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NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-T7T72

TRAJECTORY CONTROL IN RENDEZVOUS PROBLEMS
USING PROPORTIONAL NAVIGATION

By Iuigl S. Cicolani
SUMMARY

The rendezvous problem 1s defined by the end conditions that the
position and veloeclty of a vehicle and its target are to be matched. In
its present form proportional navigation theory allows the interception
of a target by the vehicle, that is, the matching of positions. This
report extends the theory to include the full rendezvous end conditions.
Trajectory constraint equations are derived and the method of computing
the required thrust program in idealized problems is outlined. The
thrust program obtained results entirely from the trajectory and does
not consider the dynamics of the vehicles or errors inherent in a real
system. The properties of the thrust program, such as its variation both
in magnitude and direction, are examined. An acceleration foreing function
is also derlved and 1ts properties examined. The theory 1s applied to

the satellite rendezvous problem as an example and some computations are
presented.

INTRODUCTION

A rendezvous between a maneuverable vehicle and its target requires
that the position and veloeity of the vehicle be matched simultaneously
wlth those of the target. Such a maneuver is potentially useful in
several commonly mentlioned astronautic operatlons, for example, satellite
rendezvous and planetary landings. There are also many ordinary instances
of maneuvers requiring the rendezvous end conditions, for example, airplane
landings, vehicle parking, refueling operations, etc.

The control of both position and velocity to effect the rendezvous
implies complex terminal maneuvering for which the utility of a terminal
guldance system located in either the vehicle or target is evident. A
number of terminal guidance systems, both manual (e.g., ref. 1 and ref-
erences therein) and automatic (refs. 2, 3, 4), have already been proposed
in comnection with the satellite rendezvous problem.

Reference 3 views the problem as one of orbital transfer and the
dynamic equations of motion are solved to find the single impulse transfer
which intercepts the target satellite. At Interception & second impulse



reduces the relative veloclty to zero. This work has been amplified in
references 5, 6, and elsewhere, but is essentially restricted to the
speclal case in which the target is in a eircular orbit. The effect of
gravity has been linearilzed in this work so that the solution is in
error if long transfer times are used, and in practice a number of
additional corrective impulses will be required.

Reference 4 proposes a foreing function for a continuous thrust
automatic feedback system. This type of solution for the rendezvous
problem has also been followed by others (ref. 7 and elsewhere). A number
of cases have been integrated to show that the rendezvous does occur.
But it is not clear that & rendezvous is always produced or what effect
the external forces have on the operation of such a system, nor is it
clear what limits must be imposed on the sensitivitles of the forcing
functions. This type of solution suffers from the analytical difficulty
that all information on the nature of the solution can be obtained only
by numerical integration of the dynamic equations of motion over the
whole range of cases of interest in each rendezvous problem. Once it
becomes necessary to integrate the dynamic equations in this problem,
the analysis will generally yield nothing further except by an extensive
computational program.

There is, however, an altermative approach to the rendezvous problem
which circumvents this analytical difficulty. It should be recognized
at this polnt that the general rendezvous requirements are simply end
conditions on the kinematics and that any practicable maneuver which
achleves these end conditions 1s of possible use. The problem must
therefore be capable of a general kinematic solution and the complete
nature of the solution should then yleld to analysis. Therefore, the
line of investigation taken in this report is to conslder first the
kinematics and to seek a trajectory control technique which, in general,
produces a rendezvous, leaving until later the matfer of forces required
to constrain the trajectory in the prescribed manner.

The automatic trajectory control technique of proportional navigation
has been applied successfully to aeronautical interception problems, that
is, problems in which only the positions of a vehicle and its target are
to be matched. Now the proportional navigation centrol equation implies
an interception but does not of itself specify the type of interception
any further. Thus, the homing missile maneuver of aeronautics is a special
class of proportional navigation interceptions having the additional
constraint that the relative velocity remain nearly constant during the
maneuver. Such interceptions may also be used in rendezvous problems,
provided a terminal burst of retrothrust is applied to reduce the relative
velocity to zero. But the point here is that a rendezvous is an inter-
ception having the constraint that the relative velocity be zero at the
time of interception, and that there may be a general class of proportional
navigation interceptions having this constraint. Specifically, the
objective of this work is to find the class of proportional navigation
interception trajectories in which the velocities of the maneuverable
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vehilcle and the target are matched at the point of interception. The
key to finding this class is to replace the constraint of constant
relative veloecity used in homing missile work with the velocity end
condition of rendezvous.

Proportional navigation is, of course, not the only trajectory
control technique avallable, but the extensive experience with homing
misslile systems may be of direct benefit in rendezvous guidance systems.

The use of proportional navigation in satellite rendezvous operations
was originally suggested by Wrigley in referer :e 2 where the basic homing
missile technique was applied directly to rendezvous. This involved,
therefore, the assumption of constant relative velocity and also of small
lead angle. Both assumptions will be eliminated; the first since, as
explained above, we seek a more general class of rendezvous maneuvers,
and the second because it is necessary that the initial conditions be
unrestricted 1f the solution is to be of practical value.

The properties of the thrust program required for the vehicle to
perform the maneuvers are also investigated. Tr- method for computing
the thrust program is ocutlined. Once the initial conditions are
established, the entire desired rendezvous trajectory may be computed
and this Information utilized in the dynamic equations of motion to
compute the required thrust. The equation for thrust can be put into a
form appropriate to a forecing function for an automatic feedback system.
The thrust program obtained in this report, however, results entirely
from the trajectory, and does not consider the dynamics of the vehicle
nor the measuring and performance errors inherent in a particular real
system. TIts examination ylelds an insight into the general properties
of the acceleration time histories of a successful rendezvous.

In the last section of the report, the theory is applied as an
example to the satelllte rendezvous problem. Calculations were made for
coplanar rendezvous with satellites in circular orbits and the character-
isties of the thrust program are examined. Propellant requirements for
the cases Investigated are given, but a computational program ¢ :fficient
to study fuel optimization was outside the scope of this work.

SYMBOLS
Al*:AZ*) ai,
8p,83,b1, ad hoc symbols in derivations
b2) dl: d—2
a location of reference frame or origin of reference frame

b observed point



Hy 0

Ht
H

Ui,Uz,uUs
UR,Ug,Uugp

v

X1,X2,X3

o

Ao,Bo, T

rocket exhaust velocity

thrust force per unit mass

target inertial acceleration

external force per unit mass on the vehiecle
acceleration due to gravity at the satellite position
inertial origin

lead angle

vehicle mass

vehicle mass gt the end of the rendezvous maneuver
position vector of observed point

range of observed point

guldance system parameters

time from start of guidance

time of rendezvous

guldance thrust force on the vehicle

orthogonal unit vectors defining reference frame
orthogonal unit vectors based on motion of observed point
direction of relative velocity

relative veloeity vector

relative velocity

angular velocity of the line of sight

inertial angular velocity of reference frame
angular veloelty of relative velocity vector
direction cosines for the position vector, iR
thrust angle

Euler angles

0o
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y departure of line of sight from initial line of sight
és satellite orbital angular velocity

T dimensionless time, 1 - %%

¥ transformation matrix between 1ug,0y,u; frame and

reference frame
R angular veloeclty of the line of sight

Sy angular veloecity of the relative veloeity vector

Subscripts and Superscripts

( o initial conditions
() vectors
( )‘ derivative with respect to T
(.) time derivative in reference space
é% () time derivative in inertial space
* .
() quantities made dimensionless with cBg
THEORY

Kinematics and Trajectory Constraint Equations

The condition for a rendezvous is that the positions and velocities
of a rendezvous vehicle and its destination, or target, be matched simul-
taneously. This condition is readily shown to be independent of the
reference frame in which velocities are measured. In particular, if the
reference frame 1s based at either vehlcle or target, then rendezvous
requires that relative velocity and range become zero simultaneously, or:

ﬁ =0 when R=0

Since any trajectory of the rendezvous vehicle which has these end
conditions will produce a rendezvous, it is apparent that one approach
to the problem is to specify the trajectory beforehand so that the end
conditions are met. This may be done without reference to the forces



involved. The thrust program necessary to follow the specified trajectory
can be computed later from the required relative acceleration and the
external forces.

Proportional navigation.- Consider two vehicles, a and b, one of
which may be maneuvered to rendezvous with the other. A reference frame
in which relative motion is measured is assumed to be carried by vehi-
cle a. The motion variables may be defined after introducing an auxiliary
set of orthogonal unit vectors referred to the observed motion of b.

2|

Sketch (a)

The magnitudes and directions of the position and velocity (the
adjective "relative" will be dropped in this section since all motion
discussed is relative to the reference frame) of the observed point are
defined by

R

Rag

<!

= V'L-J.V

These two vectors establish a plane from which an orthogenal set of unit
vectors, Ug, Uy, Uy, may be defined:

ur = line-of-sight direction

UpXu:
=  _ "RV
o sin L
SianlﬁRXﬁvl
Ug = Ug X ug

The lead angle, L, is the misalinement of the velocity vector from the
negative line-of-sight direction. By definition 1t lies in the range

0 < LK and hence does not indicate the direction of rotation of the
line of sight. Thils information is contained in the definition of the
vector g, which is in the positive direction of the line-of-sight

angular velocity vector.
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The angular velocities of the line-of-sight and velocity vectors
are denoted by WgR and Wy. The vector WgR 1is perpendicular to the plane
of the line-of-sight and velocity vectors and may therefore be defined
as

WR = QRU®

The condition that R = O at the end of terminal guidance may be
met by the application of the basic proportional navigation constraint
equation:

Wy = sig (2)

where S is a constant. Such a comstraint, for appropriate values of S,
continuously reduces the lead angle and thereby alines the relative
velocity along the line of sight. The range, R, is also reduced con-
currently with the lead angle, and an interception eventually occurs.
Furthermore, the motion is now restricted to remain in a single plane
relative to the reference frame. Physically, this may be seen by noting
that equation (1) requires the veloeity vector to rotate only about g,
which, by definition, is also the axis of rotation of the line of sight.

Thus, the position, R, its rate of change, ¥V, and its acceleration, ¥,

are all coplanar, and once terminal guidance begins, the motion can take
place only in the plane defined by ﬁV and ﬁR at the start. This is also
readlly proved by showing that Ty, which (by definition) is perpendicular
to the plane of motion, is a constant direction in the reference space
once proportional navigation (eq. (1)) or, indeed, any constraint of the
form Wy = Qy(t)up is assumed.

Kinematic relations among the motion variables, which must be satis-
fied by any motion, are derived from the vector identities:

e

T =
(2)

<lte
1]
eI H

where the vector differentiations are as seen in the reference frame.
By application of the Coriolis theorem, we obtain

L , (3)
Vuy + Wy X V = Rug + 2RWR X ug + W X (Wg X R) + Wy X R

Equation (1) may be introduced into equations (3) together with the
gecmetrical relation

Uy = -(cos L)Ug + (sin L)Ug (&)

The coefficients of wuR and Uy, after the indicated operations are carried



out, then yield the following three independent kinematic equations:

R=-Vcos L (5)
ROR = V sin L (6)
-V cos L - SQRV sin L = R - RQRZ (7)

Equation (6) together with the derivative of equation (5) may be intro-
duced into equation (7) to give:

L+ (s-1)ag =0 (8)

The velocity V may be eliminated between equations (5) and (6) and the
resulting expression for QR introduced into equation (8). Subsequent

integration yields:
s-1
sin L. _ (R
sin Ig <R;> (9)

The subscript zero denotes the initial value of the variable. Equation
(9) shows the functional relation between range and lead angle which
typifies proportional navigation. It follows from (9) that S must
exceed 1 for an interception to occur. Other functional relations among
the variables may be obtained by substitutions among equations (5)
through (9); for example,

v oy R>"(S"2)

— = = = (10)
VO QRO Ro
or )
y_=_i_<sinL T 5-1
Vo 1o \sin Ig

Rendezvous constraint.- Of the set of kinematic relations among the
four variables, R, V, L, and Q, only three are independent, and another
or second constraint is necessary before the motion is completely
specified. We seek a constraint that will allow the complete motion to
satisfy the full rendezvous end conditions within the assumption of
proportional navigation. Expressed mathematically, the conditions on
the choice are:

=0
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(a) Equations (5) through (10) may not be violated and an interception
mist occur:

5>1
L{te) = 0
dL
d—tgo for 0 <t <ty

= =R =1 at t =0

where tp¢ 1s defined as the time at which the range becomes zero.
(b) A rendezvous must ocecur:
V(te) =0, tp>0
(V(t » 0%) = V¢ > 0, implying en impulse at interception, is not excluded)

These are minimum restrictions and others could be added, provided they
are consistent with the above set. In particular, no restraints due to
thrust limitations have been imposed. These limitations generally cannot
be expressed as simply as the kinematlc conditions. However, the con-
ditions above are always practical rendezvous maneuvers in the sense that
the maneuver will be completed with a finite mass.

The second equation of constralnt may be chosen variously, for
example, forms giving any varlable as a function of time, or functional
relations among two or more varlables or their derivatives. However,
functional relations among a set of varlables for which a relation is
already specified by the preceding kinematics cannot be used since a
new relation of this form cannot be independent without being
contradictory.

It should be noted that an investigation of only one of these forms
will suffice to cover the motion produced by a second constraint chosen
in any other form since the cholce of a second equation of constraint
will completely specify the motion. Our main interest is to satisfy the
requirement V(tf) = O so it seems natural to study velocity constraints.
However, 1t is much simpler to deal with the lead angle because all
motion variables may be given directly in terms of the lead angle and
its derivative. Thus, a condition that is to be applied to any other
variable has a simple equivalent condition on the lead angle or its
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derivative. The following form is to be studied:

= = £(7) (11)

where

The restrictions in (a) and (b) above will delineate the allowable
class of constraining functions of this form. Applying these restrictions
to f£(r) through equations (8), (9), and (10) yields:

£(0) =0 W

£r(1) > O for 0<T1<1

£(1) =1

' _ _ Vo sin Iop

£1(1) = (S-1)t¢ L > (12)
1lim __Elill__ =0

TTe [f(T)F%

J

r
(lim.+ __i_LI%:§ = Vg¥ > 0 plus an impulse at T = 0 1s also allowable)
>0 T
‘:f('r):ls_l

where the prime indicates differentiation with respect to 7.

These conditions describe a simple class of functions. The value
of f(r1) is prescribed at the end points, T = 0 and T = 1, and its
derivative is specified at T = 1. Further, f£'(1) is never negative
between the end points. An additional restriction must be imposed on
grounds that step changes in range are physically impossible. Therefore,
step discontinuities in #£(7) are proscribed. Any function in this

regstricted class which also satisfies the last condition above will be
satisfactory.

The simplest function that suggests itself is

£(r) = ™ (13)

(See appendix A.) So that the continuity of the present theory from
the standard proportional navigation may be clearly exposed, a new
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parameter, K, is defined to replace the exponent, m, by the expression
K(S-l). The two parameters, S and K, become the fundamental constraint
parameters. Applying the restrictions of (12) to equation (13) yields
as the second equation of constraint:

L _ k(s-1)
o
S>1
(14)
K> 1
From (12) there also follows:
te = K 2o _To
£ Vo sin Lo (15)

The complete motion may now be derived directly from equations (8), (9),
and (10).

1
R _(sin L S-T
Ro <sin Lo>s (16)
Q_R = TK(S':]_) -1 (17)
ORg
-(s-2)
VvV (R (s-1)-1
@ (29

The angle 7 will denote the angle between the line of sight ER(T) and
the initial line-of-sight direction 1y (see sketch (¢)). It is readily
determined by noting that °

Y = Qg

which, from equation (17), gives:

y =%[1-TK(S‘1)] (19)

Characteristics of the rendezvous maneuvers.- Equation (14), as
required, specifies that the lead angle decrease monotonically toward
zero during the rendezvous maneuver. From equation (16) the range may
therefore increase beyond its initial value before decreasing toward zero
if the initial lead angle is greater than n/2, but it never increases
if the initial lead angle is less than n/2. The limiting behavior of
the range near rendezvous (T + O and therefore I is sufficiently small




to assume sin I £ 1) is readily found to be

R =~ S—1 l K .
Ro in Lo

which decreases at least linearly with 7. (We note that T is really
the dimensionless time to go.)

The angular velocity of the line of sight (line-of-sight rate)
given by (17) exhibits varying behavior according to the value of the
parameter, S. In particular

Or(te) =0  for S> K;;

K+l

Og(te) = for 1<8< =

While motion having the latter characteristic is of doubtful practical
interest, a valid rendezvous 1s still achieved. It will be seen in the
next paragraph that the total line-of-~-sight angular change remains finite
for these values of S but indefinite spiraling motion is approached

as S - 1.

Equation (19) indicates how far the line of sight moves from its
initial position uR , as observed in the reference frame. The maximum
deparvure 1is

- Lo
Tmax T 571

and occurs at rendezvous. This angle increases as S decreases, becoming
arbitrarily large for S - 1 where an indefinite spiraling motion is
approached. For values of S > 2 the maximum departure is always less
than the initial lead angle.l

While off hand "loose" trajectories (S near 1) do not appear to be
desirable, these may present some advantages in a special case. Suppose
it is desired to rendezvous with a point on a surface so that the maneuver
ends tangent to the surface; that is, a landing. If the motion of the
approaching vehicle is in the plane perpendicular to the landing surface,
with the initial line of sight at an angle A, above the surface and the
relative velocity vector at an angle Io below the line of sight, then
the required value of S for a tangential landing is given from

L,
Tmax = Lo = §fﬁ

where values of £ < 2 are required if Ly < ONye A vertical landing may
be treated similarly.
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The character of the velocity time history is obscure in
equation (18), which contains two uncombinable terms that may in general
have opposing or concurrent trends depending on the values of IL,, S,
and K. However, some information may be obtained from the relative
acceleration, which, after some algebra, becomes:

7= 2 -p) - (g - Kl)tan L
V_RcosL[(s 2) <S K> LJ

Examination of the terms in this equation reveals that velocity always
decreases during guidance if S > 2. For 5 < 2, velocity increases if
the lead angle exceeds a certain value, L,, and decreases below L.
The value of L, depends on S and K and is given by:
tan I’l - S-2
- K+l
L - AL
T K

The limiting behavior of velocity near rendezvous (from eq. (18)) and
its derivative are:

vz K1 Vo2 <sin LO>S—1 -2
K Ro \ Lo

Near rendezvous the behavior of these quantities is therefore dependent
on X, as illustrated in sketch (b):

Sketch (Db)

Velocity approaches zerc continuocusly for values of K> 1, and at K =1
a step decrease of velocity occurs at 7T = 0. It may be anticipated

that the thrust requirements near rendezvous will exhibit the same
behavior as the relative acceleration, V, whose behavior depends on K.

In particular, if K> 2, V decreases continuously to zero, and .
if XK =2, V exhibits a step decrease to zero. In the range 1 <K< 2, V
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becomes arbitrarily large at rendezvous, and for K = 1, an impulse
occurs corresponding to the step decrease in velocity. In the cases
with singular behavior it can be shown that the mass ratio across the
singular region is not zero since the integral of V remains finite
over this region.

For a given set of initial conditioms (RO, Voo Lo), the maneuver
time, te, (eq. (15)) varies directly with X but is independent of 8.
Maneuver time is therefore a minimum for X = 1, which requires impulsive
retrothrust at rendezvous. For K > 2 the thrust requirements near
rendezvous are centinuous, but at least twice as much time is required
for this type of maneuver as is necessary using impulsive terminal
thrusting.

Equation (15) also indicates that +tf becomes arbitrarily large
for Ig-—+ (guidance begins with the vehicle receding along the line of
sight from the target) or for Vo = 0. The occurrence of these unfavor-
able initial conditions may be obviated where necessary by providing the
guidance system with a means of choosing the most favorable point on the
unguided approach trajectory at which to initiate the rendezvous maneuver,.
However, the choice of initial point should consider possible fuel
optimlization as well as time requirements.

If K = 1, then equation (14) is the same as the corresponding
result of reference 2 and, as must be the case, the complete motion is
that of reference 2 generalized to include large values of lead angle.
Thus, for this value of K the present theory reduces to the standard
proportional navigation theory up to the point of interception. At
interception the two differ in that the rendezvous maneuver requires a
step decrease of velocity to zero.

The rendezvous maneuvers derived in this section are illustrated
in figures 1, 2, and 3. Figure 1 1s a dimensionless polar plot of paths
in the plane of relative motion (R/Rg vs. 7). The origin is the origin
of the reference frame and the vertical radial line is the initial
line-of -sight direction. The equation governing these paths is found
from substitutions among equations (14), (16), and (19):

1
R _ [sinl1, - (s-1)71|5-T
Ro | sin I,

The paths therefore depend only on ‘Lo and S. Since the maneuver time
1s independent of S, a set of values of S will give a set of paths of
constant maneuver time for given values of Iy, Rgy, Vo, and K. (Changes
in K do not affect the path for a given value of S but change only
the time required to traverse the path.)

Polar plots of V/VO versus I for various values of S and the
initial condltion Iy = n/E are shown in figure 2. Here, the equation
may be found from equations (14) and (18).

0 £
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5-2 K+l /.
- == - ==/s-1
-
Vo sin Lo Io

Plots of lead angle versus velocity for several values of X are given
in figure 3.

Reference frame.- The command trajectories now have been largely
determined except to indicate the necessary transformations of vectors
given in the the ﬁR, Uy, Up frame to their components in the reference
space of the command system. A reference space is indicated in sketech (c)
by the orthogonal unit vectors u;, TU,, Us. At this point it is not
necessary to specify this reference frame further; it could be, for
example, an inertial or a local vertical frame. The plane of motion of
the observed point and its initial line of sight are established in the
reference space by means of the Euler angles Ay, Bg, I'g, which neces-
sarily have constant values during guidance. The angle, ¥, indicates
the departure of the line of sight from its initial direction, ﬁRO, as
observed in the reference space.

To eliminate ambiguity, Ao is to
be measured from the positive s
axis to the nearest branch of the line R
of nodes in & right-hand sense about
U1. Similarly I'y 1s measured from
the same branch of the line of nodes
in a right-hand sense about ﬁ¢.

Plone of relative motion

The commter coordinate vectors,
ug (line of sight), Gg, @, may be
given in the satellite reference space
by the transformation:

Line of nodes

{ = ~
3 iy
| = V|0 (20) Sketch (e)
tg s
- -4 - _J
sin Bosin(To+y) -Isin Agcos{lo+7) + cos Aosin(loty)cos Bol cos Agcos(Fo+y) - sin Agsin(Ig+9)cos Bo
¥ =] sin Bocos(ly+7) sin Agsin(lg+7) - cos Agcos(Tg+y)cos Bo -[cos Agsin(T'g+7) + sin Agcos(Tg+7)cos Byl

cos Bg cos Apsin By sin Agsin Bg
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In general, the components of a vector in the reference space may
be glven from its components in the motion frame by the transformation:

Ay AR

T
A = AZ = 11/ Ae
As Aq)

where WT indicates the transpose of V. It will be useful to introduce
the notation

ﬁR = Xlﬁ]_ + Xgﬁg + x3ﬁ3

where the x4 are the first row of V¥, and to note that g = (QR)-lﬁR
or

g = (QR)-l(ilﬁl + Xolp + %ala)

where the ki/QR are the second row of V.
Maneuver Forces

The trajectory constraint investigation thus far has not required
the specification of forces involved and is generally applicable to any
problem requiring the rendezvous end conditions. However, before a
maneuver can be carried out in any given problem, the required thrust
program mist be computed. The external forces on both vehicle and target
and the inertial rotational motion of the reference frame must be known.

Maneuver accelerations.- The inertial acceleration required during
the maneuver may be found from Newton's law.

The reference frame is at a which may
be either target or vehicle. If a is the

a - target, then applying Newton's law to the
R b vehicle we obtain:
ﬁIo ﬁIb fy + f = é%;'(ﬁla + R)
or
Inertial origin 7 - % + (Fp - ) (21)

Sketch (4d)

=0 F =
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where

£ acceleration of the vehicle due to thrusting or thrust force per
unit vehicle mass (to be referred to as the thrust program)2

fv external force per unit mass on the vehicle (gravity, aerodynamic,
ete.)

F dgﬁla
fm  acceleration of the target, e

The inertial relative acceleration, dgﬁ/dtz, may be given in terms
of the motion observed in the reference frame by the application of
Coriolis! theorem. Equation (21) becomes:

=V + ofipy X T + Wrg X (g X R) + Wy x R + (Fp - ) (22)

where WIa is the inertial angular velocity of the reference frame

and (') indicates time derivatives as seen in the reference frame. Since
the desired motion 1s one of the rendezvous maneuvers, then the appropriate
expressions for ? 7, and R from the previous text are to be introduced
in (22), together with Wla and the external forces. The required

thrust program is then computed.

The commanded relative acceleration, V, for the rendezvous maneuvers
may be written in terms of the measured motion variables:

= 2
V= %r [(S-E)cos L - <é- 5%%) Si% LJ Uy + SWR x V (23)

Utilizing this form in equation (22) yields an expression for f which
1s appropriate as the basic forcing function in automatic feedback
systems since that portion of the required thrust which depends on the

relative motion may now be computed directly from the observed current
motion.

Characteristics of the maneuver acceleration.- The relative
acceleration of the maneuvers is seen from equation (23) to consist of
two terms. The first, directed along uV, is largely responsible for
satisfying the veloc1ty end condition. The second term, SWR X V, 1s the
usual proportional navigation control function which forces an inter-
ception. Mathematically, V¥ is apparently well behaved except possibly
near rendezvous (T - O) where both V and R become zero, and (R may
sometimes be singular. Utilizing the previous results approximated for
small values of T gives the limiting expression for V near rendezvous:

2If a 1s the vehicle, the result is:

- 2R -
F=-3R, (Fp - F
a2+ (fr - &)
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2 S
V‘% s1§0 > l< Kl k-2 5 +SLO‘TKSZu¢XuV> (21)

The first term, due to V, varies as (K-1)1K2 and was previously
discussed; it reduces continuously to zero for K > 2, becomes constant
for K =2, and is singular in the range 1 < K< 2. At K =1 it is
zero except at T = O where it becomes an impulse function corresponding
to a step decrease in veloeity of

s-2/s-1
& = v, (22 Lo

Io

Near rendezvous, ﬁv is approximately along the negative line-of-sight
direction so that this part of the limiting thrust program is directed
along 1gR.

The second term, due to QRV and directed nearly perpendicular
to uUR along TUg X Uy, varies as 7KS8-2; therefore reduces to zero
continuously for S > 2/K and is singular for lower values of S. The
singular behavior is possible within the restriction S > 1 only if K
is less than 2. The singular behavior of the term is due to Qr modi-
fied by the behavior of V which tends to weaken the singularity and
reduce the range of values of S over which 1t may occur. In fact,
for K> 2 the singular influence of {p on this term is removed.

Because of the restriction K > 1, the maximum value of S for
which the second term in (24) may be singular is 2. Furthermore, a
number of possible peculiarities of the maneuver motion were noted in
the previous text for values of S 1less than 2. A valid rendezvous
is not precluded by any of these peculiarities but there is apparently
little advantage to be derived from them. The remainder of this report
will 1imit consideration to the main body of proportional navigation
maneuvers having fairly uniform characteristices by assuming the restriction

S>2 (25)

As a consequence, the sec?nd term in (24) will always reduce to zero
more rapidly than T2 2(X- near rendezvous.

If Wrg and fp - £y, are assumed to be well behaved, as must
generally be true in practical cases, then the first term in V will
be the dominant term in equation (22) near rendezvous. For K near 1,
this dominance is delayed to values of T very close to zero because
of the presence of (K-1) in this term; that is, the system approximates
the constant relative velocity behavior. In these cases the behavior
prior to the time at which the first term is dominant will be given by
some other term in equation (22), possibly the term WIa x ¥ (if W1a £ 0)
or by fp - fy.

[ omn N 2 T el Y
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Propellant requirements.- The mass of the vehiele will vary during
terminal guidance because of the expenditure of propellant in providing
thrust. If the thrust system is assumed to consist of a single-stage
rocket system of exhaust velocity 2, then from Newton's second law the
mass ratio at any time, is:

MY o (- gfﬂfmt) (25)

(e}

where Mgy 1is the initial vehicle mass and only the rendezvous maneuver
forces are considered. The actual thrust at any time is then given by:

T = M(t)F(t) (a7)

At this point, outside of the context of a specific problem, it is only
possible to iIndicate those faectors which affect propellant requirements
and which therefore might be controlled so as to reduce the required

£
fuel. The mass ratio over the maneuver depends on the integral b/ﬁ | £lat

o]
which, from (22) and (23), depends on the system parameters, initial

conditions and reference frame. If all other parameters are specified
in a glven problem then the system parameters, S and K, could be chosen
so as to optimize fuel consumption. However, the latitude of choice of
these parameters will llkely be limited by other considerations; for
example, maneuver time, trajectory constraint, and thrust program
characterlistics. As previously mentioned, it is possible to choose the
point on the approach trajectory at which guidance is begun such that the
fuel requirements are a minimim.

In equation (22) there are several terms which depend on the choice
of reference frame, that is, Wrg. If the rendezvous maneuver is carried
out in two different reference frames for an otherwise completely specified
problem, then the two maneuvers as viewed from inertial space are

tr

different. It then follows that |f| and\/ﬁ |flat will, in general,

o}
differ for the two frames and that the fuel requirements will vary
accordingly, some reference frames requiring less fuel than others in
each particular case. While Wy, has been assumed arbitrary thus far,
the number of useful frames is limited in practice, for example, inertial
and local vertical frames. Of course, guidance may be carried out in
any imaginary frame from measurements taken in one of the simpler frames
by means of appropriate transformation relations, so that in theory an
arbitrary Wla 1s still available. For our purpose, such a procedure
is unnecessarily complicated. Moreover, there is no simple means cof
finding the optimum Wrg. Nevertheless, for a reasonable problem
(restricted range of expected initial conditions) it should be feasible
with direct computations to determine if there is any significant advantage
in the choice of WIa from among a few simple frames.
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As a final point, it should be noted that the thrust requirements
for the proposed rendezvous maneuvers are, 1n general, variable both in
magnitude and direction. This is illustrated in the example that follows
dealing with the satellite rendezvous problem.

THE SATELLITE RENDEZVOUS PROBLEM

Application of the Force Equation

In what follows the "target" is a satellite in planetary orbit and
contains the command guidance system, including the reference frame.
The reference frame is taken to be a local vertical system with )
along the outward local vertical and 1z in the positive direction of
the satelllte orbital angular velocity, that is, perpendicular to the
crbital plane. The angular velocity of the reference frame, WIa; 1s then
the orbital angular velocity of the satellite.

The directions of all vectors in the thrust equation (22),
except fqp - fy, are already given. The following vector relations

are repeated here for convenience:

§ - Rig

<t
il

VﬁV
Uy = -cos iR + sin Iy

= Viy + SORVig

<
[

and also
WIa = OsUa
The transformation relations of equation (20) now allow all terms of (22)

to be expressed in the reference frame, giving the components of f
along u;, Uz, us as:

Mo

fl a1 ap 0 X1 bl b2 0]

1
fs] = |-az a1 O Xo| - é; -bs by O Xo| + (fT - fv) (28)
fg 0 O as X3 0 0 bl }‘CB

where

0
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ay = SRV sin L + V cos L + RE2
8 = R@S - eégv cos L

az = SQRV sin L + V cos L

by = sVQgeos L - V sin L

by = BV sin L

It remains to express the external foreces, fT - fv, in the reference
frame. For a satellite orbit outside the planetary atmosphere, the
difference in extermal forces 1s a result of the gravitational field of
the planet. In a central force field, if the vehicles are sufficlently
close during guidance, the gravity difference term may be linearized as
shown in appendix Bj whence

-2 00 X1
Fr - Fy=g. 2010 (29)
T -V T & R X2 29
001 X3

where Rg 1s the radial distance of the satellite from the center of
the force field and g 1is the gravitational acceleration at the
position of the satellite. The complete time histories of R, V, L, QR,
and the xqi are computed from equations (14) through (20) once the
initial conditions and the system parameters, S and K, are given. If
the orbit and gy are also glven, then the complete thrust program may
be computed.

Calculations were carried out for the simple case in which the
initial motion, and hence the entire maneuver, is coplanar with the
orbital plane of a satellite in circular orbit around the Earth. When
equations (28) and (29) are specialized to this simple case, then:

65 =0
8 _ s 2
§§ =6s (30)

X3=}'C:3=O

For coplanar motion the same initial position may be represented by
two sets of Euler angles which correspond to opposite directions of
rotation of the line of sight. These are

Case a: Ag = /2 , Bo = W/2 , I'o

Case b: Ag = w/2 , Bo = -n/2 , -T'o

Il
1]
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The rotation of the line of sight is, respectively, clockwise and
counterclockwise about the satellite axis of orbital rotation, Usz. The
difference between the two cases depends on the orientation of the
relative velocity vectors (sketech (e

v, Vvehicle
\v) Vehicle
L i - —

0 R R Vv
R

| case (@) Lo case (b)

é .

s 8s g

Satellite Satellite

Sketeh (e)

For cases (a) and (b) the position during guidance is given by:

sin[To + (2)7]

i

X1

il

xp = -cos[Ty + (&)7] (31)

ﬁ@ = (i)ﬁg

The factor (i), which henceforth will be denoted by n, is to be taken
as (+1) or (-1) for cases (a) and (b), respectively. This procedure
allows both cases to be included at once in the following derivation.

Equations (27), (29), (30), and (31) may be introduced in (28) to
form an expression for the thrust program. This expression is made
dimensionless with the factor ¢4 which depends only on the rocket
system and the particular circular orbit. The calculations will then
apply to all circular orbits and guldance rockets. In general, these
computational benefits are not obtained if the orbit is elliptical or
it the gravity difference term is not linearized.

£,% -3Rgfs 5 #e*| [sta(ro + o)
= (32)
fo¥ A* -A; cos(Ty + ny)
fs* =0

where

2
K+1 \sin I V cos L v R
Ay ¥ - o - (8- <_%> 2o
* < ><Roes> [( > Lo Vo 7T (5-2) Vo R °° L

- S sin®L, R > J 2n —Q sin Ly =— 2 R
o

0 £
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Vo V \ c v Q
A¥ = o (10) 1 - o) = ; — 2R
2 2 <c:>'Vo cos L - n <¥:> Rfa [2 sin Lg To Omg cos L +

< _k#l singLo_l_R__Qil:]
X Io Ro g, T

Quantities made dimensionless with g are denoted by the asterisk.

The parameters Roes/c, T'qy Vo/c, n, and Ly completely specify the
initial conditions in dimensionless form. Computations may be carried
out in any given problem by substituting the time historles of the motion
variables in equation (32) from equations (1k4) through (19).

Equations (26) and (27) become:
M 1
—(M? = exp | -0 Stf[ [£%] d’r>

T _ M) &

(33)

cfsMo My

The factor éstf is the geocentric orbit angle passed through by the
satellite during the maneuver, or, alternatively, a dimensionless
maneuver time. It 1s readily given in terms of the dimensionless initial
conditions from equation (15):

: _ RP s e Lo
sty = K:< c Vo/ sin Ig
Computations

The computations covered the following ranges of initial conditions:

n = x1

L, = 0 to 37/k
To - 0.01 to 0.1
c

I'y = O to 2x

Rfs 0.005 to 0.05

The range of values of Rdés/c corresponds to initial ranges from 10
to 100 miles for near-earth orbits (65 = 1072 radians/sec) and
¢ = 10,000 fps. The following values of the system parameters were taken:
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S

Il

5
K=1, 2,3

These values of S and K represent fairly "tight" memeuvers (ypgax = Lo/%)
and will illustrate the main effects of K on the thrust program. Higher
values of K are considered unlikely because of the corresponding
increases in maneuver time.

The computed mass ratios for a number of sets of initial conditions
and system parameters are given in table I. This table is intended to
give typical values. Questions concerning values of S and K for
minimm fuel requirements {the propellant ratio is given by
Mp/Mo = 1 - (Mp/Mgy)) demand a more detailed computational program outside
the scope of the present work. It appears generally from the table that
if the fuel requirements are severe, then the variation in fuel require-
ments with S and KX will be large ~13 percent over the range of S and K
covered for the case (Rfg/c = 0.05, Vo/e = 0.01) of table I(a). In
such cases consideratlon must be given to minimizing fuel requirements
by the proper choice of S and K.

Two cases were computed to compare fuel requirements using the
proportional navigation maneuvers and the two-impulse method of
reference 3. The mass ratios, Mf/MO, for the two methods are given in
table II. These two isolated cases indicate comparable fuel requirements
for the two metheds, but it would be hazardous to extend thils conclusion
to apply generally.

In figures 4 through 6, a number of thrust programs (magnitude and
direction) are plotted versus the dimensionless time, T. The thrust
per unit mass is given in the dimensionless form f/cés. Noting that
for near-earth orbits és 1078 radian/sec and taking ¢ = 10,000 fps,
then the order of magnitude of the required acceleration, f, in feet
per sec®, is given by multiplying the value of f£¥ in the graphs by 10.
The thrust direction is denoted by o which is the angle between the
negative line-of-sight direction and the thrust vector, as shown in
sketch (f)

Satellite
Sketeh (f)
f-)(-
@ =Tg + ny + arc tan —3— (34)

fo%
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Before discussing the thrust equation and the results, it 1s
convenient to rearrange equation (22), utilizing (23), (29), (30),
and (31) as before, except that it 1s now helpful to make the result
dimensionless with Vo6g rather than cfg. The result is then:

K+1\ sin 1| -
= S—Q I, - <S - —— :)
Voes Roes <Vo> <Ro> [( cos x,/) © |V

A A -
+ 9 2 sin — 2R i, % Uy +2 — us X
Rf s fo Vo Qr, ° v S
Rfs R _. -
- — sin (I'n +
3 Vo R (g + ny)iy (35)

The first term is due to V and is dlrected along Uy. The second
and third terms are directed perpendicular to Uy in the same direction
if n = +1 and in opposite directions if n is -1. These two terms are
due, respectively, to SWR XV and oWy, X V. The first three terms are
independent of the line-of-sight direction (FO + ny) and therefore for
cases in which these terms are dominant there will be very little
variation of the thrust program with different directions of the line
of sight.

The fourth term is the combined effect of Wrg X (Wrgy X R) and the
gravity difference and is the only term to vary with I'g. The importance
of this term depends on the value of the dimensionless parameter VO/RCBS,
if this parameter is sufficiently large (large initial velocity, low
initial range), then the first three terms are dominant and the fourth
term 1s negligible. If the parameter is small (low Vo, large R,),
then the fourth term contributes important position-dependent effects
to the thrust program. Equivalently, if VO/Rgés is large, then the
required maneuver acceleration is large compared to the gravity
difference, while low Vo/Rfg indicates that the required acceleration
is very low and of the same order as the gravity difference. The effect
of V /Rdas on the relative importance of terms is complicated by
effects of Iy, n, and K, but the general significance of V,/Rfg 1s
as stated above.

Table ITI illustrates a case of large Vo/RoéS for two different
positions, I'g. A comparison of the two shows that the mass ratio and
both the magnitude and the direction of thrust are very little affected
by the difference in TI'g. Figure 4(a) illustrates a case with low VO/ROBS
for two position angles. Strong effects of position and very low values
of acceleration (about 0.6 and 0.1 ft/sec® for the two cases at T = 1)
should be noted. An intermediate case 1s given in figure 4(b).

Figure 5(a) illustrates the effects of K. In the thrust program
the value of K affects primarily the importance of the term Vu at
low lead angles. This effect is always seen for low values of T since
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the lead angle will have been reduced to small values; that is, it is
always seen in the limiting behavior of the thrust program. The case
plotted in figure 5(a) is one with a low initial lead angle (10°) so that
the influence of K 1is pronounced throughout most of the maneuver.

For K = 1, the chief function of the term Vuy is to remove the
relative veloelty at T = O by means of an impulse, noted by a break in
the f* plot of figure 5(a) and the point « = 180° in the o plot.

For K = 2 and 3, the first term becomes dominant very early in the
program, reflecting the constant value of V for KX = 2, the linearly
decreasing behavior of V for K = 3, and the thrust direction o = 180°
of Vﬁv for both values of K.

It was previously noted that the second and third terms of
equation (35)

<S V? SinLol-Q—R nﬁg Xﬁv+2—v—ﬁ3‘><ﬁv
Rb s Vo QR Vo

tend to cancel for n = -1. These terms are due to SWR X V and 2Wp, X V
and are directed perpendicular to ﬁV. If n=-1 and_the initial
magnitude of SWR XV 1s larger than that of 2Wpg X V, which is usually
the case for large values of S and VO/ROéS, then the combined terms

are initially perpendicular to_ Gy _in the direction -isz X Gy. It is
clear that _the magnitude of SWR X V disappears much more rapldly than
that of 2Wrg X V, so that at_some point the two terms will cancel each
other after which the term 2Wrg XV will be larger than SWR XV and
the direction of the combined terms will shift by 180° to Uz X ﬁV. In
figure 5(a) this cancellation occurs near T = 0.6, and for K =1 a
very rapid and large shift in o 1is noted. The curves for K =1
follow closely the behavior of the combined second and third terms
modified by small effects of the first and fourth terms of equation (35).
The first term is, of course, seen mainly in the impulse at T = O.

For K = 2 and 3, the first term is dominant and the curves follow
closely the behavior of the first term modified by the combined effect

of the second and third terms so that the cancellation effect is over-
powered. Thus the early portions of all the curves reflect the rapid
demise of the terms SWR XV (with 3 for K = 1, 78 for K = 2, and 713
for K = 3). After the cancellation, the curves for K = 1 reflect the
rise of f* +to the constant value of 2Wyg XV but for K =2 and 3

the term 2WTs X V 1is overpowered by the first term.

If n = +1, both Wry and WR are in the same direction (see
sketch (e)). In this case the two terms add and no cancellation effects
oceur. The case plotted in figure 5(b) has identical initial conditions
to those for figure 5(a) except that n = +1 for figure 5(b). As
expected, the cancellation effects do not occur.

The procedure of making f dimensionless with Voés also simplifies
the discussion of propellant requirements. By specifying the parame-
ter VO/R&BS, Iyy ny Lgy S, and K the ratio of the characteristic

0 =
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velocity AV +to the initial relative veloecity may be given:

l_
o2 g Me_gy fl_f_!_d_
V-O VO MO OVOeS

Several plots of AV/V, versus Vo/Rfg are given in figures 6(a) and 6(b)
for stated values of Ty, n, Ly, S, and K. In figure 6(b) an additional
curve is given by a dotted line for a different value of Ty but other-
wise represents the same Initial conditions and system parameters. As
expected, the two curves do not differ except at low values of VO/ROéS

In summary, important influences on the thrust program from four
parameters should be noted; namely, those of VO/Roés, 5, K, and n.
Equation (35) consists of four terms, the fourth of which contributes
the only position- dependent 1nf1uence on the magnitude of the required
thrust. For large V /R 9 the fourth term may be neglected; for
small VO/ROQS the requlred acceleration for the maneuver is of the
same order of magnitude as the gravity difference and the fourth term
mst be retained.

The second term in (35), due to SWR X V, is the largest term at
the start of guidance for sufficiently large values of S and VO/ROGS.
For usual values of 8 it is also the most rapidly disappearing term
in the equation, and this behavior is usually seen in the early portion
of the thrust programs.

The parameter, X, primarily influences the final behavior of the
thrust program through the first term (Vuy) in equation (35).

For n = -1 the second and third terms (SWR X V) tend to cancel
each other, causing the large and rapid shift in thrust angle observed
for cases having X = 1. For n = +1 the cancellation does not occur.

Finally, it may be noted that some of these effects are due to the
rotation of the reference frame, Wrg. If an inertial frame were used,
the Coriolis terms of equation (22) would not appear, in which case
there would be no cancellation effects for n = -1, and the limliting
behavior prior to the impulse for K = 1 would be different. In general,
there would be an increased uniformity among the thrust programs.

CONCLUSTIONS

It has been recognized that the rendezvous problem 1s capable of
general kinematic solution and the theory of proportional navigation
for interception has been extended to rendezvous by modification of the
end conditions. A simple navigation function has been selected and the
resulting solutions of the rendezvous problem have been investigated.
The investigation indicates the following conclusions:



28

1. The extension of proportional navigation theory to produce
rendezvous requires the additional parameters, Kj, which, in the simple
function considered, reduce to the single parameter X whose primary
effect is to control velocity so as to meet the rendezvous end conditions.
Thls parameter also strongly influences the maneuver time.

2. The thrust program requires variable thrust, both in magnitude
and direction. The maximum value and the range of variation of the
thrust depend on the initial conditions of relative motion and the
constraint parameters, S and K. The behavior of the thrust program is
strongly influenced by the value of S in the early portion, and by
the value of X 1n the later portion near rendezvous.

3+ An acceleration forcing function appropriate for use in automatic
feedback guidance systems has been derived from the kinematics.

Ames Research Center )
National Aeronautics and Space Administration
Moffett Field, Calif., Feb. 14, 1961
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NOTES ON THE SECOND TRAJECTORY CONSTRAINT EQUATION

The function taken in equation (13) of the text as the second
constraint equation has, for the purposes of the present report, the
advantage of simplicity. However, it may be generalized to the polynomial

28]

£(7) =ZaiTKi(S_l) (A1)

i=1
where the K, are taken as an ascending sequence of arbitrary constants.
The conditions of equation (12) applied to this polynomial produce the
following restrictions:

‘
S>1

Ki >1
)
E:ai =1
i=1
> (A2)
[2¢]

L
tp = ZKiai E_L_
Vo sin Ly
i=3

o0

ZaiKiTKi(S"l)'l >0 for 0<T<1

i=1 J

Without exploring fully the range of such functions, it is evident
from (Al) and (A2) that the permissible sequences aj at least include
all sequences of any length made up of positive numbers whose sum is 1.
For example, one such set ig given by:

N

£(7) = %ZTKi(S_l) (3)
i=1

which might be described as an "average value" system.

Equation (Al) indicates that a host of solutions of the rendezvous
problem must exist within the confines of proportional navigation alone.
The analysis is not carried farther here.
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APPENDIX B

GRAVITY CONTRIBUTION TO THE REQUIRED THRUST FOR

THE SATELLITE RENDEZVOUS PROBLEM

For the satellite rendezvous problem the effects of gravitation
appear in equation (28) as the difference in the acceleration due to
gravity on the satellite and vehicle fgs - fgv'

A central force field will be assumed and the gravity forces will be
expressed in the geocentric reference space described in the text. The
positions of the satellite and vehicle from the center of the earth are
Rg and Ry, and the acceleration due to gravity for a central force fileld
at the satellite 1s gg-

i
i

= _gsal
®s (B1)
7 o= R\ By
gv = Bs\R,/) ®.
Noting that
Ry _ R - - -
= -t R (%1037 + XoUp + X3ls) (B2)
s s

then
— 21-3/2
BZ 3= 1 +2 R X1 + R
Rs Rs % Rs

During terminal guidance the two vehicles are sufficiently close
together to assume

R o«
R

S
2
R R
Q—B;—S‘Xl+<§§> << 1

and therefore (R,/Rs)™> may be expanded binomially. The gravity
difference then becomes:

2
—f - ? =g &- —13‘ (—2X Uy + XoUs + XaU: ) + 38 :RB' 'B— é X12 - 1_' ﬁl
gs gV S RS RO 141 242 3U3 s RS RO P) >

3
- X1XplUp - X1X3ﬁ%}+ Order(%%) (B3)
s
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Only the first-order terms will be retained in the computations for
the satellite rendezvous:

fgS - fgv =\gs g—g % (—2xlﬁl + Xgﬁg + Xsﬁs) (B)-l-)

The successive terms in (B3) differ in magnitude by the factor
Ro/Rg, which in the computations is restricted to values less than 0.02.
This corresponds to values of initial range, Ry, up to 100 miles for
near-earth orbits. Greater ranges may be included in the computations
by retaining the second-order terms in (A3). It may be noted that the
first term to appear due to oblateness is of order J(Rp/Rg)Z(R.,/Rs)es
where Rg 1s the earth's equatorial radius and J, the oblateness
constant, is about 1072. This term will be less than 10 percent of the
second-order term in (B3) for values of RO/RS of 0.02 or somewhat
greater, and therefore the gravity difference may be given up to second-
order terms assuming a central force field.

The accuracy with which the gravity difference need be computed
depends on its magnitude relative to the magnitude of the remaining terms
in the expression for the thrust program (eq. (28)), that is, the magnitude
of the inertial relative acceleration due to external forces compared to
the magnitude of the inertial relative acceleration required by the
commanded maneuver. Three regimes may therefore be recognized: The
commanded relative acceleration may be much greater than the gravity
difference which may then be neglected; the commanded relative accelera-
tion may be of the same order of magnitude as the gravity difference which
must then be retained to first order; or the commanded maneuver may be so
close to the free-fall motion that the commanded acceleration and the
first-order gravity terms cancel each other, in which case the second-
order gravity terms become the largest.

For the problem discussed in the text (coplanar rendezvous with a
satellite in circular orbit), it was seen that the regime of operation in
any case depends on the initial conditlons; in particular, on the
dimenslonless parameter Vo/Roés' If this parameter is large, then the
case is in the first regime and the gravity difference may be neglected.
If the parameter is smell, then the case is in the second regime and the
first-order gravity difference must be retained. In this case the required
thrust per unit mass computed for the maneuver is necessarily small, that
is, of the order of the gravity difference. The computations involved
cases in both these regimes, and hence the gravity difference term was
retained to first order.

The third regime does not occur except under the fortuitous
circumstance that the commanded relative acceleration is the same, both
in magnitude and direction, as the free-fall acceleration. This event,
if it should occur, will be of such short duration and the acceleration
error sufficlently small that no significant motion errors can build up.
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The second-order gravity difference term may also be ilmportant in the
second regime from the point of view that a small thrusting error
maintained over a sufficiently long maneuver time will bulld up signifi-
cant position errors. However, for the proportional navigation system
this effect is obviated by fairly short maneuver times and by the feed-
back nature of the system. The seccnd-order gravity difference terms
may therefore be neglected in general.
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TABIE T.- MASS RATIOS (Mg/My) FOR VARIOUS SETS OF INITIAL CONDITIONS AND SYSTEM PARAMETERS
(a) Tg = 31/2, S =5, n= -1, Lo = #/2
ROéS
- 0.005 0.01 0.02 0.03 0.0k 0.05
X
7 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3 1 2 3
(&4
0.01/0.973]0.981]0.982|0.955{0.960{0.958/0.884|0.870/0.858 0.78010.73810.7130.655{0.586|0.550]0.523|0.435|0.39%
.03 .929| 948 .951| .927| .951| .953| .907| .930] .931 .870| .884| .878| .819| .820| .807| .758| .743| 722
.06] 81| .895| .898| .83| .899| .903| .859| .90k| .908 .8u6| .893| .896| .B823| .866| .865| .793| .828[ .823
A | .76 .827] .833| .779| .832| .838] .782| .8h1| .B4T| .TT9 85| .852| .770| .8h2| .8uB| .756| .828| .832

(b) Rfg/c = 0.01, Ty = 3n/2, Vo/c = 0.05, 8 =5

SO x| —x/a| en/h|-n/18| w/18| k| w/e | 3w/t
1 |0.901[0.897({0.916|0.937]|0.922{0.892|0.870 0.870
2 917| .917] .93%| .952| .943| .916| .8B9k| .890
3 .919| .920| .937| .953| .945| .920| .899| .89k

— A e

~

e
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TABLE II.- COMPARISON OF MASS RATIOS FOR TWO-IMPULSE AND PROPORTIONAL
NAVIGATION METHODS

Proportional
Initial conditions Two-impulse navigation
method (8=5)
Rfs Vo e.stf';* Mp éstf: Me
c |To| = | ®| 0| radian Mo X | radian o
7 _ 7
0.005 = 0.01 | -1 i5 Y0 10.985 (1.0 0.5 |0.981
2.0 1.0 .989
3.0 1.5 .990
= -1 Z 4.0 .
.01 5 01 1 18 975 11.0 1.0 .966
200 2.0 0975
3.0 3.0 976

*Computations for the two-impulse theory may be made

dimensionless in the same manner as the proportional
navigation results.
to specify the orbit or a value of

Ce
eter of the two-impulse method is no longer the maneuver
time, tf, but the portion of the circular orbit that the
satellite passes through during the maneuver, Ogtf, which

In that case it is again unnecessary

The free param-

may also be regarded as a dimensionless maneuver, time.
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TABIE IIT.- EFFECTS OF POSITION ON THE THRUST PROGRAM FOR

LARGE Vo/Rfs; S =5, K= 1

Initial conditions: n = -1 Rﬁfs =0.01 Io = g
Vo _0.1 Yo =10
¢ Rf s
Dimensionless
thrust-to-mass Thrust direction
ratio a, deg
T
B¢ ¢
[ =0Ty = 3= I'o =0T = 3x
2 2
(2) (b)
1.0 | 5.166 5.194 21.70 21.58

0

.91 2.808 2.913 Ll ok 43,75
811.797 1.798 61.36 60 .56
.7 1.110 1.103 73.32 72.16
b1 6379 6280 81.09 79.51
Sl 3092 .2992| 85.70 83.16
L1 .0903 0820 87.79 80.75
.3 L0428 0505 270.84 | 278.88
2] L1117 L1165] 270.34 | 272.67

.1 | .1378 ko2 270.19 | 271.16
L1hes L1h25] (270 270

0 (c) (¢) [1180 180
a

Mp

_ = Oo

v 7795
b

Mg

—_— = Oo J‘l*

v 779

¢ Impulse at T =20

O
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Figure l.- Maneuver paths: range versus angular departure from the
initial line of sight.



Lead angle, 90°
90° L
1.0 r=9 k 1.01 =9 Lead
: .8 angle,
N 7 : 60° L
N \\
S=2 .6
i 3 \\ \Y \
\
5 \
! N\
\\y
N '\
W\
5t \\
i \ 30°
\
B |
|
|
- |
=5
L =2
=1.5
1 1 I 1 1 1 1 oc
0
(a) K= 1

Figure 2.- Lead angle versus veloclty, Lo = ;_r.

—\ o

g¢



-
iy

Figure 3.- Lead angle versus

0 &

__/
2 4 6
N
Vo
(b) s =

veloeity, Lo = -;E

1.0

6¢



.04

.02

System parameters
S=5
K= I

M¢

Mg

M¢
M

(¢}

100

0
a,
deg
-100
-200
Mass ratio:
=.9666 for F°=O

8840 for L=

Vo
(a) e 0.5

r=37 |0
. /9 2
\A
—
\k
|
|
i
{
{ 8 6 4 0
T
[nitial conditions
Vi
-l 2o
Ry 8
Lf% °C * =02
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