiment. Parameter estimation 
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concepts have recently been applied to optimal experiment design for thermal 

characterization of uniform materials11i12 and for materials with temperature 

varying properties13. 

The focus of this paper is to  develop optimal experiments to  thermally char- 

acterize FG materials with low thermal conductivity. To the author’s knowledge 

this is the first study of optimal experiments for thermal properties in FG ma- 

terials. 

Next a brief overview of the paper is given. In the next section a heat 

transfer model of the one-dimensional FG material is described. The  sensitivity 

coefficients and sensitivity matrix are then defined, and their use in the design of 

optimal experiments is described. Several experimental designs are investigated 

for a material with linearly- varying thermal properties under specific (simu- 

lated) experimental conditions. The best experimental design and the optimal 

operating conditions are identified. The results are also verified with simulated 

experiments for estimation of thermal parameters from noise-containing data.  

Model 

In this section a one-dimensional heat conduction model of the FG material is 

discussed. This model is used to  both simulate the experiments and to construct 

the sensitivity coefficient matrix. 

Consider the one-dimensional heat conduction in a slab of thickness L. The 

thermal conductivity and (volume) specific heat vary with coordinate z. The 

material properties are constant with respect to  temperature (or small changes 

in temperature are assumed). The following dimensionless variables will be used 

to  describe the heat conduction problem: 

k+ = k ( z ) / Z ;  c+ = C(z)/C; 7% = E/C (2) 

(3) 
L - L - 

k = ; L  k(z)dz; c= ;1 C(z)dx 
Here % and are the spatial average properties over the slab body, TO is a 

fixed temperature, and qo is the applied surface heat flux. The use of spatial- 

average properties to normalize the problem facilitates comparisons between 

different experiments and between different materials. 
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Based on the author’s previous experience with low-conductivity materials14, 

there are several elements that  every experiment should contain: rapid heating 

on one side of the material for some period; continued da ta  collection during a 

zero-heating period; and, a fixed temperature at the other side of the material 

(if active cooling is not practical, a large thermal mass at the non-heated face 

can be used). 

Using the above dimensionless values, this type of experiment can be simu- 

lated by solving the following equations: 

o < z + < 1  
d dT+ dT+ 

LIT+ 
at z+ = 0, - k+(o)- ax+ 

1, 8 < 
0, 8 > O h  

= 

at  z+ = 1, Tf( i , e )  = o 
at e = 0, T+(x+,o) = o 

(4) 

(5) 

Heating takes place a t  surface IC+ = 0 until time Oh after which the heating 

ends. This problem is solved by a finite difference procedure. The  time deriva- 

tive is treated with the Crank- Nicholson method with uniform time steps. The 

spatial nodes are crowded towards x = 0 with a sine-squared scheme so tha t  the 

early-time temperature can be accurately computed with a reasonable number 

of nodes. Properties k + ( z )  and Ct(z) are evaluated in a subroutine so that  

different property distributions may be easily studied. The numerical solution 

was verified by comparison with two exact solutions: a constant-property tran- 

sient solution15 and a steady-state solution for a material with linearly-varying 

properties16. These comparisons show that  40 spatial nodes are adequate and 

that  the maximum timestep should be about 68 = 0.005 for 0.1% accuracy in 

the surface temperature value. 

Optimal Experiment Design 

Sensitivity coefficients and the sensitivity matrix are needed in the design 

of optimal experiments for thermal property evaluation. The sensitivity coeffi- 

cients are defined by 
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which is the sensitivity for the kth parameter, the j t h  temperature sensor, and 

the i t h  time step. Parameters bk may include conductivity, specific neat, density, 

etc. In this research the sensitivity matrix may encompass several heating events 

considered together as one experiment, in which case additional heating events 

are treated as additional sensors. 

The  sensitivity coefficients were computed with a finite-difference procedure 

to  approximate the derivative, as follows: 

Here TG is the temperature a t  the ith timestep for the j t h  sensor. The value 

of E = 0.001 was found to  give well-behaved values for X .  
Much can be gained from studying the sensitivity coefficients to  guide the 

design of a n  experiment, and  there are two specific requirements that  the sen- 

sitivity coefficients must satisfy. First, the sensitivity coefficients should be as 
large as possible. Generally any change in the experiment tha t  increases the size 

of the sensitivity coefficient is an improvement. Second, when two or more pa- 

rameters are to  be measured in the same experiment, the sensitivity coefficients 

must be linearly independent. That  is, the shape of the sensitivity coefficients 

must be different. A formal procedure to  quantify these two requirements is 

given next. 

The  sensitivity coefficients are assembled into a sensitivity matrix X ,  defined 

by 

Optimum experiment design is based on maximization of a quantity con- 

structed from the sensitivity matrix multiplied by its transpose, given formally 
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by X T X .  The elements of [p x p ]  matrix X T X  are given by 

The optimality criterion selected for this study is the (normalized) determinant 

of matrix X T X ,  given by 

Note tha t  the optimality criterion D is normalized by the maximum tempera- 

ture rise (squared), the number of sensors, and the number of time steps. This is 

important so tha t  the optimality criterion D may be used to  compare different 

experiments. The determinant is computed for any value of p with well-known 

matrix methods17. The optimality criterion insures that the sensitivity coeffi- 

cients will be large and linearly independent. 

The optimality criterion is subject t o  the following standard statistical as- 

sumptions: additive, uncorrelated errors with zero mean and constant variance; 

errorless independent variable; and, no prior information. Maximizing the op- 

timality criterion minimizes the hypervolume of the confidence region of the 

parameter estimated3. 

Experiment a1 Designs Considered 

The focus of this research is to  explore the design of experiments for ther- 

mal characterization of functionally graded materials, that  is, materials with 

spatially-varying thermal properties. 

As a first step, a material with linearly varying properties was analyzed. 

Consider a one-dimensional slab body (0 < J: < L )  of this material. The  thermal 

conductivity [W(mK)-l] and volume specific heat [J(m3K)-']  are given by 

k(z) = x[l + e .  ( z / L  - 1/2)] 

C(z) = ??[I t e .  ( Z / L  - 1/2)] 

Here the parameters are E, the spatial-average thermal conductivity, E,  the 

spatial-average specific heat, and e, the dimensionless slope. The same slope is 

used for both k and C to represent the effect of density variation on thermal 

properties in a metal foam, for example. 
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Figure 1: Spatial variation of thermal properties studied. 

A finite-difference computer routine was written to  compute temperature, 

sensitivity coefficients, and optimality criterion D. Three levels of spatial-property 

spatial variation were studied: e = 0.2, 1.0, and 1.8, representing property varia- 

tion of *lo%, k50%, and 3 ~ 9 0 % ~  respectively, from the mean value, as shown in 

Fig. 1. Different mean values for were not studied since the normalized 

results are valid for any conductivity and specific heat. 

and 

Several combinations of simulated experimental conditions were studied, in- 

cluding the number of and location of sensors, heating on one side or the other, 

heating duration, experiment duration, and the number of parameters. 

Results for Opt imality 

The results for optimality condition D are given in this section. The special 

case when the thermal properties are spatially constant is considered first for 

comparison with earlier work. There are only two parameters present, and 

C. Consider an experiment with a single on-off heating event and with one 

temperature sensor located on the heated surface. The normalized optimality 

condition for this case is plotted versus dimensionless time in Fig. 2 for several 

different heater-off times. This figure reproduces the results of Taktak et al.ll 

t o  provide verification of the code used for the present research. Note in Fig. 2 
that  continuous heating creates a single baseline value for each case, and then 

when heating stops the D-value jumps above this baseline by a factor of two or 
so. The optimal experiment for a uniform-property material involves a heating 

duration of Oh = 2.25 and experiment duration about 3.0 where D,,, = 0.02.. 
In  the next sections materials with linearly-varying properties will be discussed. 

- 
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Figure 2: Optimality condition D for a uniform property material for estimat- 

ing parameters and for several values of heater-off time Oh. There is one 

temperature sensor a t  x = 0 and heating at  x = 0. 

One heating event, one sensor. 

In this section a material with linear properties described by Eqs. (13) and (14) 
is studied for which the three parameters are k, C, and e. Consider a simulated 

experiment containing a single heating event and a single sensor a t  the heated 

surface. The other surface is maintained a t  ambient temperature. Consider first 

continuous heating to  investigate the baseline values of D. In Fig. 3 optimality 

condition D is plotted versus time for three values of slope e for a material 

heated at x = 0 (the low-k side). The central result shown in Fig. 3 is tha t  

the baseline D-values for three parameters are orders of magnitude less than for 
two parameters shown in Fig. 2. Clearly is it more difficult to  estimate three 

parameters compared with two. Another observation is that  the magnitude of 

D is smaller for smaller values of slope e. Thus it is more difficult to  estimate 

small values of e for which the properties are nearly uniform. 

- _  

Next consider Fig. 4 in which D-values are shown for the same materials 
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Figure 3: Optimality condition D for a linearly-varying property material with 

continuous heating a t  3: = 0 and one sensor a t  x = 0. Parameters are IC, C, and 

e. 

- -  

but with the experiment reversed: continuous heating at  x = L (the high-k 

side); a single temperature sensor at x = L; and, a fixed temperature a t  x = 0. 
For e = 0.2 the D-values are similar in size and shape to Fig. 3. For e = 1.0 
the peak D-value occurs a t  a slightly later time because of the greater thermal 

mass near IC = L. (Recall that  the time axis is normalized by the spatial-average 

thermal diffusivity.) Finally for e = 1.8, not only is the peak D-value delayed 

but the peak value is about 10 times greater than for heating at x = 0. At 

this point one might conclude that  heating a t  the high-IC side is best, at least 

for large-e materials. However larger D-values t,han these are present,ed in the 

following sections by the use of interior temperature sensors and by combining 

two heating events in a single experiment. 

One heating event, two sensors  

In this section simulated experiments were analyzed with two sensors, one a t  the 

heated surface and one sensor inside the sample. Generally a second temperature 

sensor located in the range 0.2 < x / L  < 0.4 gave the largest D-values. If the 
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Figure 4: Optimality condition D for a linearly-varying property material with 

continuous heating at  x = L and one sensor a t  x = L. Parameters are I C ,  C, 
and e. 

- _  

second sensor is too close to  the surface sensor it offers little new information, 

and if the second sensor is too close to x = L its response will be limited by the 

fixed-temperature boundary there. 

In  all of the cases reported here the second sensor is located at x2 = 0.25L. 
Results for e = 0.2 are typical and are presented in Fig. 5 .  Note that  the 

baseline values for D for two sensors, with the heater continuously energized, 

are about 60 times larger than for one sensor as shown in Fig. 3 (for case 

e = 0.2). That  is, use of an additional sensor inside the body greatly improves 

the experiment. In  Fig. 5 four cases are also presented for which the heater is 

shut off before 8 = 4.0. The best experiment is that  for which the heater is shut 

off at 8h = 2.3 and the experiment continues until 0 = 2.8. The same trend of 

improvement is present for other values of e. Results for e = 1.0 and e = 1.8 

for two sensors and one heating event are listed as experiment 1 in Table 1. 
The table shows that the optimal heating times and experiment durations are 

shorter for larger values of e. For all e-values the choice of heater shut-off time 

causes only small changes in the maximum D-value, that  is, the peak D-value 

is insensitive to  heating duration when an interior sensor is used. 
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Table 1. Maximum value of optimality condition D, and the conditions under 

which it occurs, for three experiments: (1) one heating event and two sensors 

a t  x / L  = 0, 0.25; (2) two heating events, from each side, with one sensor on the 

heated side; and (3) spatially uniform properties (for comparison), one heating 

event, one sensor at x = 0. 

Experiment 

(parameters) 

1. (K, 77, e) 

2. (Z, 77,e) 

3. (X, C )  

slope 

e 

0.2 
1.0 

1.8 

0.2 

1 .o 
1.8 

- - 
time 

oh 

2.3 

1.5 

1.5 - 

1.3 

1.7 

1.3 

2.25 - - 

time at 

Dmax 

2.8 

1.8 

1.7 

1.9 

2.2 

1.5 

3.0 

Dmax 

value 

1.7(10-6) 

8.7( 

1.2(10-3) 

9.5( lop6) 
24.( 

2 .2(10-~)  

0.02 

Two h e a t i n g  events, o n e  sensor  each. 

In this section results are presented for an experiment composed of data  from 

two heating events, each involving one surface-mounted temperature sensor. In 

one heating event the sample is heated at  x = 0 and the sensor is located at 
x = 0. In the other heating event the sample is heated at  x = L and the 

sensor is located at II: = L. In the laboratory the second heating event could be 

accomplished with the same heater and sensor by reversing the sample. This 

experimental design takes advantage of the different conductivity values on each 

side of the body and the fact that  surface-mounted sensors are simpler to install 

than interior sensors. 

For simplicity both heating events involve the same heating duration Oh 

and the same data  duration. In  Fig. 6 D-values are plotted versus time for 

four different heater-off times, again for e = 0.2. Each curve represents the 

combination of data  from two heating events into a single experiment. Once 

again the familiar shape occurs with a baseline value for continuous heating, 
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Figure 5: Optimality condition D for an experiment with two temperature 

sensors a t  x l L  = 0 and 0.25 and heating at x = 0 for several cases with different 

heating duration. Parameters are I C ,  C, and e. 
- -  

with heater-off cases providing an additional boost to the maximum D value. 

The  distinguishing feature, once again, is the magnitude of D,,, compared to  

earlier experiment designs. This case with two heating events gives a D,,, 
nearly 6 times higher than for the interior sensor case (Fig. 5). The  best 

experiment from the e = 0.2 results shown in Fig. 5 is for heating off a t  Oh = 1.3 

which provides D,,, = 9.5(10V6) at experiment duration O = 1.9. 

A summary of results for e = 1.0 and e = 1.8 for two heating events are 

listed as experiment 2 in Table 1. The same general trends are exhibited for 
these e-values, however the amount of improvement in D,,, is less for higher 

e-values when comparing two heating events with an interior sensor. 

Simulated Experiments 

The purpose of optimal experimental design is to provide meaningful assis- 

tance in thermal characterization and in analyzing experimental data.  In  this 

section simulated thermal-characterization experiments are carried out for two 

experimental designs. 
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a t  x = L ,  combined into one experiment. The temperature sensor is located a t  

the heated surface. Parameters are k, C, and e. 
- _  

Simulated experiments are carried out by adding errors to exact temperature 

values (computed from the model), and analyzing this error-containing da ta  to  

estimate parameters. The added errors are normally distributed with zero mean 

and an adjustable variance. The error variance was set to  either 1% or 5% of the 

maximum temperature values. The added error values are found with a com- 

puter routine tha t  requires a seed number, and different seed numbers can be 

used to  produce different sequences of error values (these are sometimes called 

pseudo-random numbers). The simulated da ta  is analyzed with a Marquardt 

regression scheme which systematically compares the simulated data  with val- 

ues computed from the model based on iteratively improved guesses for the 

parameters. Iteration ceases when the improvements in the parameters become 

small. 

Figure 7 shows a set of simulated data  with added error variance 5%. The 

regression fit for this data  is also shown in the figure. The 5% variance in the 

added error is much larger than would be tolerated in reasonable experimental 
practice, but it is useful as a test  of the estimation scheme. In this case the 
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Figure 7: Simulated data  (with noise) and regression fit for experiment 1 (one 

heat event, two sensors) for e = 1.8 and error variance 5%. 

estimation scheme converges without incident. 

The  regression scheme was applied to a variety of simulated experiments, 

and i t  was found that  the parameter estimates varied somewhat for different 

error sequences (different seed numbers in the random-number generator) , even 

though the variance of the errors was identical. This suggested tha t  a single 

simulated experiment may be misleading as to the precision of the estimates. 

One estimate might by chance be particularly close to  the actual value, and 

another estimate might be particularly far from its actual value. To deal with 

this uncertainty, each simulated experiment was repeated ten times, and an 

ensemble average error was computed. For each repetition n, the error for 

parameter b, is given by: 

bi - bi 
erri (n)  = - x 100% 

bi 

Here the exact value is bi and the estimated value is &. The ensemble average 

error for parameter bi is given by 
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Note that the absolute value of each error is used in the ensemble average. The 

purpose here is to compare the errors produced by &&rent experiments, and 

the absolute value reduces the variability in the results without biasing the error 

values towards zero. In contrast, in analyzing lab data from several identical 

experiments, a simple average of the parameter estimates (no absolute value) 

would be appropriate t o  find the most precise estimates. 

Table 2 shows the summary of results of the ensemble average error found 

from ten repetitions of each simulated experiment. Two experiment designs are 

compared in the table, and the operating conditions for each experiment are 

taken from the optimal conditions given earlier. The values in Table 2 show 

that  experiment 2 tends to  provide smaller error in the estimates for the high- 

noise data ,  and when the material distribution slope, e,  is small. Under these 

difficult conditions, the conclusion is that  experiment 2 is best for estimating 

parameters. For less difficult conditions, for example with low-noise data  and 

for e large, experiments 1 and 2 provide comparable-size errors in the estimated 

parameters. 

In all cases listed in Table 2 the simulated experiments were carried out with 

30 simulated data  points (extracted from the many time steps required in the 

model calculation), and the initial guesses for the parameters in the regression 

scheme were taken to be 0.9 times the correct parameter values. To explore the 

effect of these arbitrary choices on the parameter estimates, additional simulated 

experiments were carried out. Additional cases included: 60 simulated data  

points; initial guesses of 0.5 times the correct parameter values; and, initial 

guesses of 1.5 times the correct parameter values. In all these additional cases 

the results were comparable to those in Table 2. 

Summary and Conclusions 

In this paper optimal experiments are sought for the measurement of thermal 

properties in FG materials with spatially-varying thermal properties. As a first 

step, one-dimensional transient experiments were studied for a material with 

linearly-varying thermal properties described by parameters C, k, and slope e. 
Variation of properties with temperature was not treated. 

- -  



Table 2. Percent error in parameter estimates from simulated experiments. Re- 

ported values are ensemble averages over 10 repetitions of the data  analysis for 

each experiment design. 

Experiment 

Design 

1. One heat event, 

two sensors a t  

x / L  = 0, 0.25. 

2. Two heat events, 

from each side, 

one sensor on 

heated side. 

percent 

variance 

in data 
slope 

e 

0.2 

1 .o 
1.8 

0.2 

1.0 

1.8 

0.2 

1.0 

1.8 

0.2 

1.0 

1.8 

ensemble average error 

in parameters, 
- 
k 

0.2435 

0.3100 

0.2936 

0.9914 

2.2731 

1.9463 

0.3249 

0.3706 

0.8085 

1.5017 

1.9755 

3.1122 

- 
C 

2.1681 

1.9259 

1.5820 

10.6676 

13.4547 

4.7742 

1.0254 

0.8316 

0.5851 

6.8977 

4.0834 

1.7011 

%cent 

e 
10.9687 

1.2855 

0.1461 

59.2553 

18.2089 

0.9925 

7.4094 

1.3456 

0.3114 

23.6133 

6.3749 

1.4480 

Several transient experimental designs were considered, including single or 
multiple heating events and including surface and/or interior temperature sen- 

sors. An optimality condition based on sensitivity coefficients was used to  find 

the best operating conditions for each experiment, and to find the best exper- 

imental design among those studied. The  best experiment has the smallest 

hypervolume of the confidence region of the parameter estimates. 

The results of the optimality study show that it is more difficult to obtain 

accurate values of slope e when e is small compared to  when e is large; tha t  is, 

it is easier to “see” large spatial variations in properties. The best experimental 

design involves analysis of combined data  from two separate heating events, 

one with heating on one side of the body and one with heating on the other 

side, each time with the sensor located on the heated side and the unheated 

side maintained at a fixed temperature. This conclusion is also supported by 
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a series of simulated experiments, carried out with regression analysis of error- 

containing temperature values. 

The  optimal operating conditions for the experiment are somewhat depen- 

dent on the property slope e. For the specific case e = 0.2, the optimal conditions 

are heating duration of 8h = 1.3 and with da ta  recorded until 8 = 1.9, where 8 
is dimensionless time. 

The method of optimal experiment design discussed in this paper has been 

demonstrated for a class of functionally-graded materials, however the approach 

is completely general and applies to  any material. Work in progress includes op- 

timal experiment design for thermal characterization of porous materials under 

conditions where both conduction and radiation heat transfer are present. 
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